Jump to content

NASA’s 3D-printed Rotating Detonation Rocket Engine Test a Success


NASA

Recommended Posts

  • Publishers

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

09-27-2023-hf-12-062.jpg?w=2048
Engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, conduct a successful, 251-second hot fire test of a full-scale Rotating Detonation Rocket Engine combustor in fall 2023, achieving more than 5,800 pounds of thrust.
NASA

NASA has achieved a new benchmark in developing an innovative propulsion system called the Rotating Detonation Rocket Engine (RDRE). Engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, successfully tested a novel, 3D-printed RDRE for 251 seconds (or longer than four minutes), producing more than 5,800 pounds of thrust.

That kind of sustained burn emulates typical requirements for a lander touchdown or a deep-space burn that could set a spacecraft on course from the Moon to Mars, said Marshall combustion devices engineer Thomas Teasley, who leads the RDRE test effort at the center.

RDRE’s first hot fire test was performed at Marshall in the summer of 2022 in partnership with In Space LLC and Purdue University, both of Lafayette, Indiana. That test produced more than 4,000 pounds of thrust for nearly a minute. The primary goal of the latest test, Teasley noted, is to better understand how to scale the combustor to different thrust classes, supporting engine systems of all types and maximizing the variety of missions it could serve, from landers to upper stage engines to supersonic retropropulsion, a deceleration technique that could land larger payloads – or even humans – on the surface of Mars.

Test stand video captured at NASA’s Marshall Space Flight Center in Huntsville, Alabama, shows ignition of a full-scale Rotating Detonation Rocket Engine combustor, which was fired for a record 251 seconds and achieved more than 5,800 pounds of thrust. Click here for full video

“The RDRE enables a huge leap in design efficiency,” he said. “It demonstrates we are closer to making lightweight propulsion systems that will allow us to send more mass and payload further into deep space, a critical component to NASA’s Moon to Mars vision.”

Engineers at NASA’s Glenn Research Center in Cleveland and researchers at Venus Aerospace of Houston, Texas, are working with NASA Marshall to identify how to scale the technology for higher performance.

RDRE is managed and funded by the Game Changing Development Program within NASA’s Space Technology Mission Directorate.

Ramon J. Osorio
NASA’s Marshall Space Flight Center
ramon.j.osorio@nasa.gov
256-544-0034

Share

Details

Last Updated
Dec 20, 2023
Editor
Beth Ridgeway
Keep Exploring

Discover More Topics From NASA

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA's Boeing Crew Flight Test Re-entry and Landing
    • By NASA
      NASA’s Boeing Crew Flight Test Undocking
    • By European Space Agency
      The Copernicus Sentinel-2C satellite is ready for liftoff! Tune in to ESA WebTV on 4 September from 03:30 CEST to watch the satellite soar into space on the last Vega rocket to be launched from Europe’s Spaceport in Kourou, French Guiana. Sentinel-2C is scheduled to liftoff at 03:50 CEST.
      View the full article
    • By Space Force
      U.S. Space Command celebrated its fifth anniversary Aug. 29 and commemorated the milestone with discussions of the 11th combatant command’s achievements and goals for the future.

      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      University of Florida researcher Rob Ferl (seated) and co-principal investigator Anna-Lisa Paul practice the experiment to study the effect of gravity transitions on the plants’ gene expression.University of Florida For the first time, a NASA-funded researcher will fly with their experiment on a commercial suborbital rocket. The technology is one of two NASA-supported experiments, also known as payloads, funded by the agency’s Flight Opportunities program that will launch aboard Blue Origin’s New Shepard suborbital rocket system on a flight test no earlier than Thursday, Aug. 29.
      The researcher-tended payload, from the University of Florida in Gainesville, seeks to understand how changes in gravity during spaceflight affect plant biology. Researcher Rob Ferl will activate small, self-contained tubes pre-loaded with plants and preservative to biochemically freeze the samples at various stages of gravity. During the flight, co-principal investigator Anna-Lisa Paul will conduct four identical experiments as a control. After the flight, Ferl and Paul will examine the preserved plants to study the effect of gravity transitions on the plants’ gene expression. Studying how changes in gravity affect plant growth will support future missions to the Moon and Mars.
      The university’s flight test was funded by a grant awarded through the Flight Opportunities program’s TechFlights solicitation with additional support from NASA’s Division of Biological and Physical Sciences. This experiment builds on NASA’s long history of supporting plant research and aims to accelerate the pace and productivity of space-based research.
      The other Flight Opportunities supported payload is from HeetShield, a small business in Flagstaff, Arizona. Two new thermal protection system materials will be mounted to the outside of New Shepard’s propulsion module to assess their thermal performance in a relevant environment, since conditions will be similar to planetary entry. After the flight, HeetShield will analyze the structure of the materials to determine how they were affected by the flight.
      Flight Opportunities, within NASA’s Space Technology Mission Directorate, facilitates demonstration of technologies for space exploration and the expansion of space commerce through suborbital testing with industry flight providers. Through various mechanisms, the program funds flight tests for internal and external technology payloads.
      To learn more, visit: https://www.nasa.gov/space-technology-mission-directorate/
      Facebook logo @NASATechnology @NASA_Technology Keep Exploring Discover More Topics From NASA
      Space Technology Mission Directorate
      STMD Solicitations and Opportunities
      Access Flight Tests
      STMD Small Spacecraft Technology
      Share
      Details
      Last Updated Aug 28, 2024 EditorLoura Hall Related Terms
      Space Technology Mission Directorate Flight Opportunities Program Technology Technology for Space Travel View the full article
  • Check out these Videos

×
×
  • Create New...