Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      AS16-116-18653 (23 April 1972) — Astronaut Charles M. Duke Jr., Apollo 16 lunar module pilot, stands at a big rock adjacent (south) to the huge “House Rock” (barely out of view at right edge). Note shadow at extreme right center where the two moon-exploring crew members of the mission sampled what they referred to as the “east-by-west split of House Rock” or the open space between this rock and “House Rock”. At their post-mission press conference, the crewmen expressed the opinion that this rock was once a part of “House Rock” which had broken away. The two sampled the big boulder seen here also. Duke has a sample bag in his hand, and a lunar surface rake leans against the large boulder. Astronaut John W. Young, commander, exposed this view with a color magazine in his 70mm Hasselblad camera. While astronauts Young and Duke descended in the Apollo 16 Lunar Module (LM) “Orion” to explore the Descartes highlands landing site on the moon, astronaut Thomas K. Mattingly II, command module pilot, remained with the Command and Service Modules (CSM) “Casper” in lunar orbit.NASA The goals of the working group were to:
      Endorse or recommend changes to H2S SMAC levels that had been proposed by the JSC Toxicology Laboratory Review a draft H2S SMAC manuscript prepared by the JSC Toxicology Laboratory Provide any additional insight and consideration regarding H2S toxicity that should be considered for spaceflight programs Background
      The NASA Spaceflight Human-System Standard (NASA-STD-3001) establishes that vehicle systems shall limit atmospheric contamination below established limits [V2 6050] Atmosphere Contamination Limit. The JSC Toxicology Laboratory maintains the JSC 20584 Spacecraft Maximum Allowable Concentrations for Airborne Contaminants document, which contains a table of SMAC values for a variety of chemicals including carbon monoxide, ammonia, heavy metals, and a wide range of volatile organic compounds. SMACs are documented for 1-hr, 24-hr, 7-day, 30-day, 180-day, and 1000-day time spans for each chemical, and express the maximum concentration to which spaceflight crew can be exposed for that duration.
      Read More The organ system that is affected as well as the effect (symptoms) are also documented for each SMAC. For more information on SMACs, see this article Exposure Guidelines (SMACs and SWEGs) – NASA and the OCHMO Spaceflight Toxicology technical brief technical brief.
      Read More A SMAC value for hydrogen sulfide has not previously been established since it has not been of concern in spacecraft. However, with Artemis missions returning to the moon there is a possibility that H2S could be released within spacecraft during lunar sample return, given that this compound may be a component of lunar polar ice. H2S has an intense smell of rotten eggs and therefore has a distracting psychological element. Physiologically it has been shown to be an irritant at low concentrations and in high concentrations can potentially lead to neurological effects and unconsciousness.
      Hydrogen sulfide SMAC values will define safe limits for spaceflight crews on future missions and could drive new requirements for monitoring and mitigation of this chemical during spaceflight.
      Read More Conclusions
      Key points of the review were:
      The proposed 1-hour, 24-hour, 7-day, 30-day, and 180-day SMAC values were deemed appropriate and were endorsed by each of the panel members. The proposed 1000-day SMAC value is so low that the panel’s opinion is that this SMAC may not be attainable due to human-generated sources, and that these concentrations do not represent a true toxicological risk. The recommendation is to eliminate the 1000-day SMAC, or to call it a guideline. The general SMAC calculation approach and inclusion of safety factors is logical, although some additional rationale would be justified. Interactive and additive effects with other substances are considered negligible, particularly at these low concentrations. Microgravity-induced physiological changes are unlikely to exacerbate hydrogen sulfide exposure at these low concentrations. Recommendations were made with the understanding that these SMACs apply to pre-screened, healthy astronauts. For private spaceflight participants who may not be as well screened, the panel recommended individual physician attention and a review of all SMACs (including hydrogen sulfide), to identify sensitivities in certain populations (existing disease states, etc.). Passive dosimetry technology is available and should be considered for long-term monitoring at these low concentrations. Following consideration of the panel’s recommendation, the NASA/TM-20240000101 Exposure Limits for Hydrogen Sulfide in Spaceflight was revised and released by the JSC toxicology group in January of 2024 and is available below.
      Read More Astronaut Woody Hoburg replaces life support system components inside the International Space Station’s Destiny laboratory module.NASA About the Author
      Kim Lowe
      Human Systems Standards Integrator
      Share
      Details
      Last Updated Jan 17, 2025 Related Terms
      Office of the Chief Health and Medical Officer (OCHMO) Human Health and Performance Humans in Space The Human Body in Space Keep Exploring Discover More Topics From OCHMO Standards
      Human Spaceflight Standards
      The Human Spaceflight & Aviation Standards Team continually works with programs to provide the best standards and implementation documentation to…
      Aerospace Medical Certification Standard
      This NASA Technical Standard provides medical requirements and clinical procedures designed to ensure crew health and safety and occupational longevity…
      Aviation Medical Certification Standards
      This document provides the standards and administrative procedures for the aviation medical certification of NASA aviation flight personnel. It ensures…
      Technical Briefs
      Technical Briefs are available for standards that offer technical data, background, and application notes for vehicle developers and medical professionals.…
      View the full article
    • By NASA
      Peering through the window of the SpaceX Dragon Endeavour spacecraft, NASA astronaut Matthew Dominick captured this image on Oct. 7, 2024 of the SpaceX Dragon Freedom spacecraft as vivid green and pink aurora swirled through Earth’s atmosphere while the International Space Station soared 273 miles above the Indian Ocean.
      Visit Dominick’s photography on station to experience the wonders of space through his eyes, enriched by his remarkable journey of orbiting the Earth 3,760 times.
      To see a short-term forecast of the location and intensity of the next aurora check this link: Aurora – 30 Minute Forecast and also NASA’s Guide to Finding and Photographing Auroras.
      Image Credit: NASA/Matthew Dominick

      View the full article
    • By NASA
      A rendering of Firefly’s Blue Ghost lunar lander and a rover developed for the company’s third mission to the Moon as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative.Credit: Firefly Aerospace NASA continues to advance its campaign to explore more of the Moon than ever before, awarding Firefly Aerospace $179 million to deliver six experiments to the lunar surface. This fourth task order for Firefly will target landing in the Gruithuisen Domes on the near side of the Moon in 2028.
      As part of the agency’s broader Artemis campaign, Firefly will deliver a group of science experiments and technology demonstrations under NASA’s CLPS initiative, or Commercial Lunar Payload Services, to these lunar domes, an area of ancient lava flows, to better understand planetary processes and evolution. Through CLPS, NASA is furthering our understanding of the Moon’s environment and helping prepare for future human missions to the lunar surface, as part of the agency’s Moon to Mars exploration approach. 
      “The CLPS initiative carries out U.S. scientific and technical studies on the surface of the Moon by robot explorers. As NASA prepares for future human exploration of the Moon, the CLPS initiative continues to support a growing lunar economy with American companies,” said Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters in Washington. “Understanding the formation of the Gruithuisen Domes, as well as the ancient lava flows surrounding the landing site, will help the U.S. answer important questions about the lunar surface.”
      Firefly’s first lunar delivery is scheduled to launch no earlier than mid-January 2025 and will land near a volcanic feature called Mons Latreille within Mare Crisium, on the northeast quadrant of the Moon’s near side. Firefly’s second lunar mission includes two task orders: a lunar orbit drop-off of a satellite combined with a delivery to the lunar surface on the far side and a delivery of a lunar orbital calibration source, scheduled in 2026.
      This new delivery in 2028 will send payloads to the Gruithuisen Domes and the nearby Sinus Viscositatus. The Gruithuisen Domes have long been suspected to be formed by a magma rich in silica, similar in composition to granite. Granitic rocks form easily on Earth due to plate tectonics and oceans of water. The Moon lacks these key ingredients, so lunar scientists have been left to wonder how these domes formed and evolved over time. For the first time, as part of this task order, NASA also has contracted to provide “mobility,” or roving, for some of the scientific instruments on the lunar surface after landing. This will enable new types of U.S. scientific investigations from CLPS.
      “Firefly will deliver six instruments to understand the landing site and surrounding vicinity,” said Chris Culbert, manager of the CLPS initiative at NASA’s Johnson Space Center in Houston. “These instruments will study geologic processes and lunar regolith, test solar cells, and characterize the neutron radiation environment, supplying invaluable information as NASA works to establish a long-term presence on the Moon.”
      The instruments, collectively expected to be about 215 pounds (97 kilograms) in mass, include: 
      Lunar Vulkan Imaging and Spectroscopy Explorer, which consists of two stationary and three mobile instruments, will study rocks and regoliths on the summit of one of the domes to determine their origin and better understand geologic processes of early planetary bodies. The principal investigator is Dr. Kerri Donaldson Hanna of the University of Central Florida, Orlando. Heimdall is a flexible camera system that will be used to take pictures of the landing site from above the horizon to the ground directly below the lander. The principal investigator is Dr. R. Aileen Yingst of the Planetary Science Institute, Tucson, Arizona. Sample Acquisition, Morphology Filtering, and Probing of Lunar Regolith is a robotic arm that will collect samples of lunar regolith and use a robotic scoop to filter and isolate particles of different sizes. The sampling technology will use a flight spare from the Mars Exploration Rover project. The principal investigator is Sean Dougherty of Maxar Technologies, Westminster, Colorado. Low-frequency Radio Observations from the Near Side Lunar Surface is designed to observe the Moon’s surface environment in radio frequencies, to determine whether natural and human-generated activity near the surface interferes with science. The project is headed up by Natchimuthuk Gopalswamy of NASA’s Goddard Space Flight Center in Greenbelt, Maryland.  Photovoltaic Investigation on the Lunar Surface will carry a set of the latest solar cells for a technology demonstration of light-to-electricity power conversion for future missions. The experiment will also collect data on the electrical charging environment of the lunar surface using a small array of solar cells. The principal investigator is Jeremiah McNatt from NASA’s Glenn Research Center in Cleveland. Neutron Measurements at the Lunar Surface is a neutron spectrometer that will characterize the surface neutron radiation environment, monitor hydrogen, and provide constraints on elemental composition. The principal investigator is Dr. Heidi Haviland of NASA’s Marshall Spaceflight Center in Huntsville, Alabama. Through the CLPS initiative, NASA purchases lunar landing and surface operations services from American companies. The agency uses CLPS to send scientific instruments and technology demonstrations to advance capabilities for science, exploration, or commercial development of the Moon. By supporting a robust cadence of lunar deliveries, NASA will continue to enable a growing lunar economy while leveraging the entrepreneurial innovation of the commercial space industry. Two upcoming CLPS flights scheduled to launch in early 2025 will deliver NASA payloads to the Moon’s near side and south polar region, respectively.
      Learn more about CLPS and Artemis at:
      https://www.nasa.gov/clps
      -end-
      Alise Fisher
      Headquarters, Washington
      202-358-2546
      alise.m.fisher@nasa.gov
      Natalia Riusech / Nilufar Ramji    
      Johnson Space Center, Houston
      281-483-5111
      natalia.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
      Share
      Details
      Last Updated Dec 18, 2024 LocationNASA Headquarters Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis View the full article
    • By European Space Agency
      Video: 00:11:10 In 2024, ESA continued to drive Europe’s innovation and excellence in space, equipping the continent with advanced tools and knowledge to address global and local challenges. The year saw pioneering missions, cutting-edge satellites and the pivotal restoration of Europe’s independent access to space. 
      The first Ariane 6 launch was perhaps ‘the’ highlight of the year but it was only one of many achievements. We saw the last Vega launch and then the return to flight of Vega-C, the more powerful, upgraded version carrying Sentinel-1C.
      Far away in our Solar System, the ESA/JAXA BepiColombo spacecraft performed twoMercury flybys in 2024, needed so that it can enter orbit around Mercury in 2026. Juice also performed a crucial gravity assist, this time becoming the first spacecraft to conduct a Moon-Earth double flyby on its way to Jupiter. 
      Twenty years after ESA’s Rosetta was launched and 10 years since its historic arrival at the comet 67P/Churyumov-Gerasimenko, we launched another spacecraft to a small body, the Hera planetary defence mission to investigate asteroid Dimorphos.
      2024 was an important year for Europe’s Galileo constellation which continued to expand with the launch of four new satellites and an updated Galileo ground system. The year also saw the launch of ESA’s Proba-3 mission: two precision formation-flying satellites forming a solar coronagraph to study the Sun’s faint corona. 
      In human spaceflight, Europe continues to contribute to science from the ISS as Andreas Mogensen’s Huginn mission continued into 2024. Andreas even met up in space with ESA project astronaut Marcus Wandt who was launched on his Muninn mission, making it the first time two Scandinavians were in space together. 
      Meanwhile the latest class of ESA astronauts completed basic training and graduated in April. Two of them, Sophie and Raphaël, were then assigned to long-duration missions to the ISS in 2026.
      We made crucial steps for Europe in gaining access to the Moon: the inauguration of our LUNA facility with DLR, and the delivery of a third European Service Module for NASA’s Orion spacecraft as part of the Artemis programme.
      Europe is also contributing to the international Lunar Gateway and developing and ESA lunar lander called Argonaut. These landers will rely on ESA Moonlight, the programme to establish Europe’s first dedicated satellite constellation for lunar communication and navigation.
      As 2024 draws to a close, ESA’s achievements this year have reinforced Europe’s role in space. ESA’s journey continues to explore new frontiers, shaping the space landscape for generations to come.
      View the full article
  • Check out these Videos

×
×
  • Create New...