Jump to content

Human brain-inspired supercomputer will go live soon


USH

Recommended Posts

Using just 20 watts of power, the human brain is capable of processing the equivalent of an exaflop — or a billion-billion mathematical operations per second. Now, researchers in Australia are building what will be the world's first supercomputer that can simulate networks at this scale. 

human%20brain%20computer%20cyborg%20AI.png

DeepSouth supercomputer - the world's first computer designed to emulate the parallel biological neural networks of the human brain itself. Developed by scientists at Western Sydney University's International Centre for Neuromorphic Systems, DeepSouth utilizes breakthrough neuromorphic hardware and software that mimics neurons and synapses to achieve unprecedented efficiency. 

The DeepSouth supercomputer distributes processing across a network of bespoke brain-inspired chips, unlike traditional supercomputers based on von Neumann designs. 

This enables DeepSouth to carry out a staggering 228 trillion synaptic operations per second, rivaling estimates for the human brain's processing speed. Yet it requires far less space and power than conventional systems. 

This new generation of brain-inspired supercomputing not only could make sci-fi applications an everyday reality but even more scary is the fact that they could someday create a cyborg brain vastly more powerful than our own. 

The prospect of entities, whether humans or AI (robots), equipped with cyborg brains is becoming increasingly plausible, paving the way for a profound shift in the hierarchy of Earth's dominant species.

 

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Live High-Definition Views from the International Space Station (Official NASA Stream)
    • By NASA
      Live Video from the International Space Station (Official NASA Stream)
    • By NASA
      NASA Science Live: Climate Edition - Innovations for a Sustainable Future
    • By NASA
      Since its ​launch​​​ in 2014, ​the ​Physical Sciences Informatics (PSI) ​system ​has served as NASA’s online repository for physical science data. ​Now​​​, the PSI system​ is​ ​live with new​​​ update​s​ to further align with NASA’s open data policy​.​ 
      ​​With its first significant update in over five years,​​ t​he data repository has been completely redesigned, featuring a new layout, improved structure, and enhanced search functionalities. This updated system was created with a focus on user experience, and more updates are anticipated as new features are introduced. 
      ​​A key new feature of the system is​, the PSI Submission Portal​​. This tool is designed to streamline the processes of collecting, curating, and publishing new data by enabling Principal Investigators and scientific teams to upload files directly to the system with the support of a data curator. The Portal also offers a dedicated workspace for data submitters, assigns a unique digital object identifier to each dataset, and standardizes the documentation and data structure for each investigation. 
      Both the updated PSI system and Submission Portal can be accessed at PSI.NASA.gov. 
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Expedition 64 Flight Engineer Victor Glover of NASA sips on a water bag. The latest book marks our third effort to review available literature regarding the role of nutrition in astronaut health. In 2009, we reviewed the existing knowledge and history of human nutrition for spaceflight, with a key goal of identifying additional data that would be required before NASA could confidently reduce the risk of an inadequate food system or inadequate nutrition to as low as possible in support of human expeditions to the Moon or Mars. We used a nutrient-by-nutrient approach to address this effort, and we included a brief description of the space food systems during historical space programs.
      In 2014, we published a second volume of the book, which was not so much a second edition, but rather a view of space nutrition from a different perspective. This volume updated research that had been published in the intervening 6 years and addressed space nutrition with a more physiological systems-based approach.
      The current version is an expanded, updated version of that second book, providing both a systems approach overall, but also including details of nutrients and their roles within each system. As such, this book is divided into chapters based on physiological systems (e.g., bone, muscle, ocular); highlighted in each chapter are the nutrients associated with that particular system. We provide updated information on space food
      systems and constraints of the same, and provide dietary intake data from International Space Station (ISS) astronauts.
      We present data from ground-based analog studies, designed to mimic one or more conditions similar to those produced by spaceflight. Head-down tilt bed rest is a common analog of the general (and specifically musculoskeletal) disuse of spaceflight. Nutrition research from Antarctica relies on the associated confinement
      and isolation, in addition to the lack of sunlight exposure during the winter months. Undersea habitats help expand our understanding of nutritional changes in a confined space with a hyperbaric atmosphere. We also review spaceflight research, including data from now “historical” flights on the Space Shuttle, data from the Russian space station Mir, and earlier space programs such as Apollo and Skylab. The ISS, now more than
      20 years old, has provided (and continues to provide) a wealth of nutrition findings from extended-duration spaceflights of 4 to 12 months. We review findings from this platform as well, providing a comprehensive review of what is known regarding the role of human nutrition in keeping astronauts healthy.
      With this latest book, we hope we have accurately captured the current state of the field of space food and nutrition, and that we have provided some guideposts for work that remains to be done to enable safe and successful human exploration beyond low-Earth orbit.
      Human Adaptation to Spaceflight: The Role of Food and Nutrition – 2nd Edition
      Download 2nd Edition PDF
      Human Adaptation to Spaceflight: The Role of Food and Nutrition – 1st Edition
      Download 1st Edition PDF
      Education and Outreach Share
      Details
      Last Updated Oct 23, 2024 EditorRobert E. LewisLocationJohnson Space Center Related Terms
      Human Health and Performance Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...