Jump to content

NASA’s BurstCube Passes Milestones on Journey to Launch


Recommended Posts

  • Publishers
Posted

3 min read

NASA’s BurstCube Passes Milestones on Journey to Launch

Scientists and engineers at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, have completed testing for BurstCube, a shoebox-sized spacecraft designed to study the universe’s most powerful explosions. Members of the team have also delivered the satellite to their partner Nanoracks (part of Voyager Space) in Houston, Texas, where it will be packed for launch.

The BurstCube satellite sits on a table with its solar panels extended.
The BurstCube satellite sits in its flight configuration in this photo. The shoebox-size spacecraft will launch aboard a resupply mission to the International Space Station, where it will be released into orbit and the solar panels on either side will deploy.
Credit: NASA/Sophia Roberts

“Even a satellite as tiny as BurstCube requires extensive verification before it can go to space,” said Goddard’s Lucia Tian, the mission’s science instrument lead. “We characterized its magnetic field, tested it at extreme temperatures, and recreated the shaking it will experience at launch – just to name a few assessments.”

BurstCube will search the sky for short gamma-ray bursts, brief flashes of the highest-energy form of light. Dense stellar remnants called neutron stars create these bursts when they collide with other neutron stars or black holes.

Small missions like BurstCube provide valuable opportunities for early career scientists and engineers to see all aspects of a project from start to finish.

Jeremy Perkins

Jeremy Perkins

BurstCube principal investigator

Astronomers are interested in learning more about these collisions because they’re an important source of the universe’s heavy elements, like gold and platinum. BurstCube’s goal is to detect and locate bursts and alert other observatories to coordinate detailed follow-up studies. BurstCube will join a growing network of satellites and telescopes working together to witness changes in the universe as they unfold.

The spacecraft is slated for takeoff in March 2024 from NASA’s Kennedy Space Center in Florida aboard a resupply mission to the International Space Station.

To ensure it can withstand the rattling it will experience at launch, the mission team transported BurstCube to Washington Laboratories in Frederick, Maryland, for vibration testing. Engineers strapped the satellite to a plate, which then vibrated at frequencies ranging from 20 to 20,000 hertz. Translated into sound, that spans bass to the upper limit of human hearing.

BurstCube will use Earth’s magnetic field to orientate itself as it scans the sky. To do so, the mission team had to map the spacecraft’s own magnetic field using a special facility at NASA’s Wallops Flight Facility in Virginia.

“The magnetic calibration chamber generates a known magnetic field that cancels out Earth’s,” said Goddard engineer Kate Gasaway. “Our measurements of BurstCube’s field in the chamber will help us figure out where the satellite is pointing once in space, so we can locate gamma-ray bursts and tell other observatories where to look.”

As BurstCube orbits, it will experience major temperature swings every 90 minutes as it passes in and out of daylight. The team evaluated how the spacecraft will operate in these new conditions using a thermal vacuum chamber at Goddard, where temperatures ranged from minus 4 to 113 degrees Fahrenheit (minus 20 to 45 Celsius).

In addition to these tests, the team ran many other assessments, like software and communications checks and ensuring the solar panels will open uninhibited after deployment from the space station.

“Small missions like BurstCube provide valuable opportunities for early career scientists and engineers to see all aspects of a project from start to finish,” said Jeremy Perkins, BurstCube’s principal investigator at Goddard. “Now that we’ve completed testing, the team and BurstCube are gearing up for the next steps toward launch.”

By Jeanette Kazmierczak
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Media Contact:
Claire Andreoli
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Keep Exploring

Discover More Topics From NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The Propulsion Bus Module of Gateway’s Power and Propulsion Element undergoes assembly and installations at Maxar Space Systems in Palo Alto, California.Maxar Space Systems NASA’s Artemis IV astronauts will be the first to inhabit the Gateway lunar space station, opening the door to greater exploration of the Moon and paving the way to Mars. Gateway’s Power and Propulsion Element, which will make the station the most powerful solar electric spacecraft ever flown, takes shape at Maxar Space Systems. In lunar orbit, Gateway will allow NASA to conduct unique science and exploration while preparing astronauts to go to the Red Planet.
      Technicians install key hardware on the element’s Propulsion Bus Module following installation of both electric propulsion and chemical propulsion control modules. The image highlights a propellant tank exposed on the right, positioned within the central cylinder of the element.  
      The Power and Propulsion Element will launch with Gateway’s HALO (Habitation and Logistics Outpost) ahead of NASA’s Artemis IV mission. During Artemis IV, V, and VI, international crews of astronauts will assemble the lunar space station around the Moon and embark on expeditions to the Moon’s South Pole region.
      The Power and Propulsion Element is managed out of NASA’s Glenn Research Center in Cleveland and built by Maxar Space Systems in Palo Alto, California.
      Gateway is an international collaboration to establish humanity’s first lunar space station as a central component of the Artemis architecture designed to return humans to the Moon for scientific discovery and chart a path for the first human missions to Mars.
      The Propulsion Bus Module of Gateway’s Power and Propulsion Element undergoes assembly and installations at Maxar Space Systems in Palo Alto, California.Maxar Space Systems An artist’s rendering of the Gateway lunar space station, including its Power and Propulsion Element, shown here with its solar arrays deployed. Gateway will launch its initial elements to lunar orbit ahead of the Artemis IV mission. NASA/Alberto Bertolin An artist’s rendering of Gateway with the Power and Propulsion Element’s advanced thrusters propelling the lunar space station to the Moon. NASA/Alberto Bertolin Learn More About Gateway Facebook logo @NASAGateway @NASA_Gateway Instagram logo @nasaartemis Share
      Details
      Last Updated Feb 25, 2025 ContactJacqueline Minerdjacqueline.minerd@nasa.govLocationGlenn Research Center Related Terms
      Artemis Artemis 4 Earth's Moon Exploration Systems Development Mission Directorate Gateway Program Gateway Space Station Glenn Research Center Humans in Space Technology Technology for Space Travel Explore More
      5 min read NASA Marks Artemis Progress With Gateway Lunar Space Station
      NASA and its international partners are making progress on Gateway – the lunar space station…
      Article 4 days ago 2 min read Advanced Modeling Enhances Gateway’s Lunar Dust Defense
      Ahead of more frequent and intense contact with dust during Artemis missions, NASA is developing…
      Article 1 month ago 2 min read Lunar Space Station Module Will Journey to US ahead of NASA’s Artemis IV Moon Mission
      A key element of the Gateway lunar space station has entered the cleanroom for final…
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Humans In Space
      Orion Spacecraft
      Human Landing System
      Extravehicular Activity and Human Surface Mobility
      View the full article
    • By NASA
      The unpiloted Roscosmos Progress spacecraft pictured on Aug. 13, 2024, from the International Space Station.Credit: NASA NASA will provide live launch and docking coverage of a Roscosmos cargo spacecraft delivering approximately three tons of food, fuel, and supplies for the crew aboard the International Space Station.
      The unpiloted Roscosmos Progress 91 spacecraft is scheduled to launch at 4:24 p.m. EST, Thursday, Feb. 27 (2:24 a.m. Baikonur time, Friday, Feb. 28), on a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan.
      Live launch coverage will begin at 4 p.m. on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
      After a two-day in-orbit journey to the station, the spacecraft will dock autonomously to the aft port of the Zvezda service module at 6:03 p.m. Saturday, March 1. NASA’s rendezvous and docking coverage will begin at 5:15 p.m. on NASA+.
      The Progress 91 spacecraft will remain docked to the space station for approximately six months before departing for re-entry into Earth’s atmosphere to dispose of trash loaded by the crew.
      The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For more than 24 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, through which astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including missions to the Moon under Artemis and, ultimately, human exploration of Mars.
      Get breaking news, images and features from the space station on Instagram, Facebook, and X.
      Learn more about the International Space Station, its research, and its crew, at:
      https://www.nasa.gov/station
      -end-
      Claire O’Shea
      Headquarters, Washington
      202-358-1100
      claire.a.o’shea@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Feb 24, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Humans in Space ISS Research Johnson Space Center Space Operations Mission Directorate View the full article
    • By NASA
      Credit: NASA NASA has selected SpaceX of Starbase, Texas, to provide launch services for the Near-Earth Object (NEO) Surveyor mission, which will detect and observe asteroids and comets that could potentially pose an impact threat to Earth.
      The firm fixed price launch service task order is being awarded under the indefinite delivery/indefinite quantity NASA Launch Services II contract. The total cost to NASA for the launch service is approximately $100 million, which includes the launch service and other mission related costs. The NEO Surveyor mission is targeted to launch no earlier than September 2027 on a SpaceX Falcon 9 rocket from Florida.
      The NEO Surveyor mission consists of a single scientific instrument: an almost 20-inch (50-centimeter) diameter telescope that will operate in two heat-sensing infrared wavelengths. It will be capable of detecting both bright and dark asteroids, the latter being the most difficult type to find with existing assets. The space telescope is designed to help advance NASA’s planetary defense efforts to discover and characterize most of the potentially hazardous asteroids and comets that come within 30 million miles of Earth’s orbit. These are collectively known as near-Earth objects, or NEOs.
      The mission will carry out a five-year baseline survey to find at least two-thirds of the unknown NEOs larger than 140 meters (460 feet). These are the objects large enough to cause major regional damage in the event of an Earth impact. By using two heat-sensitive infrared imaging channels, the telescope can also make more accurate measurements of the sizes of NEOs and gain information about their composition, shapes, rotational states, and orbits.
      The mission is tasked by NASA’s Planetary Science Division within the agency’s Science Mission Directorate at NASA Headquarters in Washington. Program oversight is provided by NASA’s Planetary Defense Coordination Office, which was established in 2016 to manage the agency’s ongoing efforts in planetary defense. NASA’s Planetary Missions Program Office at the agency’s Marshall Space Flight Center in Huntsville, Alabama, provides program management for NEO Surveyor. The project is being developed by NASA’s Jet Propulsion Laboratory in Southern California.
      Multiple aerospace and engineering companies are contracted to build the spacecraft and its instrumentation, including BAE Systems SMS (Space & Mission Systems), Space Dynamics Laboratory, and Teledyne. The Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder, will support operations, and the Infrared Processing and Analysis Center at the California Institute of Technology (Caltech) in Pasadena, California, is responsible for processing survey data and producing the mission’s data products. Caltech manages JPL for NASA. Mission team leadership includes the University of California, Los Angeles. NASA’s Launch Services Program at the agency’s Kennedy Space Center in Florida is responsible for managing the launch service.
      For more information about NEO Surveyor, visit:
      https://science.nasa.gov/mission/neo-surveyor/
      -end-
      Tiernan Doyle / Joshua Finch
      Headquarters, Washington
      202-358-1600 / 202-358-1100
      tiernan.doyle@nasa.gov / joshua.a.finch@nasa.gov
      Patti Bielling
      Kennedy Space Center, Florida
      321-501-7575
      patricia.a.bielling@nasa.gov
      Share
      Details
      Last Updated Feb 21, 2025 LocationNASA Headquarters Related Terms
      Kennedy Space Center Launch Services Office Launch Services Program NEO Surveyor (Near-Earth Object Surveyor Space Telescope) Planetary Defense Coordination Office Planetary Science Division Science Mission Directorate Space Operations Mission Directorate View the full article
    • By NASA
      Caption: The Intuitive Machines lunar lander that will deliver NASA science and technology to the Moon as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign is encapsulated in the fairing of the SpaceX Falcon 9 rocket. Credit: SpaceX Carrying NASA science and technology to the Moon as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, the Intuitive Machines IM-2 mission is targeted to launch no earlier than Wednesday, Feb. 26. The mission will lift off on a SpaceX Falcon 9 rocket from Launch Complex 39A at the agency’s Kennedy Space Center in Florida.

      Live launch coverage will air on NASA+ with prelaunch events starting Tuesday, Feb. 25. Learn how to watch NASA content through a variety of platforms, including social media. Follow all events at:
      https://www.nasa.gov/live
      After the launch, Intuitive Machines’ lunar lander, Athena, will spend approximately one week in transit to the Moon before landing on the lunar surface no earlier than Thursday, March 6. The lander will carry NASA science investigations and technology demonstrations to further our understanding of the Moon’s environment and help prepare for future human missions to the lunar surface, as part of the agency’s Moon to Mars exploration approach. 

      Among the items on Intuitive Machines’ lander, the IM-2 mission will be one of the first on-site demonstrations of resource use on the Moon. A drill and mass spectrometer will measure the potential presence of volatiles or gases from lunar soil in Mons Mouton, a lunar plateau in the Moon’s South Pole. In addition, a passive Laser Retroreflector Array (LRA) on the top deck of the lander will bounce laser light back at any orbiting or incoming spacecraft to give future spacecraft a permanent reference point on the lunar surface. Other technology instruments on this delivery will demonstrate a robust surface communications system and deploy a propulsive drone that can hop across the lunar surface.
      Launching as a rideshare with the IM-2 delivery, NASA’s Lunar Trailblazer spacecraft also will begin its journey to lunar orbit, where it will map the distribution of the different forms of water on the Moon.

      The deadline has passed for media accreditation for in-person coverage of this launch. The agency’s media accreditation policy is available online. More information about media accreditation is available by emailing: ksc-media-accreditat@mail.nasa.gov.

      Full coverage of this mission is as follows (all times Eastern):

      Tuesday, Feb. 25

      11 a.m. – Lunar science and technology media teleconference with the following participants:
      Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters Niki Werkheiser, director, technology maturation, Space Technology Mission Directorate, NASA Headquarters Jackie Quinn, Polar Resources Ice Mining Experiment 1 (PRIME-1) project manager, NASA Kennedy Daniel Cremons, LRA deputy principal investigator, NASA’s Goddard Space Flight Center Bethany Ehlmann, Lunar Trailblazer principal investigator, Caltech Trent Martin, senior vice president, space systems, Intuitive Machines Thierry Klein, president, Bell Labs Solution Research, Nokia Audio of the teleconference will stream live on the agency’s website:
      https://www.nasa.gov/live/
      Media may ask questions via phone only. For the dial-in number and passcode, please contact the Kennedy newsroom no later than 10 a.m. EST Tuesday, Feb. 25, at: ksc-newsroom@mail.nasa.gov.

      Wednesday, Feb. 26


      11:30 a.m. – Lunar delivery readiness media teleconference with the following participants:
      Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters Clayton Turner, associate administrator, Space Technology Mission Directorate, NASA Headquarters Trent Martin, senior vice president, space systems, Intuitive Machines William Gerstenmaier, vice president, build and flight reliability, SpaceX Melody Lovin, launch weather officer, Cape Canaveral Space Force Station’s 45th Weather Squadron Audio of the teleconference will stream live on the agency’s website:
      https://www.nasa.gov/live/
      Media may ask questions via phone only. For the dial-in number and passcode, please contact the Kennedy newsroom no later than 10 a.m. EST Wednesday, Feb. 26, at: ksc-newsroom@mail.nasa.gov.

      Launch coverage will begin on NASA+ approximately 45 minutes before liftoff. A specific time will be shared the week of Feb. 24.

      NASA Launch Coverage
      Audio only of the media teleconferences and launch coverage will be carried on the NASA “V” circuits, which may be accessed by dialing 321-867-1220, -1240, or -7135. On launch day, the full mission broadcast can be heard on -1220 and -1240, while the countdown net only can be heard on -7135 beginning approximately one hour before the mission broadcast begins.

      On launch day, a “tech feed” of the launch without NASA TV commentary will be carried on the NASA TV media channel.

      NASA Website Launch Coverage
      Launch day coverage of the mission will be available on the NASA website. Coverage will include live streaming and blog updates beginning Feb. 26, as the countdown milestones occur. On-demand streaming video and photos of the launch will be available shortly after liftoff. For questions about countdown coverage, contact the Kennedy newsroom at 321-867-2468.

      NASA Virtual Guests for Launch
      Members of the public can register to attend this launch virtually. Registrants will receive mission updates and activities by email, including curated mission resources, schedule updates, and a virtual guest passport stamp following a successful launch. Print your passport and get ready to add your stamp!

      Watch, Engage on Social Media
      Let people know you’re following the mission on X, Facebook, and Instagram by using the hashtag #Artemis. You can also stay connected by following and tagging these accounts:

      X: @NASA, @NASAKennedy, @NASAArtemis, @NASAMoon

      Facebook: NASA, NASAKennedy, NASAArtemis

      Instagram: @NASA, @NASAKennedy, @NASAArtemis

      Coverage en Español
      Did you know NASA has a Spanish section called NASA en español? Check out NASA en español on X, Instagram, Facebook, and YouTube for additional mission coverage.

      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov.

      For more information about the agency’s CLPS initiative, see:
      https://www.nasa.gov/clps
      -end-
      Karen Fox / Jasmine Hopkins
      Headquarters, Washington
      301-286-6284 / 321-432-4624
      karen.c.fox@nasa.gov / jasmine.s.hopkins@nasa.gov

      Natalia Riusech / Nilufar Ramji
      Johnson Space Center, Houston
      281-483-5111
      nataila.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
      Antonia Jaramillo
      Kennedy Space Center, Florida
      321-501-8425
      antonia.jaramillobotero@nasa.gov
      Share
      Details
      Last Updated Feb 21, 2025 Related Terms
      Missions Artemis Commercial Lunar Payload Services (CLPS) Science Mission Directorate Space Technology Mission Directorate View the full article
    • By NASA
      SPHEREx and PUNCH Launch (Official NASA Broadcast)
  • Check out these Videos

×
×
  • Create New...