Jump to content

Cosmic Companionship Quest Marks Major Milestone


NASA

Recommended Posts

  • Publishers

2 min read

Cosmic Companionship Quest Marks Major Milestone

Are we alone in the universe? About 30,000 volunteers want to know! These volunteers visited arewealone.earth to sift through a huge data set from the 100 meter Green Bank Telescope—inspecting it for signals that might indicate intelligent extraterrestrial life. As of this week, this giant team has made ONE MILLION inspections!

“We are thrilled that our volunteers have accomplished so much in the short 10-month period since our launch,” said project PI Jean-Luc Margot.

A group of 6 men and women are standing and smiling in front of a white board with the equation N-R*fpnef1fifcL written in large black print.
The Science and Communications team of the “Are we alone in the universe?” project. From left to right: Ella, Jay, Megan, Jeremy, Priscella, Jean-Luc. Not pictured: Liam.

It’s a major milestone to be sure. But does that mean this search is over? Not even close. The Green Bank Telescope collects millions of signals per hour! So UCLA graduate student Megan Li is building on the volunteer-submitted data to design and train a machine learning application that will help tackle that enormous data rate. She will present her preliminary results at a meeting of the American Astronomical Society this January. 

If you’ve been helping out—thank you!  And please come help some more! The 10th batch of UCLA SETI data has now been uploaded to the platform. Moreover, thanks to volunteer translators, the project is now available in French (translated by Louis Verhaeghe) and in Portuguese (translated by Fernando Nogal).

“Are we alone in the universe?” was built by UCLA SETI on the Zooniverse platform with funding from The Planetary Society and the NASA Citizen Science Seed Funding Program.

Share

Details

Last Updated
Dec 18, 2023

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 Min Read NASA’s Webb Reveals Distorted Galaxy Forming Cosmic Question Mark
      The galaxy cluster MACS-J0417.5-1154. Full image below. Credits:
      NASA, ESA, CSA, STScI, V. Estrada-Carpenter (Saint Mary’s University). It’s 7 billion years ago, and the universe’s heyday of star formation is beginning to slow. What might our Milky Way galaxy have looked like at that time? Astronomers using NASA’s James Webb Space Telescope have found clues in the form of a cosmic question mark, the result of a rare alignment across light-years of space.
      “We know of only three or four occurrences of similar gravitational lens configurations in the observable universe, which makes this find exciting, as it demonstrates the power of Webb and suggests maybe now we will find more of these,” said astronomer Guillaume Desprez of Saint Mary’s University in Halifax, Nova Scotia, a member of the team presenting the Webb results.
      Image A: Lensed Question Mark (NIRCam)
      The galaxy cluster MACS-J0417.5-1154 is so massive it is warping the fabric of space-time and distorting the appearance of galaxies behind it, an effect known as gravitational lensing. This natural phenomenon magnifies distant galaxies and can also make them appear in an image multiple times, as NASA’s James Webb Space Telescope saw here. Two distant, interacting galaxies — a face-on spiral and a dusty red galaxy seen from the side — appear multiple times, tracing a familiar shape across the sky. Active star formation, and the face-on galaxy’s remarkably intact spiral shape, indicate that these galaxies’ interaction is just beginning. NASA, ESA, CSA, STScI, V. Estrada-Carpenter (Saint Mary’s University). While this region has been observed previously with NASA’s Hubble Space Telescope, the dusty red galaxy that forms the intriguing question-mark shape only came into view with Webb. This is a result of the wavelengths of light that Hubble detects getting trapped in cosmic dust, while longer wavelengths of infrared light are able to pass through and be detected by Webb’s instruments.
      Astronomers used both telescopes to observe the galaxy cluster MACS-J0417.5-1154, which acts like a magnifying glass because the cluster is so massive it warps the fabric of space-time. This allows astronomers to see enhanced detail in much more distant galaxies behind the cluster. However, the same gravitational effects that magnify the galaxies also cause distortion, resulting in galaxies that appear smeared across the sky in arcs and even appear multiple times. These optical illusions in space are called gravitational lensing.
      The red galaxy revealed by Webb, along with a spiral galaxy it is interacting with that was previously detected by Hubble, are being magnified and distorted in an unusual way, which requires a particular, rare alignment between the distant galaxies, the lens, and the observer — something astronomers call a hyperbolic umbilic gravitational lens. This accounts for the five images of the galaxy pair seen in Webb’s image, four of which trace the top of the question mark. The dot of the question mark is an unrelated galaxy that happens to be in the right place and space-time, from our perspective.
      Image B: Hubble and Webb Side by Side
      Image Before/After In addition to producing a case study of the Webb NIRISS (Near-Infrared Imager and Slitless Spectrograph) instrument’s ability to detect star formation locations within a galaxy billions of light-years away, the research team also couldn’t resist highlighting the question mark shape. “This is just cool looking. Amazing images like this are why I got into astronomy when I was young,” said astronomer Marcin Sawicki of Saint Mary’s University, one of the lead researchers on the team. 
      “Knowing when, where, and how star formation occurs within galaxies is crucial to understanding how galaxies have evolved over the history of the universe,” said astronomer Vicente Estrada-Carpenter of Saint Mary’s University, who used both Hubble’s ultraviolet and Webb’s infrared data to show where new stars are forming in the galaxies. The results show that star formation is widespread in both. The spectral data also confirmed that the newfound dusty galaxy is located at the same distance as the face-on spiral galaxy, and they are likely beginning to interact.
      “Both galaxies in the Question Mark Pair show active star formation in several compact regions, likely a result of gas from the two galaxies colliding,” said Estrada-Carpenter. “However, neither galaxy’s shape appears too disrupted, so we are probably seeing the beginning of their interaction with each other.”
      “These galaxies, seen billions of years ago when star formation was at its peak, are similar to the mass that the Milky Way galaxy would have been at that time. Webb is allowing us to study what the teenage years of our own galaxy would have been like,” said Sawicki.
      The Webb images and spectra in this research came from the Canadian NIRISS Unbiased Cluster Survey (CANUCS). The research paper is published in the Monthly Notices of the Royal Astronomical Society.
      Image C: Wide Field – Lensed Question Mark (NIRCam)
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the research results from the Monthly Notices of the Royal Astronomical Society.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov, Rob Gutro – rob.gutro@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Christine Pulliam – cpulliam@stsci.edu , Leah Ramsey – lramsey@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      VIDEO: Gravity – Nature’s Magnifying Glass
      VIDEO: What happens when galaxies collide?

      ARTICLE: More about Galaxy Evolution

      VIDEO: Learn more about Galactic Collisions
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is a galaxy?
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Para Niños : Qué es una galaxia?
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Galaxies



      Galaxies Stories



      Universe


      Share








      Details
      Last Updated Sep 04, 2024 Editor Stephen Sabia Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      Astrophysics Galaxies Galaxies, Stars, & Black Holes Galaxy clusters Goddard Space Flight Center Gravitational Lensing James Webb Space Telescope (JWST) Science & Research The Universe View the full article
    • By NASA
      Learn Home New TEMPO Cosmic Data Story… Astrophysics Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Stories Science Activation Highlights Citizen Science   3 min read
      New TEMPO Cosmic Data Story Makes Air Quality Data Publicly Available
      On May 30th, 2024, NASA and the Center for Astrophysics | Harvard & Smithsonian announced the public release of “high-quality, near real-time air quality data” from NASA’s TEMPO (Tropospheric Emissions: Monitoring of Pollution) mission. The NASA Science Activation program’s Cosmic Data Stories team, led by Harvard University in Cambridge, MA, has since released a new “Data Story” – an interactive, digital showcase of new science imagery, including ideas for exploration and scientific highlights shared in a brief video and narrative text – that provides a quick and easy way for the public to visualize this important, large data set from TEMPO.
      TEMPO allows unprecedented monitoring of air quality down to neighborhood scales, with its hourly daytime scans over North America. Air pollutants like NO2, produced, for example, by the burning of fossil fuels, can trigger significant health issues, especially among people with pre-existing illnesses such as asthma. The interactive views in the TEMPO Data Story provide public access to the same authentic data that scientists use and invite the public to explore patterns in their local air quality. For example, how do NO2 emissions vary in our area throughout the day and week? What are possible sources of NO2 in our community? How does our air quality compare with that of other communities with similar population densities, or with nearby urban or rural communities? TEMPO’s hyper-localized data will allow communities to make informed decisions and take action to improve their air quality.
      The Cosmic Data Story team is grateful to TEMPO scientists, Xiong Liu and Caroline Nowlan, for providing the team with early access to the data and guidance on NO2 phenomena that learners can explore in the data. The TEMPO Data Story, featured on TEMPO’s webpage for the public, adds Earth science data to the portfolio of Cosmic Data Stories that is already making astrophysics data accessible to the public.
      TEMPO Team Atmospheric Physicist from the Harvard-Smithsonian Center for Astrophysics, Caroline Nowlan, had this to say: “TEMPO produces data that are really useful for scientists, but are also important for the general public and policy makers. We are thrilled that the Cosmic Data Stories team has made a tool that allows everyone to explore TEMPO data and learn about pollution across North America and in their own communities.”
      The Cosmic Data Stories project is supported by NASA under cooperative agreement award number 80NSSC21M0002 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      A view from the TEMPO Data Story, shows TEMPO’s NO2 data overlaid on a map of North America. A large plume of NO2, caused by large wildfires, arcs from Northern California all the way to Idaho. Other “hot spots” of NO2 are seen over cities across the US, Canada, and Mexico. Users can view any available date, as well as explore some featured dates and locations that describe phenomena of interest that are visible in the data. Share








      Details
      Last Updated Aug 13, 2024 Editor NASA Science Editorial Team Related Terms
      Astrophysics Earth Science Science Activation Tropospheric Emissions: Monitoring of Pollution (TEMPO) Explore More
      3 min read Earth Educators Rendezvous with Infiniscope and Tour It


      Article


      1 day ago
      2 min read Astro Campers SCoPE Out New Worlds


      Article


      4 days ago
      2 min read Hubble Spotlights a Supernova


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      As chief of test operations at NASA’s Stennis Space Center, Maury Vander has been involved in some long-duration propulsion hot fires – but he still struggles to describe a pair of 34-minute space shuttle main engine tests conducted onsite in August 1988.
      “When you stop and think about it, …” Vander begins, then pauses. “In 34 minutes, I can leave work and drive home to Slidell (15-20 miles west in Louisiana) and be relaxing in my recliner in that amount of time.”
      Vander’s struggle is understandable when one considers the numbers. On Aug. 3 and Aug. 15, operators at the Thad Cochran Test Stand (B-1) at NASA Stennis near Bay St. Louis, Mississippi, fired a space shuttle main engine for a total of 2,017 seconds each day, more than four times as long as the engine fired (500 seconds) during a typical space shuttle launch.
      In terms of propulsion firings, nothing else comes close. The next-longest duration appears to have occurred in 2001, when a Progress M1-5 engine was fired for about 22 minutes to help deorbit the Russian space station Mir.
      Vander still wonders at the south Mississippi feat. “The ability to juggle the type of challenges seen over the course of 30-plus minutes is amazing,” he said. “And you are not talking about 21st century technology either. You are talking about rather simplistic stuff not far removed from the 1960s, so there was an art to operating that type of equipment. But, they pulled it off.”
      NASA Stennis may have been the only place such a firing could have been conducted.
      It had the needed test facility. The Thad Cochran (B-1) stand featured a larger liquid oxygen tank to support the test and was equipped with a diffuser that allowed operators to throttle the engine to lower power levels, thus conserving fuel. The stand also had a larger dock area for additional propellant barges needed for test support.
      Each 34-minute test required about 600,000 gallons of liquid hydrogen and 230,000 gallons of liquid oxygen. Careful coordination ensured proper propellant flow from barges. “We still had old pumps for the barges, as opposed to the new ones that have variable drives to help control flow,” Vander noted. “The pumps back then were basically on/off pumps. If they were running, they were pretty much running wide open. That posed a challenge for controlling flow. It was a real art to orchestrate everything for such a long period of time.”
      In addition, the NASA Stennis High Pressure Gas Facility had to ensure proper volume and flow of gases to support the tests. Teams at the High Pressure Water Facility had to manage uninterrupted flow from the 66-million gallon reservoir to the test stand. “All of these were challenges they had to think their way through and logistically make happen,” Vander said.
      The test team had to maintain constant vigilance of such operations. “You are always monitoring, trying to figure out what could go wrong,” Vander said. “At any given moment, you may have to react and deal with a problem. To think of those people sitting in front of computer screens, gauges, and such, watching and making sure their responsibilities were covered for 30-plus minutes, is just amazing.”
      The teams were driven by a compelling factor. The nation was just recovering from the Challenger tragedy of 1986. Space shuttle Discovery would launch NASA’s return to flight in late September. Space shuttle Atlantis was scheduled to launch later in the year, but there was an issue with the fuel preburner injector on one of the engines. To resolve the matter, operators needed to record 8,000 seconds of hot fire on the injector. They decided to compile the time as efficiently as possible.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Engineers at NASA’s Stennis Space Center conduct one of two 2,017-second tests of a space shuttle main engine on the Thad Cochran Test Stand (B-1) in August 1988. The tests still stand as the longest duration propulsion hot fires at the center and perhaps anywhere. The tests – almost 34 minutes each – were more than four times longer than space shuttle main engines fired during an actual launch.NASA/Stennis By the conclusion of the Aug. 15 test, just 340 more seconds of testing was needed to resolve the injector issue. As it did throughout the shuttle program, NASA Stennis teams delivered on propulsion test needs, resolving the issue to clear Atlantis for launch in early December.
      From 1975 to 2009, the center tested every space shuttle main flight engine and all engine upgrades, and also helped troubleshoot various performance issues. NASA Stennis now tests the RS-25 engines produced by Aerojet Rocketdyne, an L3Harris Technologies company, to support launches of NASA’s SLS (Space Launch System) rocket on Artemis missions to the Moon and beyond.
      “The people were proud of the work they did, yet humble,” Vander said, looking back at the record of the shuttle era. “You had to pull some of the stuff they did out of them when you were talking with them. Once they opened up, though, there were all kind of lessons there that we are still building on today.”
      For information about NASA’s Stennis Space Center, visit:
      Stennis Space Center – NASA
      Share
      Details
      Last Updated Aug 05, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Explore More
      4 min read Stennis Flashback: NASA Test Series Leads to Bold Space Shuttle Flight
      It may have been small, but the white puff of smoke exiting the B-2 Test…
      Article 1 year ago 4 min read NASA Achieves Milestone for Engines to Power Future Artemis Missions
      Article 4 months ago 5 min read NASA Spinoffs Feature NASA Stennis Developed Technologies
      Article 6 months ago Keep Exploring Discover More Topics From NASA Stennis
      About NASA Stennis
      NASA’s Stennis Space Center History
      Stennis News
      Visit NASA Stennis
      View the full article
    • By Amazing Space
      Cosmic Collision The Birth of the Moon
    • By NASA
      This artist’s concept shows how the universe might have looked when it was less than a billion years old, about 7 percent of its current age. Star formation voraciously consumed primordial hydrogen, churning out myriad stars at an unprecedented rate. NASA’s Nancy Grace Roman Space Telescope will peer back to the universe’s early stages to understand how it transitioned from being opaque to the brilliant starscape we see today.NASA, ESA, and A. Schaller (for STScI) 0:00 / 0:00
      Your browser does not support the audio element. Today, enormous stretches of space are crystal clear, but that wasn’t always the case. During its infancy, the universe was filled with a “fog” that made it opaque, cloaking the first stars and galaxies. NASA’s upcoming Nancy Grace Roman Space Telescope will probe the universe’s subsequent transition to the brilliant starscape we see today –– an era known as cosmic dawn.
      “Something very fundamental about the nature of the universe changed during this time,” said Michelle Thaller, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Thanks to Roman’s large, sharp infrared view, we may finally figure out what happened during a critical cosmic turning point.”
      Lights Out, Lights On
      Shortly after its birth, the cosmos was a blistering sea of particles and radiation. As the universe expanded and cooled, positively charged protons were able to capture negatively charged electrons to form neutral atoms (mostly hydrogen, plus some helium). That was great news for the stars and galaxies the atoms would ultimately become, but bad news for light!
      It likely took a long time for the gaseous hydrogen and helium to coalesce into stars, which then gravitated together to form the first galaxies. But even when stars began to shine, their light couldn’t travel very far before striking and being absorbed by neutral atoms. This period, known as the cosmic dark ages, lasted from around 380,000 to 200 million years after the big bang.
      Then the fog slowly lifted as more and more neutral atoms broke apart over the next several hundred million years: a period called the cosmic dawn.
      “We’re very curious about how the process happened,” said Aaron Yung, a Giacconi Fellow at the Space Telescope Science Institute in Baltimore, who is helping plan Roman’s early universe observations. “Roman’s large, crisp view of deep space will help us weigh different explanations.”
      0:00 / 0:00
      Your browser does not support the audio element. Prime Suspects
      It could be that early galaxies may be largely to blame for the energetic light that broke up the neutral atoms. The first black holes may have played a role, too. Roman will look far and wide to examine both possible culprits.
      “Roman will excel at finding the building blocks of cosmic structures like galaxy clusters that later form,” said Takahiro Morishita, an assistant scientist at Caltech/IPAC in Pasadena, California, who has studied cosmic dawn. “It will quickly identify the densest regions, where more ‘fog’ is being cleared, making Roman a key mission to probe early galaxy evolution and the cosmic dawn.”
      The earliest stars were likely starkly different from modern ones. When gravity began pulling material together, the universe was very dense. Stars probably grew hundreds or thousands of times more massive than the Sun and emitted lots of high-energy radiation. Gravity huddled up the young stars to form galaxies, and their cumulative blasting may have once again stripped electrons from protons in bubbles of space around them.
      “You could call it the party at the beginning of the universe,” Thaller said. “We’ve never seen the birth of the very first stars and galaxies, but it must have been spectacular!”
      But these heavyweight stars were short-lived. Scientists think they quickly collapsed, leaving behind black holes –– objects with such extreme gravity that not even light can escape their clutches. Since the young universe was also smaller because it hadn’t been expanding very long, hordes of those black holes could have merged to form even bigger ones –– up to millions or even billions of times the Sun’s mass.
      Supermassive black holes may have helped clear the hydrogen fog that permeated the early universe. Hot material swirling around black holes at the bright centers of active galaxies, called quasars, prior to falling in can generate extreme temperatures and send off huge, bright jets of intense radiation. The jets can extend for hundreds of thousands of light-years, ripping the electrons from any atom in their path.
      NASA’s James Webb Space Telescope is also exploring cosmic dawn, using its narrower but deeper view to study the early universe. By coupling Webb’s observations with Roman’s, scientists will generate a much more complete picture of this era.
      So far, Webb is finding more quasars than anticipated given their expected rarity and Webb’s small field of view. Roman’s zoomed-out view will help astronomers understand what’s going on by seeing how common quasars truly are, likely finding tens of thousands compared to the handful Webb may find.
      This view from the James Webb Space Telescope contains more than 20,000 galaxies. Researchers analyzed 117 galaxies that all existed approximately 900 million years after the big bang. They focused on 59 galaxies that lie in front of quasar J0100+2802, an active supermassive black hole that acts like a beacon, located at the center of the image above appearing tiny and pink with six prominent diffraction spikes. The team studied both the galaxies themselves and the illuminated gas surrounding them, which was lit up by the quasar’s bright light. The observation sheds light on how early galaxies cleared the “fog” around them, eventually leading to today’s clear and expansive views.NASA, ESA, CSA, Simon Lilly (ETH Zürich), Daichi Kashino (Nagoya University), Jorryt Matthee (ETH Zürich), Christina Eilers (MIT), Rob Simcoe (MIT), Rongmon Bordoloi (NCSU), Ruari Mackenzie (ETH Zürich); Image Processing: Alyssa Pagan (STScI), Ruari Macken “With a stronger statistical sample, astronomers will be able to test a wide range of theories inspired by Webb observations,” Yung said.
      Peering back into the universe’s first few hundred million years with Roman’s wide-eyed view will also help scientists determine whether a certain type of galaxy (such as more massive ones) played a larger role in clearing the fog.
      “It could be that young galaxies kicked off the process, and then quasars finished the job,” Yung said. Seeing the size of the bubbles carved out of the fog will give scientists a major clue. “Galaxies would create huge clusters of bubbles around them, while quasars would create large, spherical ones. We need a big field of view like Roman’s to measure their extent, since in either case they’re likely up to millions of light-years wide –– often larger than Webb’s field of view.”
      Roman will work hand-in-hand with Webb to offer clues about how galaxies formed from the primordial gas that once filled the universe, and how their central supermassive black holes influenced galaxy and star formation. The observations will help uncover the cosmic daybreakers that illuminated our universe and ultimately made life on Earth possible.
      The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      Download high-resolution video and images from NASA’s Scientific Visualization Studio
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media contact:
      Claire Andreoli
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      301-286-1940
      Explore More
      5 min read How NASA’s Roman Space Telescope Will Rewind the Universe
      Article 1 year ago 6 min read How NASA’s Roman Space Telescope Will Chronicle the Active Cosmos
      Article 8 months ago 5 min read How NASA’s Roman Mission Will Hunt for Primordial Black Holes
      Article 3 months ago Share
      Details
      Last Updated Jul 25, 2024 ContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
      Nancy Grace Roman Space Telescope Active Galaxies Astrophysics Black Holes Galaxies Galaxies, Stars, & Black Holes Galaxies, Stars, & Black Holes Research Goddard Space Flight Center James Webb Space Telescope (JWST) Origin & Evolution of the Universe Science & Research Stars Supermassive Black Holes The Big Bang The Universe View the full article
  • Check out these Videos

×
×
  • Create New...