Jump to content

120th Anniversary of the First Powered, Controlled Flight


NASA

Recommended Posts

  • Publishers
In this black and white photo, a white airplane with two sets of stacked wings with wires connecting them flies low to the ground. A man, Wilbur Wright, stands on the right with his back to the camera.
Library of Congress

In this image from Dec. 17, 1903, Orville Wright makes the first powered, controlled flight on Earth as his brother Wilbur looks on. Orville Wright covered 120 feet in 12 seconds during the first flight of the day. The Wright brothers made four flights that day, each longer than the last.

The aircraft, Flyer 1, was wrecked beyond repair after the fourth flight, but Orville took the wreckage home to Ohio and restored it. It went on display at the London Science Museum until 1948 when the Smithsonian Institution took ownership.

The Wrights’ legacy has traveled beyond Earth; engineers attached a postage-stamp-sized piece of Flyer 1’s wing material to a cable underneath NASA’s Ingenuity Mars Helicopter. As of Dec. 2, 2023, Ingenuity has traveled a total distance of 9.6 miles with a total flight time of 2 hours 1 minute 5 seconds. Its ground-breaking mission continues, paving the way for future aerial explorers of Mars.

Explore this historic flight and its effect on aeronautics.

Image Credit: Library of Congress

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Earth Observer Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 3 min read
      Summary of Aura 20th Anniversary Event
      Snippets from The Earth Observer’s Editor’s Corner
      The last of NASA’s three EOS Flagships – Aura – marked 20 years in orbit on July 15, 2024, with a celebration on September 18, 2024, at the Goddard Space Flight Center’s (GSFC) Recreational Center. The 120 attendees – including about 40 virtually – reminisced about Aura’s (originally named EOS-CHEM) tumultuous beginning, from the instrument and Principal Investigator (PI) selections up until the delayed launch at the Vandenberg Space Force Base (then Vandenberg Air Force Base) in California. They remembered how Bill Townsend, who was Deputy Director of GSFC at the time, and Ghassem Asrar, who was NASA’s Associate Administrator for Earth Science, spent many hours on site negotiating with the Vandenberg and Boeing launch teams in preparation for launch (after several delays and aborts). The Photo shows the Aura mission program scientist, project scientists (PS), and several instrument principal investigators (PI) shortly before launch.
      Photo 1. The Aura (formerly EOS CHEM)  mission program scientist, project scientists (PS), and several of instrument principal investigators (PI) at Vandenberg Space Force Base (then Air Force Base) shortly before launch on July 15, 2004. The individuals pictured [left to right] are Reinhold Beer [NASA/Jet Propulsion Laboratory (JPL)—Tropospheric Emission Spectrometer (TES) PI]; John Gille [University of Colorado, Boulder/National Center for Atmospheric Research (NCAR)—High Resolution Dynamics Limb Sounder (HIRDLS) PI]; Pieternel Levelt [Koninklijk Nederlands Meteorologisch Instituut (KNMI), Royal Netherlands Meteorological Institute—Ozone Monitoring Instrument (OMI) PI]; Ernest Hilsenrath [NASA’s Goddard Space Flight Center (GSFC)—Aura Deputy Scientist and U.S. OMI Co-PI];Anne Douglass [GSFC—Aura Deputy PS]; Mark Schoeberl [GSFC—Aura Project Scientist]; Joe Waters [NASA/JPL—Microwave Limb Sounder (MLS) PI]; P.K. Bhartia [GSFC—OMI Science Team Leader and former Aura Project Scientist]; and Phil DeCola [NASA Headquarters—Aura Program Scientist]. NOTE: Affiliations/titles listed for individuals named were those at the time of launch. Photo Credit: Ernest Hilsenrath At the anniversary event, Bryan Duncan [GSFC—Aura Project Scientist] gave formal opening remarks. Aura’s datasets have given a generation of scientists the most comprehensive global view of gases in Earth’s atmosphere to better understand the chemical and dynamic processes that shape their concentrations. Aura’s objective was to gather data to monitor Earth’s ozone layer, examine trends in global air pollutants, and measure the concentration of atmospheric constituents contributing to climate forcing. To read more about Aura’s incredible 20 years of accomplished air quality and climate science, see the anniversary article “Aura at 20 Years” in The Earth Observer.
      Bill Guit [GSFC—Aqua and Aura Program Manager and former Aura Mission Operations Lead] gave brief remarks focusing on how Aura became part of the international Afternoon Constellation, or “A-Train,” of satellites, including Aqua, which launched in 2002, and joined by several other NASA and international missions. Aura and Aqua have provided data for over two decades of multidisciplinary Earth science discovery and enhancement.
      Both current and former Aura instrument PIs gave brief remarks. Each discussed Aura’s scientific legacy and their instrument’s contributions. They thanked their engineering teams for the successful development and operation of their instruments, and the members of the instrument science teams for developing the algorithms, discovering new science, and demonstrating how the science will serve the public. The PIs were particularly grateful that their instruments or the variants thereof will continue to fly on current and/or future NASA science missions or on international operational satellites.
      Steve Platnick
      EOS Senior Project Scientist
      Share








      Details
      Last Updated Nov 14, 2024 Related Terms
      Earth Science View the full article
    • By European Space Agency
      Image: Getting Proba-3 fit for flight View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA/Quincy Eggert The design and build of a unique NASA pod, produced to advance computer vision for autonomous aviation, was recently completed in-house at NASA’s Armstrong Flight Research Center in Edwards, California, by using the center’s unique fabrication capabilities. The pod is called the NASA Airborne Instrumentation for Real-world Video of Urban Environments (AIRVUE). NASA Armstrong can take an idea from a drawing to flight with help from the center’s Experimental Fabrication Shop.  
      NASA researcher James Cowart adds the top back onto the NASA Airborne Instrumentation for Real-world Video of Urban Environments (AIRVUE) sensor pod at NASA’s Armstrong Flight Research Center in Edwards, California, in late February 2024. The pod houses sensors, wiring and cameras. The AIRVUE pod was flown on a helicopter at NASA’s Kennedy Space Center in Florida and is used to collect data for future autonomous aircraft.NASA/Genaro Vavuris NASA subject matter experts developed the idea for the project, after which engineers drew up plans and selected materials. The Experimental Fabrication Shop received those plans and gathered the materials to fabricate the pod.  
      After the pod was built, it moved to NASA Armstrong’s Engineering Support Branch, where electronics technicians and other specialists installed instruments inside of it. Once completed, the pod went through a series of tests at NASA Armstrong to make sure it was safe to fly at NASA’s Kennedy Space Center in Florida on an Airbus H135 helicopter. The engineering team made final adjustments to ensure the pod would collect the correct data prior to installation. More about the design and fabrication process, and the pod’s capabilities, is available to view in a NASA video.
      NASA researchers James Cowart and Elizabeth Nail add sensors, wiring and cameras, to the NASA Airborne Instrumentation for Real-world Video of Urban Environments (AIRVUE) sensor pod at NASA’s Armstrong Flight Research Center in Edwards, California, in late February 2024. The AIRVUE pod was flown on a helicopter at NASA’s Kennedy Space Center in Florida and is used to collect data for future autonomous aircraft.NASA/Genaro Vavuris Share
      Details
      Last Updated Nov 12, 2024 EditorDede DiniusContactTeresa Whitingteresa.whiting@nasa.gov Related Terms
      Advanced Air Mobility Aeronautics Ames Research Center Armstrong Flight Research Center Drones & You Glenn Research Center Kennedy Space Center Langley Research Center Explore More
      5 min read NASA Funds New Studies Looking at Future of Sustainable Aircraft
      Article 31 mins ago 4 min read Interview with OCEANOS Instructor María Fernanda Barbarena-Arias
      Article 1 day ago 3 min read Interview with OCEANOS Instructor Samuel Suleiman
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Aeronautics
      Advanced Air Mobility Mission
      NASA’s Advanced Air Mobility (AAM) research will transform our communities by bringing the movement of people and goods off the ground, on…
      Armstrong Capabilities & Facilities
      View the full article
    • By NASA
      Dr. Annie Meier (second from left) and her team inside the Applied Chemistry Lab at NASA’s Kennedy Space Center in Florida began supplementing their normal workload in mid-2023 with efforts to improve the lab’s sustainable practices. In 2024, the laboratory became the first at NASA to receive certification from the non-profit My Green Lab for its efforts in sustainability.NASA/Kim Shiflett NASA’s Kennedy Space Center in Florida has a long record of achievements in sustainability and recently added another to the list when the spaceport’s Applied Chemistry Lab became the first in the agency to be certified for its environmentally conscious practices.
      The My Green Lab Certification recognizes sustainability best practices in research facilities around the world. The certification program run by My Green Lab, a non-profit dedicated to creating a culture of sustainability through science, is considered a key measure of progress towards a zero-carbon future by the United Nations Race to Zero campaign.
      “When I heard our lab achieved certification, I was so happy,” said Dr. Annie Meier, one of the laboratory’s chemical engineers. “It meant we could now make a conscious effort to share these green practices with all who work in our lab. We even added them to our training materials for new and incoming members in the lab.”
      The lab performs research and technology development for a wide range of chemistry and engineering-related applications to solve the unique operational needs of NASA and outside partners. The lab primarily focuses on in-situ resource utilization and addressing technology gaps related to lunar and Martian sustainability. The lab’s scientists also provide expertise in the fields of logistics reduction, plasma science, hypergolic fuels, analytical instrumentation, and gas analysis.
      While sustainability has long been a focus of the lab, the journey to the certification began when Riley Yager, a doctoral student from University of Alabama at Birmingham – where Meier was a technical monitor – shared her knowledge of the program after pursuing green lab practices at her university.
      “I work as a sustainability ambassador at my university, so I knew of this program,” Yager said. “Sustainable practices are something woven into my everyday life, so naturally I wanted to bring those practices into my lab environments.”
      After learning about the program from Yager and discovering the many other academic institutions and companies certified globally, Meier submitted a proposal to NASA and obtained funding to pursue certification for the Applied Chemistry Lab.
      After a kickoff event hosted by My Green Lab in April 2023, the lab’s path to certification began with a self-assessment survey, in which members of the lab answered a series of questions about their practices in areas such as cold storage, green chemistry, infrastructure energy, resource management, waste reduction, and water. My Green Lab collected and analyzed the answers, providing a baseline assessment and recommendations to improve the lab’s sustainable practices.
      “We took their initial survey and learned we had lots of room for improvements as a lab,” Meier said. “Then I worked with a few interns over the summer to spearhead the ‘green team’ to implement changes and get momentum from the entire lab.”
      The lab began with minimizing purchases by improving efficiencies during the inventory process. The team also performed a waste audit of all seven of its laboratories. They adopted nitrile glove and pipette tip box recycling, reviewed the “12 principles of green chemistry” with the lab members, and installed stickers and signage about what can and cannot be unplugged to save energy. Additionally, they installed low-flow aerators on the lab tap sinks to reduce flow, and the lab now uses a recycling sink to save on water or solvents for cleaning parts.
      As luck would have it, Yager ended up working at the Applied Chemistry Lab on a NASA fellowship and became a member of the green team.
      “It was really fun to see that come full circle,” Meier said. “Almost all members of the lab, from our fellows to most senior members, used their self-motivation to get on the sustainability train.”
      The green team continued to grow as the lab implemented changes to become more sustainable. Just over six months after the kickoff event, they completed another assessment survey. With possible certification levels of bronze, silver, gold, platinum, and green – the level that adheres closest to My Green Lab’s highest standards – the ACL was certified green, marking the first time any NASA center obtained a My Green Lab Certification.
      “Our lab is looking to sustain these green practices and achieve the same status when we are reassessed in the future,” Meier said. “This effort could be a wonderful catalyst to inspire other work groups to lean towards more ‘green’ practices at the frontline in our laboratories.”
      The NASA Kennedy lab joined over 2,500 labs in a range of sectors that received the My Green Lab certification. Maintaining the distinction will require recertification every two years.
      View the full article
    • By SpaceX
      Starship | Fifth Flight Test
  • Check out these Videos

×
×
  • Create New...