Members Can Post Anonymously On This Site
Top 10 Earth observation stories of 2023
-
Similar Topics
-
By NASA
A Lysozyme crystal grown in microgravity, viewed under a microscope using X-ray crystallography. NASA Did you know that NASA conducts ground-breaking research in space on materials like metals, foams, and crystals? This research could lead to next-generation technology that both enables deep-space exploration and benefits humanity.
Here are six studies scientists have conducted on the International Space Station that could have profound implications for future space travel and also improve products widely used on Earth:
01 Advancing construction and repairing techniques with liquid metals
Researchers are looking at the effects of microgravity on the liquid metals formed during brazing, a technology used to bond materials at temperatures above 450 degrees Celsius. The Brazing of Aluminum alloys In Space (BRAINS) experiment aboard the International Space Station studies how alloys join with a range of other materials, such as ceramics or other metals.
In space, brazing could be used to construct vehicles, habitats, and other systems needed for space missions, and repair them if damaged. Advanced brazing technologies discovered in space may also be used in the construction and repair of structures on Earth.
02 Improving materials used for high-powered lasers
Another study on the space station is looking at the growth of semiconductor crystals based on Zinc selenide (ZnSe) in microgravity. ZnSe is an important semiconductor used on Earth for optical devices and infrared lasers.
Researchers are investigating the impact of microgravity on the growth of these crystals and comparing the results to those grown on Earth. A better understanding of the impact of microgravity on crystal growth could open the door to expanded commercial use of space.
03 Researching ways to make stronger metal
Metal alloys, which are created by combining two or more metallic elements, are used in everything from hardware to kitchen appliances, automobiles, and even the space station itself. Alloys are created by cooling a liquid metal until it hardens into a solid.
Researchers on the space station are investigating how metal alloys melt and take shape in a controlled microgravity environment. While brazing aims to repair or bond two separate materials, this experiment looks at casting or molding things from liquid metals. In metal castings, the solid grows by forming millions of snowflake-like crystals called dendrites. The shape of the dendrites affects the strength of the metal alloys.
Findings are expected to significantly impact our ability to produce metals with greater strength, for both space and on Earth applications.
04 Exploring stability and mechanics of foams and bubbly liquids
Studying how foams and bubbly liquids evolve in microgravity over time is another important NASA investigation. These experiments will provide guidance for how to control the flow and separation of bubbly liquids. This knowledge is crucial for developing a water recovery and recycling device for future space exploration to Mars.
On Earth, foams are found in everything from food and cosmetics to paper and petroleum. A better understanding of their stability and mechanics is important for creating sustainable, more efficient processes and improved materials.
05 Improving performance and lowering cost of “superglass”
Scientists are conducting experiments on supercooled metal oxides (space soil and rock) to better understand how molten materials can be processed in microgravity. Manufacturing new products in space is critical to long-term efforts to develop habitats in space and on other planets. It will require the use of available resources in space, including soil and rocks.
Data from the research also has far-reaching implications on Earth. It could help improve the performance and lower the cost of materials that are used in the production of cell phone displays, lasers, and glass for automobiles.
06 Advancing 3D printing and manufacturing through “soft matter” research
Space exploration to Mars and beyond will require astronauts to have the ability to build new equipment and materials in space. To make that a reality, space station researchers conducted a number of experiments looking at the behavior of colloids, or “soft matter,” in a microgravity environment.
This research could have a variety of applications on Earth, including the development of chemical energy, improvements to communications technologies, and enhancements to photonic materials used to control and manipulate light.
Related Resources:
Biological and Physical Sciences Investigations Space Station Research Explorer Superglass: The Future of Glass Video NASA’s Biological and Physical Sciences Division pioneers scientific discovery and enables exploration by using space environments to conduct investigations not possible on Earth. Studying biological and physical phenomenon under extreme conditions allows researchers to advance the fundamental scientific knowledge required to go farther and stay longer in space, while also benefitting life on Earth.
View the full article
-
By European Space Agency
The European Space Agency (ESA) Planetary Defence Office is closely monitoring the recently discovered asteroid 2024 YR4, which has a very small chance of impacting Earth in 2032.
This page was last updated on 29 January 2025.
View the full article
-
By NASA
In 2023, NASA Langley’s workforce brought imagination to reality with innovative technological development and a continued commitment to tackling some of the tough challenges that both NASA and the nation face.
NASA At NASA, we aspire to know more, dig deeper, climb higher and along the way we are asking, ‘What if?’,” said NASA Langley Center Director Clayton P. Turner in an introductory message to Langley’s 2023 Annual Report. “Our inquisitive nature propels us on our mission to reach for new heights and reveal the unknown for the benefit of humankind.”
All year, the Langley workforce pondered and planned for a future alongside self-flying drones, aircraft with reduced emissions, air travel that benefits from greater fuel efficiency and space exploration assisted by inflatable heat shields that could give us the ability to carry greater payloads than ever before.
“We invite you to explore all that NASA’s Langley Research Center has to offer — our amazing people, unique capabilities, and legacy of success,” Turner said in his introduction.
Use this link to explore the 2023 Annual Report for NASA’s Langley Research Center.
View the full article
-
By NASA
Reducing reliance on resupply missions
Resupply of life support elements such as air, water, food, clothing, and hygiene items will be impractical on missions to the Moon and beyond. This research assessed current use and resupply of these elements on the International Space Station and outlines technologies needed for sustained human presence in space, such as 3D printing maintenance parts, systems for laundering clothes, and improved recovery and recycling of elements.
Researchers analyzed the types and mass of elements supplied from Earth to the station and astronaut feedback from various studies and interviews. The paper also used data from ISS Internal Environments, a wide-ranging investigation that samples various aspects of the space station environment in support of many types of research.
Japan Aerospace Exploration Agency astronaut Satoshi Furukawa exercises on the station’s treadmill. Astronauts currently have no way to launder clothes in space.NASA
Verifying a technique for analyzing emulsions
This paper presents a review of examining the behavior of emulsions (suspensions of particles in a liquid) in microgravity using a technique called diffusing wave spectroscopy. Results offer insights that could support development of technologies to improve living environments and foods for crew members on future missions.
FSL Soft Matter Dynamics – PASTA studied the dynamics of droplets in emulsions. Accurate study and characterization of the effects of additives on emulsion stability is possible in microgravity. Emulsions have applications in foods, cosmetics, pharmaceuticals, fuels, paints and coatings, chemical processing, and materials.
European Space Agency astronaut Samantha Cristoforetti exchanges samples for the FSL Soft Matter Dynamics-PASTA investigation.NASA
EEG measurements and predicting cognitive changes in spaceflight
Researchers used an electroencephalogram (EEG) to measure brainwave activity during a relaxed, wakeful state in crew members and found no significant differences before, during, and after flight. These types of measurements could serve as biomarkers of brain health status, helping to predict changes in cognitive performance and the need for prevention and countermeasure strategies during future missions.
Studies have shown that spaceflight can affect key cognitive and motor skills such as task management, attention, and movement speed and accuracy. Neurowellness in Space Ax-1 tested using a portable, easy to use EEG headset to measure ongoing and task-related brain activity in microgravity. The data could help predict and monitor neural changes on future space missions.
The 11-person crew aboard the station in April 2022 included Axiom Mission 1 astronauts (center row from left) Mark Pathy, Eytan Stibbe, Larry Conner, and Michael Lopez-Alegria.NASAView the full article
-
By European Space Agency
Image: The Copernicus Sentinel-3 mission captured Cyclone Dikeledi south of Madagascar on 16 January, just a few days after it made landfall on Africa’s southeastern coast causing widespread destruction in several countries and islands. View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.