Jump to content

NASA’s GUSTO Prepares to Map Space Between the Stars


NASA

Recommended Posts

  • Publishers

6 min read

NASA’s GUSTO Prepares to Map Space Between the Stars

GUSTO's star trackers being calibrated while the payload is suspended by crane payload suspended by crane
 The GUSTO telescope hangs from the hangar crane during telescope pointing tests at the Long Duration Balloon Facility on the Ross Ice Shelf near the U.S. National Science Foundation’s McMurdo Station, Antarctica, on Dec. 6, 2023. Mission specialists were calibrating the star cameras, used to determine the direction of pointing of the telescope.
Credit: José Silva on behalf of the GUSTO Team

On a vast ice sheet in Antarctica, scientists and engineers are preparing a NASA experiment called GUSTO to explore the universe on a balloon. GUSTO will launch from the Ross Ice Shelf, near the U.S. National Science Foundation’s McMurdo Station research base, no earlier than Dec. 21.

GUSTO, which stands for Galactic/Extragalactic ULDB Spectroscopic Terahertz Observatory, will peer into the space between stars called the interstellar medium. The balloon-borne telescope will help scientists make a 3D map of a large part of the Milky Way in extremely high-frequency radio waves. Examining a 100-square-degree area, GUSTO will explore the many phases of the interstellar medium and the abundances of key chemical elements in the galaxy.

By studying the LMC and comparing it to the Milky Way, we’ll be able to understand how galaxies evolve from the early universe until now.

Chris Walker

Chris Walker

GUSTO principal investigator

In particular, GUSTO will scan the interstellar medium for carbon, oxygen, and nitrogen because they are critical for life on Earth. These elements can also help scientists disentangle the complex web of processes that sculpt the interstellar medium.  

While our galaxy brims with billions of stars, including our Sun, that are interesting in their own right, the space between them holds a wealth of clues about how stars and planets are born.

The interstellar medium is where diffuse, cold gas and dust accumulate into gigantic cosmic structures called molecular clouds, which, under the right conditions, can collapse to form new stars. From the swirling disk of material around the young star, planets can form.

GUSTO is unique in its ability to examine the first part of this process, “to understand how these clouds form in the first place,” Chris Walker, principal investigator of GUSTO at the University of Arizona, said. GUSTO is a collaboration between NASA, the University of Arizona, Johns Hopkins Applied Physics Laboratory (APL), and the Netherlands Institute for Space Research (SRON); as well as MIT, JPL, the Smithsonian Astrophysical Observatory, and others.

Flipping GUSTO from horizontal to vertical
The GUSTO telescope is seen on Nov. 9, 2023, as Colombia Scientific Balloon Facility personnel assist the GUSTO team in flipping the observatory from a horizontal position to a vertical position. The photo was taken at the Long Duration Balloon Facility on the Ross Ice Shelf near the U.S. National Science Foundation’s McMurdo Station, Antarctica.
Credit: José Silva on behalf of the GUSTO Team

Eventually, when massive stars die and explode as supernovae, massive shock waves ripple through molecular clouds, which can in turn lead to more stars being born, or simply destroy the clouds. GUSTO can also look at this end stage of the molecular clouds.

GUSTO functions as a cosmic radio, equipped to “listen” for particular cosmic ingredients. That’s because it senses the high-frequency signals that atoms and molecules transmit. The “T” in GUSTO stands for “terahertz” – that’s about a thousand times higher than the frequencies that cellphones operate at.

“We basically have this radio system that we built that we can turn the knob and tune to the frequency of those lines,” Walker said. “And if we hear something, we know it’s them. We know it’s those atoms and molecules.”

As the telescope moves across the sky, scientists will use it to map the intensity and velocities of the signals from particular atoms and molecules at each position. “Then we can go back and connect the dots and create an image that looks like a photograph of what the emission looks like,” Walker said.

Observations like these can’t be done for carbon, nitrogen, and oxygen from Earth-based telescopes because of the water vapor in our atmosphere absorbing the light from the atoms and molecules in question, interfering with measurements. On a balloon about 120,000 feet above the ground, GUSTO will fly above most of that water vapor. “For the type of science we do, it’s as good as being in space,” Walker said.

The GUSTO telescope will also reveal the 3D structure of the Large Magellanic Cloud, or LMC, a dwarf galaxy near our Milky Way. The LMC resembles some of the galaxies of the early universe that NASA’s James Webb Space Telescope is exploring. But since the LMC is much closer than the distant early galaxies, scientists can examine it in greater detail with GUSTO.

“By studying the LMC and comparing it to the Milky Way, we’ll be able to understand how galaxies evolve from the early universe until now,” Walker explained.

GUSTO is expected to fly for at least 55 days on a 39 million cubic-foot zero-pressure balloon, a type of balloon that can fly high for long periods of time in the Austral Summer over Antarctica and has the diameter of a football field as it floats.

LDBF sign at McMurdo
GUSTO team member José Silva, Ph.D. student at the Netherlands Institute for Space Research (SRON), stands next to the Long Duration Balloon Facility sign on the Ross Ice Shelf, 8 miles from the U.S. National Science Foundation’s McMurdo Station, Antarctica, on Nov. 9, 2023.
Credit: Geoffrey Palo on behalf of the GUSTO Team

Antarctica provides an ideal launch location for GUSTO. During the southern hemisphere’s summer, the continent gets constant sunlight, so a scientific balloon can be extra stable there. Plus, the atmospheric zone around the South Pole generates cold rotating air – creating a phenomenon called an anticyclone, which enables balloons to fly in circles without disturbance.

“Missions will fly in circles around the South Pole for days or weeks at a time, which is really valuable to the science community,” said Andrew Hamilton, chief of the NASA Balloon Program Office at the Wallops Flight Facility in Virginia. “The longer they have for observation, the more science they can get. 

GUSTO is the first balloon-borne experiment in NASA’s Explorer program. It has the same scientific reach as the program’s space-borne satellites, such as TESS (the Transiting Exoplanet Survey Satellite) and IXPE (Imaging X-Ray Polarimetry Explorer).

“With GUSTO, we’re really trying to trailblaze,” said Kieran Hegarty, Program Manager for GUSTO at APL. “We want to show that balloon investigations do return compelling science.”

A total of twelve mission team members from University of Arizona and APL are on site in Antarctica performing the final checks before GUSTO’s launch.

With seals and penguins nearby, Walker and colleagues are hard at work readying this experiment for its ultimate adventure in the sky. For Walker, GUSTO represents some 30 years of effort, the outgrowth of many experiments from Earth-based telescopes and other balloon efforts.

“We all feel very fortunate and privileged to do a mission like this – to have the opportunity to put together the world’s most advanced terahertz instrument ever created, and then drag it halfway around the world and then launch it,” he said. “It’s a challenge, but we feel honored and humbled to be in the position to do it.”

About the Mission

In March 2017, NASA Astrophysics Division selected the Explorer Mission of Opportunity GUSTO (Galactic/Extragalactic ULDB Spectroscopic Terahertz Observatory) to measure emissions from the interstellar medium to help scientists determine the life cycle of interstellar gas by surveying a large region of our Milky Way galaxy and the Large Magellanic Cloud. The GUSTO mission is led by Principal Investigator Christopher Walker from the University of Arizona in Tucson. The team also includes the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, which provided the balloon platform to mount the instrumentation, known as the gondola, and the GUSTO project management. The University of Arizona provided the GUSTO telescope and the focal plane instrument, which incorporates detector technologies from NASA’s Jet Propulsion Laboratory in Pasadena, California, the Massachusetts Institute of Technology in Cambridge, Arizona State University in Tempe, and SRON Netherlands Institute for Space Research.

Media Contacts

Elizabeth Landau
Headquarters, Washington
202-358-0845
elizabeth.r.landau@nasa.gov

Alise Fisher
Headquarters, Washington
202-358-2546
alise.m.fisher@nasa.gov

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The Apollo 11 mission in July 1969 completed the goal set by President John F. Kennedy in 1961 to land a man on the Moon and return him safely to the Earth before the end of the decade. At the time, NASA planned nine more Apollo Moon landing missions of increasing complexity and an Earth orbiting experimental space station. No firm human space flight plans existed once these missions ended in the mid-1970s. After taking office in 1969, President Richard M. Nixon chartered a Space Task Group (STG) to formulate plans for the nation’s space program for the coming decades. The STG’s proposals proved overly ambitious and costly to the fiscally conservative President who chose to take no action on them.

      Left: President John F. Kennedy addresses a Joint Session of Congress in May 1961. Middle: President Kennedy addresses a crowd at Rice University in Houston in September 1962. Right: President Lyndon B. Johnson addresses a crowd during a March 1968 visit to the Manned Spacecraft Center, now NASA’s Johnson Space Center, in Houston.
      On May 25, 1961, before a Joint Session of Congress, President John F. Kennedy committed the United States to the goal, before the decade was out, of landing a man on the Moon and returning him safely to the Earth. President Kennedy reaffirmed the commitment during an address at Rice University in Houston in September 1962. Vice President Lyndon B. Johnson, who played a leading role in establishing NASA in 1958, under Kennedy served as the Chair of the National Aeronautics and Space Council. Johnson worked with his colleagues in Congress to ensure adequate funding for the next several years to provide NASA with the needed resources to meet that goal.
      Following Kennedy’s assassination in November 1963, now President Johnson continued his strong support to ensure that his predecessor’s goal of a Moon landing could be achieved by the stipulated deadline. But with increasing competition for scarce federal resources from the conflict in southeast Asia and from domestic programs, Johnson showed less interest in any space endeavors to follow the Apollo Moon landings. NASA’s annual budget peaked in 1966 and began a steady decline three years before the agency met Kennedy’s goal. From a budgetary standpoint, the prospects of a vibrant, post-Apollo space program didn’t look all that rosy, the triumphs of the Apollo missions of 1968 and 1969 notwithstanding.

      Left: On March 5, 1969, President Richard M. Nixon, left, introduces Thomas O. Paine as the NASA Administrator nominee, as Vice President Spiro T. Agnew looks on. Middle: Proposed lunar landing sites through Apollo 20, per August 1969 NASA planning. Right: An illustration of the Apollo Applications Program experimental space station that later evolved into Skylab.
      Less than a month after assuming the Presidency in January 1969, Richard M. Nixon appointed a Space Task Group (STG), led by Vice President Spiro T. Agnew as the Chair of the National Aeronautics and Space Council, to report back to him on options for the American space program in the post-Apollo years. Members of the STG included NASA Acting Administrator Thomas O. Paine (confirmed by the Senate as administrator on March 20), the Secretary of Defense, and the Director of the Office of Science and Technology. At the time, the only approved human space flight programs included lunar landing missions through Apollo 20 and three long-duration missions to an experimental space station based on Apollo technology that evolved into Skylab.
      Beyond a general vague consensus that the United States human space flight program should continue, no approved projects existed once these missions ended by about 1975. With NASA’s intense focus on achieving the Moon landing within President Kennedy’s time frame, long-term planning for what might follow the Apollo Program garnered little attention. During a Jan. 27, 1969, meeting at NASA chaired by Acting Administrator Paine, a general consensus emerged that the next step after the Moon landing should involve the development of a 12-person earth-orbiting space station by 1975, followed by an even larger outpost capable of housing up to 100 people “with a multiplicity of capabilities.” In June, with the goal of the Moon landing almost at hand, NASA’s internal planning added the development of a space shuttle by 1977 to support the space station, the development of a lunar base by 1976, and the highly ambitious idea that the U.S. should prepare for a human mission to Mars as early as the 1980s. NASA presented these proposals to the STG for consideration in early July in a report titled “America’s Next Decades in Space.”

      Left: President Richard M. Nixon, right, greets the Apollo 11 astronauts aboard the U.S.S. Hornet after their return from the Moon. Middle: The cover page of the Space Task Group (STG) Report to President Nixon. Right: Meeting in the White House to present the STG Report to President Nixon. Image credit: courtesy Richard Nixon Presidential Library and Museum.
      Still bathing in the afterglow of the successful Moon landing, the STG presented its 29-page report “The Post-Apollo Space Program:  Directions for the Future” to President Nixon on Sep. 15, 1969, during a meeting at the White House. In its Conclusions and Recommendations section, the report noted that the United States should pursue a balanced robotic and human space program but emphasized the importance of the latter, with a long-term goal of a human mission to Mars before the end of the 20th century. The report proposed that NASA develop new systems and technologies that emphasized commonality, reusability, and economy in its future programs. To accomplish these overall objectives, the report presented three options:

      Option I – this option required more than a doubling of NASA’s budget by 1980 to enable a human Mars mission in the 1980s, establishment of a lunar orbiting space station, a 50-person Earth orbiting space station, and a lunar base. The option required a decision by 1971 on development of an Earth-to-orbit transportation system to support the space station. The option maintained a strong robotic scientific and exploration program.

      Option II – this option maintained NASA’s budget at then current levels for a few years, then anticipated a gradual increase to support the parallel development of both an earth orbiting space station and an Earth-to-orbit transportation system, but deferred a Mars mission to about 1986. The option maintained a strong robotic scientific and exploration program, but smaller than in Option I.

      Option III – essentially the same as Option II but deferred indefinitely the human Mars mission.
      In separate letters, both Agnew and Paine recommended to President Nixon to choose Option II. 

      Left: Illustration of a possible space shuttle, circa 1969. Middle: Illustration of a possible 12-person space station, circa 1969. Right: An August 1969 proposed mission scenario for a human mission to Mars.
      The White House released the report to the public at a press conference on Sep. 17 with Vice President Agnew and Administrator Paine in attendance. Although he publicly supported a strong human spaceflight program, enjoyed the positive press he received when photographed with Apollo astronauts, and initially sounded positive about the STG options, President Nixon ultimately chose not to act on the report’s recommendations.  Nixon considered these plans too grandiose and far too expensive and relegated NASA to one America’s domestic programs without the special status it enjoyed during the 1960s. Even some of the already planned remaining Moon landing missions fell victim to the budgetary axe.
      On Jan. 4, 1970, NASA had to cancel Apollo 20 since the Skylab program needed its Saturn V rocket to launch the orbital workshop. In 1968, then NASA Administrator James E. Webb had turned off the Saturn V assembly line and none remained beyond the original 15 built under contract. In September 1970, reductions in NASA’s budget forced the cancellation of two more Apollo missions, and  in 1971 President Nixon considered cancelling two more. He reversed himself and they flew as Apollo 16 and Apollo 17 in 1972, the final Apollo Moon landing missions.

      Left: NASA Administrator James C. Fletcher, left, and President Richard M. Nixon announce the approval to proceed with space shuttle development in 1972. Middle: First launch of the space shuttle in 1981. Right: In 1984, President Ronald W. Reagan directs NASA to build a space station.
      More than two years after the STG submitted its report, in January 1972 President Nixon directed NASA Administrator James C. Fletcher to develop the Space Transportation System, the formal name for the space shuttle, the only element of the recommendations to survive the budgetary challenges.  NASA anticipated the first orbital flight of the program in 1979, with the actual first flight occurring two years later. Twelve years elapsed after Nixon’s shuttle decision when President Ronald W. Reagan approved the development of a space station, the second major component of the STG recommendation.  14 years later, the first element of that program reached orbit. In those intervening years, NASA had redesigned the original American space station, leading to the development of a multinational orbiting laboratory called the International Space Station. Humans have inhabited the space station continuously for the past quarter century, conducting world class and cutting edge scientific and engineering research. Work on the space station helps enable future programs, returning humans to the Moon and later sending them on to Mars and other destinations.

      The International Space Station as it appeared in 2021.
      Explore More
      7 min read 15 Years Ago: Japan launches HTV-1, its First Resupply Mission to the Space Station
      Article 6 days ago 9 min read 30 Years Ago: STS-64 Astronauts Test a Spacewalk Rescue Aid
      Article 6 days ago 5 min read NASA Tunnel Generates Decades of Icy Aircraft Safety Data
      Article 2 weeks ago View the full article
    • By Space Force
      The United States Space Force has partnered with the Rochester Institute of Technology and University of Michigan to research Advanced Space Power and Propulsion under the USSF University Consortium/Space Strategic Technology Institute 3.
      View the full article
    • By European Space Agency
      Image: This Copernicus Sentinel-2 image captures algal bloom swirls in the north Adriatic Sea, along the coast of Italy. View the full article
    • By NASA
      The International Space Station is pictured from the SpaceX Crew Dragon Endeavour during a fly around.NASA NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov are headed to the International Space Station for the agency’s SpaceX Crew-9 mission in September. Once on station, these crew members will support scientific investigations that include studies of blood clotting, effects of moisture on plants grown in space, and vision changes in astronauts.

      Here are details on some of the work scheduled during the Crew-9 expedition:

      Blood cell development in space
      Megakaryocytes Orbiting in Outer Space and Near Earth (MeF1) investigates how environmental conditions affect the development and function of megakaryocytes and platelets. Megakaryocytes, large cells found in bone marrow, and platelets, pieces of these cells, play important roles in blood clotting and immune response.

      “Understanding the development and function of megakaryocytes and platelets during long-duration spaceflight is crucial to safeguarding the health of astronauts,” said Hansjorg Schwertz, principal investigator, at the University of Utah. “Sending megakaryocyte cell cultures into space offers a unique opportunity to explore their intricate differentiation process. Microgravity also may impact other blood cells, so the insights we gain are likely to enhance our overall comprehension of how spaceflight influences blood cell production.”

      Results could provide critical knowledge about the risks of changes in inflammation, immune responses, and clot formation in spaceflight and on the ground.
      Scanning electron-microscopy image of human platelets prior to launch to the International Space Station.University of Utah/Megakaryocytes PI Team Patches for NICER
      The Neutron Star Interior Composition Explorer (NICER) telescope on the exterior of the space station measures X-rays emitted by neutron stars and other cosmic objects to help answer questions about matter and gravity.

      In May 2023, NICER developed a “light leak” that allows sunlight to interfere with daytime measurements. Special patches designed to cover some of the damage will be installed during a future spacewalk, returning the instrument to around-the-clock operation.

      “This will be the fourth science observatory and first X-ray telescope in orbit to be repaired by astronauts,” said principal investigator Keith Gendreau at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “In just a year, we diagnosed the problem, designed and tested a solution, and delivered it for launch. The space station team — from managers and safety experts to engineers and astronauts — helped us make it happen. We’re looking forward to getting back to normal science operations.”
      This view shows NICER’s 56 X-ray concentrators. Astronauts plan to cover some of them with special patches on a future spacewalk. NASA Vitamins for vision
      Some astronauts experience vision changes, a condition called Spaceflight-Associated Neuro-ocular Syndrome. The B Complex investigation tests whether a daily B vitamin supplement can prevent or mitigate this problem and assesses how genetics may influence individual response.

      “We still do not know exactly what causes this syndrome, and not everyone gets it,” said Sara Zwart, principal investigator, at the University of Texas Medical Branch, Houston. “It is likely many factors, and biological variations that make some astronauts more susceptible than others.”

      One such variation could be related to a metabolic pathway that requires B vitamins to function properly. Inefficiencies in this pathway can affect the inner lining of blood vessels, resulting in leaks that may contribute to vision changes. Providing B vitamins known to affect blood vessel function positively could minimize issues in genetically at-risk astronauts.

      “The concept of this study is based on 13 years of flight and ground research,” Zwart said. “We are excited to finally flight test a low-risk countermeasure that could mitigate the risk on future missions, including those to Mars.”
      NASA astronaut Mark Vande Hei conducts a vision exam on the International Space StationNASA Watering the space garden
      As people travel farther from Earth for longer, growing food becomes increasingly important. Scientists conducted many plant growth experiments on the space station using its Veggie hardware, including Veg-01B, which demonstrated that ‘Outredgeous’ red romaine lettuce is suitable for crop production in space.

      Plant Habitat-07 uses this lettuce to examine how moisture conditions affect the nutritional quality and microbial safety of plants. The Advanced Plant Habitat controls humidity, temperature, air, light, and soil moisture, creating the precise conditions needed for the experiment.

      Using a plant known to grow well in space removes a challenging variable from the equation, explained Chad Vanden Bosch, principal investigator at Redwire, and this lettuce also has been proven to be safe to consume when grown in space.

      “For crews building a base on the Moon or Mars, tending to plants may be low on their list of responsibilities, so plant growth systems need to be automated,” Bosch said. “Such systems may not always provide the perfect growing conditions, though, so we need to know if plants grown in suboptimal conditions are safe to consume.”
      This preflight image shows lettuce grown under control (left) and flood (right) moisture treatments. Plant Habitat-07 team Melissa Gaskill
      International Space Station Research Communications Team
      NASA’s Johnson Space Center
      Search this database of scientific experiments to learn more about those mentioned in this article.
      Keep Exploring Discover More Topics
      Latest News from Space Station Research
      Space Station Research and Technology
      Station Benefits for Humanity
      Humans In Space
      View the full article
    • By NASA
      The Soyuz rocket launches to the International Space Station with Expedition 72 crew members: NASA astronaut Don Pettit, Roscosmos cosmonauts Alexey Ovchinin, and Ivan Vagner, onboard, Wednesday, Sept. 11, 2024, at the Baikonur Cosmodrome in Kazakhstan. Credit: NASA/Bill Ingalls NASA astronaut Don Pettit, accompanied by Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner, arrived at the International Space Station Wednesday, bringing its number of residents to 12 for the 13-day handover period.

      After a two-orbit, three-hour journey to the station, the Roscosmos Soyuz MS-26 spacecraft automatically docked to the orbiting laboratory’s Rassvet module at 3:32 p.m. EDT. The spacecraft launched at 12:23 p.m. EDT (9:23 p.m. Baikonur time) from the Baikonur Cosmodrome in Kazakhstan.
      NASA’s coverage of hatch opening will stream at 5:30 p.m. on NASA+, the NASA app, YouTube, and the agency’s website. Hatch opening is scheduled to begin at 5:50 p.m. Learn how to stream NASA content through a variety of platforms, including social media.

      Once aboard, the trio will join Expedition 71 crew members, including NASA astronauts Tracy C. Dyson, Mike Barratt, Matthew Dominick, Jeanette Epps, Butch Wilmore, and Suni Williams, as well as Roscosmos cosmonauts Nikolai Chub, Alexander Grebenkin, and Oleg Kononenko. Expedition 72 will begin Monday, Sept. 23, upon the departure of Dyson, Chub, and off-going station commander Kononenko, completing a six-month stay for Dyson and a year-long expedition for Chub and Kononenko.

      Pettit, Ovchinin, and Vagner will spend approximately six months aboard the orbital outpost advancing scientific research as Expedition 71/72 crew members before returning to Earth in the spring of 2025. This is Pettit and Ovchinin’s fourth spaceflight and Vagner’s second.

      During Expedition 72, two new crews will arrive aboard the space station, including NASA’s SpaceX Crew-9 launching in September, followed by Crew-10, scheduled for launch in February 2025.  

      Follow Pettit on X throughout his mission and get the latest space station crew news on Instagram, Facebook, and X.

      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov

      Leah Cheshier
      Johnson Space Center, Houston
      281-483-5111
      leah.d.cheshier@nasa.gov
      View the full article
  • Check out these Videos

×
×
  • Create New...