Jump to content

Models for Facilitating Government-Funded Activities in the Post-ISS LEO Ecosystem


Recommended Posts

  • Publishers
Posted

1 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

NASA astronauts Christina Koch and Andrew Morgan
NASA astronauts Christina Koch and Andrew Morgan stow biological research samples into a science freezer located inside the U.S. Destiny laboratory module.

In September 2022, the National Space Council directed NASA to “develop a plan for the next generation microgravity national lab in a commercial space station world.” NASA has been working to develop this strategy, to include considerations for establishing robust international partner pathways outlined in a report from NASA’s Office of Technology, Policy, and Strategy titled “Models for Facilitating Government-Funded Activities in the Post-International Space Station (ISS) Low-Earth Orbit (LEO) Ecosystem,” as one step in NASA’s effort to define and develop a comprehensive strategy. 

Share

Details

Last Updated
Dec 20, 2023
Editor
Bill Keeter

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Creating a golden streak in the night sky, a SpaceX Falcon 9 rocket soars upward after liftoff from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on March 14, 2023, on the company’s 27th Commercial Resupply Services mission for the agency to the International Space Station. SpaceX NASA invites the public to participate in virtual activities ahead of the launch of SpaceX’s 31st commercial resupply services mission for the agency. NASA and SpaceX are targeting 9:29 p.m. EST Monday, Nov. 4, for the SpaceX Dragon spacecraft to launch on the company’s Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
      In addition to food, supplies, and equipment for the crew, Dragon will deliver several new experiments, including the COronal Diagnostic EXperiment to examine solar wind and how it forms, as well as Antarctic moss to observe the combined effects of cosmic radiation and microgravity on plants. Other investigations aboard include a device to test cold welding of metals in microgravity and an investigation that studies how space impacts different materials
      Members of the public can register to attend the launch virtually. As a virtual guest, you’ll gain access to curated resources, interactive opportunities, and mission-specific information delivered straight to your inbox. Following liftoff, virtual guests will receive a commemorative stamp for their virtual guest passport
      Learn more about NASA research and activities on the International Space Station at:
      https://www.nasa.gov/station
      View the full article
    • By USH
      Where do asteroids get all those craters? Countless small circular craters, plus almost always a few that look like massive killers. Even more confusing is that these craters are at a perfect 90º angle, as if an electric arc had run across the surface. 

      According to ThunderboltsProject, the Electric Universe (EU) model, the scars observed on asteroids are caused by electric arcs which cut surface depressions, scoop out material, accelerate it into space, then leave behind clean-cut geological relief. 
      This theory is supported by Electric Discharge Machining (EDM), a process we use every day to shape materials with electric arcs, producing similar clean-cut effects. 
      This brings us to the following hypothesis: Could it be that, instead of craters on asteroids being formed solely by natural space phenomena, that all these craters at a perfect 90º angle with clean-cut geological relief are the result of asteroid mining originated by alien races who use advanced electric arc/laser technology by extracting raw minerals they urgently need for use on their planet or for in-space manufacturing? 
      Asteroids vary greatly in composition, ranging from those rich in volatile substances to those composed of metals like gold, silver, platinum, cobalt, and palladium, alongside more common elements such as iron and nickel. This makes them potential treasure troves of valuable resources. 
      For us as Earthlings, asteroid mining is a technology in its earliest stages and requires significant advances in robotic technology before asteroid mining becomes a reality, however, if more advanced civilizations exist elsewhere in the universe, it's quite plausible that some of them have already turned to asteroid mining long ago. 
      Could their efforts be leaving behind the very craters on asteroids we observe today?
        View the full article
    • By NASA
      Sandra Connelly, deputy associate administrator for NASA’s Science Mission Directorate, left, Lori Glaze, acting deputy associate administrator for NASA’s Exploration Systems Development Mission Directorate, Robyn Gatens, director of the International Space Station at NASA Headquarters, and Carrie Olsen, manager of the Next Gen STEM project for NASA’s Office of STEM Engagement, discuss key takeaways at the conclusion of NASA’s LEO Microgravity Strategy Industry and Academia Workshop, Friday, Sept. 13, 2024, at Convene in Washington. NASA’s LEO Microgravity Strategy effort aims to develop and document an objectives-based approach toward the next generation of human presence in low Earth orbit to advance microgravity science, technology, and exploration.NASA/Joel Kowsky As part of NASA’s effort to advance microgravity science, technology, and exploration in low Earth orbit (LEO), the agency conducted two stakeholder workshops in London and Washington to solicit feedback from the international community, including NASA’s international partners, American industry, and academia on Sept. 6 and Sept. 13, respectively.
      The agency released a draft set of 42 objectives in late August, seeking input from U.S. industry, academia, international communities, NASA employees, and others to ensure its framework for the next generation of human presence in low Earth orbit, set to be finalized this winter, includes ideas and contributions from a range of stakeholders. The objectives span six categories: science, exploration-enabling research and technology development, commercial low Earth orbit infrastructure, operations, international cooperation, and workforce and engagement.
      “As we chart the future of human exploration, it’s vital that we harness the insights and expertise of our diverse stakeholders,” said NASA Deputy Administrator Pam Melroy. “These workshops provide an invaluable platform for stakeholders to share their insights, helping us create a strategy that reflects our shared ambitions for the future of space exploration.”
      Consultation is a fundamental aspect of NASA’s LEO Microgravity Strategy, emphasizing the importance of collaboration and the integration of diverse perspectives in advancing scientific research and technology development in low Earth orbit. By actively engaging with stakeholders –including scientists, industry partners, and educational institutions –NASA aims to gather valuable insights and align its objectives with the broader goals of the space community.
      “Engaging with a wide array of voices allows us to tap into innovative ideas that will enhance our missions,” stated Robyn Gatens, director of the International Space Station and acting director of Commercial Spaceflight. “This collaborative approach not only strengthens our current initiatives but also lays the groundwork for future advancements in space exploration.”
      To contribute to NASA’s low Earth orbit microgravity strategy, visit: www.leomicrogravitystrategy.org
      View the full article
    • By NASA
      4 Min Read Educational Activities in Space
      The SpaceX Dragon resupply ship (at right) and a pair of the International Space Station's main solar arrays foreshadow a trek into an orbital sunset. Credits: NASA Science in Space: September 2024
      As students of all ages returned to school this month, crew members on the International Space Station continue to conduct a variety of educational programs and activities that support learning on the ground. These efforts are part of a wider commitment at NASA to engage, inspire, and attract future generations of explorers and to build a diverse future workforce equipped with skills in science, technology, engineering, and mathematics (STEM).
      An Astrobee robot moves through the space station for the Robo-Pro Challenge.NASA One current activity is Robo-Pro Challenge 5, an educational program hosted by JAXA (Japan Aerospace Exploration Agency) in cooperation with NASA. For the challenge, students create software programs to control NASA’s Astrobee and JAXA’s Internal Ball Camera, using image processing to move the free-flying robots through a series of coordinates to a target point. The challenge helps support computing and coding curricula, and the hands-on experience inspires the study of STEM subjects.
      Analyzing DNA in space
      Genes in Space is a national contest for students in grades 7 through 12 to design DNA analysis experiments for the space station. It is sponsored by the ISS National Lab and New England Biolabs in collaboration with Boeing and miniPCR bio. There have been more than a dozen contests to date, many producing significant results.
      Genes in Space-5 provided proof of concept of simultaneously amplifying multiple DNA sequences in space, expanding the possibilities for in-flight research and health monitoring.
      Genes in Space-6 used CRISPR-Cas9 genome editing for the first time in space, using the technique to generate breaks in the DNA of a common yeast, direct a method to repair the breaks, and sequence the patched-up DNA to determine whether its original order was restored.
      Selin Kocalar, the student who designed the experiment on which Genes in Space-9 is based, prepares her samples for launch. Genes in Space Genes in Space-9 validated technology used to synthesize proteins without needing living cells. This technique could produce proteins for research, vaccines, and development of diagnostic tests for environmental contaminants and infectious agents. Ultimately, such synthesis also could enable portable, low-cost devices for health monitoring, detection of environmental hazards on Earth and in space, and other applications.
      Sending code to space
      ESA astronaut Thomas Pesquet poses with the AstroPi Raspberry Pi computers. NASA In addition to the Robo-Pro challenge, several other programs involve student coding. AstroPi, a program from ESA (European Space Agency), uses special computers, one equipped with an infrared camera and the other with a standard visible spectrum camera. European students write programs for the computers that address specific challenges such as measurement and calibration and image processing. One project successfully identified and computed the horizontal wavelengths of atmospheric gravity waves in clouds.
      NASA astronaut Tracy C. Dyson performs a Zero Robotics demonstration with an Astrobee.NASA Zero Robotics also is a competition where students write software to control one of the Astrobees, co-led by the Massachusetts Institute of Technology, the Innovation Learning Center, and other collaborators. Finalists have their code downloaded to the Astrobee platform and can observe its performance in space.
      Students have good “HUNCHes”
      NASA Astronaut Mike Hopkins uses the HUNCH Tape Dispenser, which can be operated with one hand.NASA High school students United with NASA to Create Hardware, or HUNCH, is a learning program where high school students design and fabricate real-world products for NASA. More than 2,500 students have participated to date, flying some 3,000 products to space, including a tape dispenser that can be operated with one hand, footpads, sleeping pad liners, and orange blackberry croissants and other food products.
      Very long-distance calls
      NASA astronaut Suni Williams talks to students from Banda Aceh, Indonesia, during an ISS Ham Radio session.NASA Through ISS Ham Radio, a collaboration with Amateur Radio on the International Space Station, students use ham radio to ask astronauts questions about life in space, career opportunities, and other space-related topics. Participating teachers report that the program has a significant and positive impact on students, increasing interest in all STEM areas. The experiences also help students make real-world connections among disciplines, learn problem-solving, and hone communication skills. To date, more than 100 crew members have communicated with over 1 million students from 49 U.S. states, 63 countries, and every continent.
      Out-of-this-world videos
      Developed through NASA’s Office of STEM Engagement, STEMonstrations are short educational videos demonstrating science, technology, engineering, and mathematics topics in microgravity for grades K through 12. The videos are available online and every STEMonstration includes materials teachers can use to explore the topics in their classrooms. Six videos released in the past 12 months have been viewed 98,705 times to date across various social media platforms. The program provides students with a connection to NASA and scientific work conducted on the space station, inspiring the next generation of explorers and contributing to a diverse future workforce.
      Melissa Gaskill
      International Space Station Research Communications Team
      NASA’s Johnson Space Center
      Search this database of scientific experiments to learn more about those mentioned in this article.
      Keep Exploring Discover More Topics From NASA
      Latest News from Space Station Research
      Humans in Space
      Station Science 101
      Expedition 71
      Expedition 71 began on April 5, 2024 and ends in September 2024. This crew will explore neuro-degenerative diseases and therapies,…
      View the full article
    • By NASA
      A collaboration between IMPACT and IBM has produced INDUS, a comprehensive suite of large language models (LLMs) tailored for the domains of Earth science, biological and physical sciences, heliophysics, planetary sciences, and astrophysics and trained using curated scientific corpora drawn from diverse data sources. Kaylin Bugbee (ST11), team lead of NASA’s Science Discovery Engine (SDE), spoke to the benefit INDUS offers to existing applications: “Large language models are rapidly changing the search experience. The Science Discovery Engine, a unified, insightful search interface for all of NASA’s open science data and information, has prototyped integrating INDUS into its search engine. Initial results have shown that INDUS improved the accuracy and relevancy of the returned results.”
      The INDUS models are openly available on Hugging Face. For the benefit of the scientific community, the team has released the developed models and will release the benchmark datasets that span named entity recognition for climate change, extractive QA for Earth science, and information retrieval for multiple domains. A paper on INDUS, “INDUS: Effective and Efficient Language Models for Scientific Applications,” is available at https://arxiv.org/pdf/2405.10725.
      View the full article
  • Check out these Videos

×
×
  • Create New...