Jump to content

NASA Provides Update on Venture-Class Launch Services


NASA

Recommended Posts

  • Publishers
NASA logo

NASA currently is working with several commercial companies as part of the agency’s VADR (Venture-Class Acquisition of Dedicated and Rideshare) launch services contract, providing new opportunities for science, and technology payloads.

These include:

  • ABL Space Systems of El Segundo, California
  • Astra Space Inc. of Alameda, California
  • Blue Origin Florida, LLC of Merritt Island, Florida
  • Firefly Space Transport Services of Cedar Park, Texas
  • L2 Solutions DBA SEOPS, LLC of Houston, Texas
  • Northrop Grumman Systems Corporation of Chandler, Arizona
  • Phantom Space Corporation of Tucson, Arizona
  • Relativity Space Inc. of Long Beach, California
  • Rocket Lab USA Inc. of Long Beach, California
  • SpaceX (Space Exploration Technologies Corp.) of Hawthorne, California
  • United Launch Services LLC of Centennial, Colorado

Building on NASA’s previous procurement efforts to foster development of a growing U.S. commercial launch market, VADR provides Federal Aviation Administration -licensed commercial launch services for payloads that can tolerate higher risk. By using a lower level of mission assurance, and commercial best practices for launching rockets, these highly flexible contracts help broaden access to space through lower launch costs.

Awards Update

Task orders under the VADR contract include launch services for several small satellite missions. CubeSats are a class of nanosatellites that use a standard size and form factor. The standard CubeSat size uses a “one unit” or “1U” measuring 10x10x10 centimeters and is extendable to larger sizes; 1.5, 2, 3, 6, and even 12U. A CubeSat typically weighs less than 2 kilogram (4.4 pounds) per unit.

Given the standardized size of these payloads and the ability to launch as a rideshare, rockets and launch dates are subject to change for these missions by the launch provider. This flexibility is one of the reasons NASA can cost-efficiently secure launch services for these small satellites.

  • NASA awarded L2 Solutions DBA SEOPS, LLC a task order to secure the launch of two 6U CubeSats for the agency’s Ames Research Center in California’s Silicon Valley as part of the agency’s Pathfinder Technology Demonstrator (PTD) series of missions. The demonstration flight tests the operation of a variety of novel CubeSat technologies in low Earth orbit, providing significant enhancements to the performance of these small and effective spacecraft. Over the course of multiple planned PTD missions, the successful demonstration of new subsystem technologies will increase small spacecraft capabilities, enabling direct infusion into a wider range of future science, and exploration missions. The two nanosatellites, PTD-4 and PTD-R, will launch on SpaceX’s Transporter-11 mission out of Vandenberg Space Force Base in Lompoc, California.
  • NASA awarded SpaceX a task order to launch Dione under the agency’s CubeSat Launch Initiative. The 6U CubeSat from Goddard Spaceflight Center in Greenbelt, Maryland, will quantify how Earth’s ionosphere and thermosphere respond to electromagnetic and kinetic energy inputs from the magnetosphere. The mission is a collaboration with Catholic University of America, Utah State University, and Virginia Tech. NASA’s Science Mission Directorate Heliophysics Division is funding this effort. Dione is targeted to launch no earlier than mid-2024.
  • NASA awarded SpaceX a task order to launch ARCSTONE under the agency’s CubeSat Launch Initiative. The 6U CubeSat, built at NASA’s Langley Research Center in Hampton, Virginia, will carry a spectrometer to low Earth orbit to establish a lunar calibration standard that will improve weather and climate sensors. ARCSTONE will use the Moon’s spectral reflectance for Earth science observations and is targeted to launch no earlier than mid-2025.
  • NASA awarded SpaceX a task order for the launch of TSIS-2 (Total and Spectral Solar Irradiance Sensor-2). TSIS-2 will measure the Sun’s energy input to Earth. Since 1978, various satellites have measured the Sun’s brightness above Earth’s atmosphere. TSIS-2 will add solar irradiance measurements. Unlike its predecessor TSIS-1, which operates from the International Space Station, TSIS-2 will ride on a free-flying spacecraft. Managed by NASA Goddard, TSIS-2 has instruments from the Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder. A launch date is under review.

    Previously Announced Task Orders:

    PREFIRE
    CubeSats for Phantom Space Corp.
    EscaPADE
    Two CSLI Missions Awarded to SpaceX
    TROPICS
    TRACERS

    View the full article

    Link to comment
    Share on other sites

    Join the conversation

    You can post now and register later. If you have an account, sign in now to post with your account.
    Note: Your post will require moderator approval before it will be visible.

    Guest
    Reply to this topic...

    ×   Pasted as rich text.   Paste as plain text instead

      Only 75 emoji are allowed.

    ×   Your link has been automatically embedded.   Display as a link instead

    ×   Your previous content has been restored.   Clear editor

    ×   You cannot paste images directly. Upload or insert images from URL.

    • Similar Topics

      • By NASA
        El viceministro de Políticas para la Defensa del Ministerio de Defensa de Perú, César Medardo Torres Vega, el administrador de la NASA, Bill Nelson, y el director de la Comisión Nacional de Investigación y Desarrollo Aeroespacial del Perú (CONIDA), mayor general Roberto Melgar Sheen, se reúnen en Lima, Perú, el 14 de noviembre de 2024, donde EE. UU. y Perú firmaron un memorando de entendimiento acordando estudiar una potencial campaña de cohetes sonda.Crédito: Embajada de EE. UU. en Perú Read this release in English here.
        La NASA y la Comisión Nacional de Investigación y Desarrollo Aeroespacial del Perú (CONIDA) sentaron las bases para una posible campaña de varios años de duración para el lanzamiento de pequeños cohetes científicos desde Perú, conjuntamente con Estados Unidos.
        Ambos países firmaron el jueves un memorando de entendimiento no vinculante que incluye capacitación en seguridad, un estudio de factibilidad conjunto para la posible campaña, y asistencia técnica para CONIDA en lanzamientos de cohetes sonda. Los cohetes sonda son pequeños cohetes de bajo costo que proporcionan acceso suborbital al espacio.
        “Estamos entusiasmados de analizar la posibilidad de lanzar nuevamente cohetes sonda desde Perú”, dijo el administrador de la NASA, Bill Nelson, quien firmó en nombre de Estados Unidos. “Este acuerdo profundiza nuestra colaboración internacional con Perú y la investigación científica que llevamos a cabo debido a la ubicación del país en el ecuador magnético. Juntos iremos más lejos”.
        El mayor general Roberto Melgar Sheen, jefe institucional de CONIDA, firmó en nombre de Perú. Brian Nichols, subsecretario de Asuntos del Hemisferio Occidental del Departamento de Estado de EE. UU., y Stephanie Syptak-Ramnath, embajadora de EE. UU. en Perú, también participaron, entre otros funcionarios peruanos. El evento tuvo lugar durante la semana del Foro de Cooperación Económica Asia-Pacífico que comenzó el 9 de noviembre en Lima.
        Durante su visita a Perú, Nelson también discutió la importancia de las asociaciones y la colaboración internacionales en el espacio y celebró la firma de los Acuerdos Artemis por parte de Perú a principios de este año.
        Estados Unidos y Perú tienen una larga historia de cooperación espacial. La NASA llevó a cabo campañas de cohetes sonda en la base de lanzamiento Punta Lobos de CONIDA en 1975 y 1983.
        La NASA utiliza cohetes sonda para transportar instrumentos científicos al espacio en vuelos suborbitales para recopilar importantes datos científicos y poner a prueba prototipos de instrumentos. Con ellos se obtienen datos de incalculable valor que mejoran nuestra comprensión de la atmósfera y el clima de la Tierra, nuestro sistema solar y el universo, y se ponen a prueba equipamientos para viajes espaciales más profundos.
        Comprender la atmósfera de la Tierra y cómo es influenciada por el Sol es crucial para proteger los recursos terrestres y espaciales de los que dependemos todos los días, desde la red eléctrica hasta los datos meteorológicos e incluso la navegación.
        Para obtener más información sobre las asociaciones internacionales de la NASA (en inglés), visita:
        https://www.nasa.gov/oiir
        -fin-
        Meira Bernstein / Elizabeth Shaw
        Headquarters, Washington
        202-358-1600
        meira.b.bernstein@nasa.gov / elizabeth.a.shaw@nasa.gov
        Share
        Details
        Last Updated Nov 14, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
        Office of International and Interagency Relations (OIIR) Artemis Accords Sounding Rockets View the full article
      • By NASA
        Credit: NASA NASA, on behalf of the National Oceanic and Atmospheric Administration (NOAA), has selected Southwest Research Institute of San Antonio to build three coronagraphs for the Lagrange 1 Series project, part of NOAA’s Space Weather Next program.
        Once operational, the coronagraphs will provide critical data to NOAA’s Space Weather Prediction Center, which issues forecasts, warnings, and alerts that help mitigate space weather impacts, including electric power outages and interruption to communications and navigation systems.
        This cost-plus-fixed-fee contract is valued at approximately $60 million, and the anticipated period of performance is from this November through January 2034, concluding after launch of the second coronagraph aboard a NOAA spacecraft. The third coronagraph will be delivered as a flight spare.
        This contract award marks a transfer of coronagraph development from the government to the U.S. commercial sector. The contract scope includes design, analysis, development, fabrication, integration, test, verification, and evaluation of the      coronagraphs; launch support; supply and maintenance of ground support equipment; and support of post-launch instrument operations at the NOAA Satellite Operations Facility. The work will take place at Southwest Research Institute’s facility in San Antonio.
        The coronagraphs will observe the density structure of the Sun’s faint outermost atmosphere — the corona — and will detect Earth-directed coronal mass ejections shortly after they erupt, providing the longest possible lead time for geomagnetic storm watches. With this forewarning, public and private organizations affected by space weather can take actions to protect their assets. The coronagraphs will also provide data continuity from the Space Weather follow-on Lagrange 1 mission.
        NASA and NOAA oversee the development, launch, testing and operation of all the satellites in the project. NOAA is the program owner providing the requirements and funding along with managing the program, operations, data products, and dissemination to users. NASA and its commercial partners develop and build the instruments, spacecraft, and provide launch services on behalf of NOAA.
        For information about NASA and agency programs, visit:
        https://www.nasa.gov
        -end-
        Abbey Donaldson
        Headquarters, Washington
        202-358-1600
        Abbey.a.donaldson@nasa.gov
        Jeremy Eggers
        Goddard Space Flight Center, Greenbelt, Md.
        757-824-2958
        jeremy.l.eggers@nasa.gov
        View the full article
      • By NASA
        Johnson Space Center Vibration Test FacilityNASA Nov. 14, 2024
        NASA Johnson Invites Proposals to Lease Vibration Test Facility
        NASA’s Johnson Space Center is seeking proposals for the use of its historic, but underused, Vibration and Acoustic Test Facility. Prospective tenants must submit facility walk-through requests by Monday, Nov. 18.
        Final proposals are due by 12 p.m. EST Monday, Dec. 16, and must promote activities that will build, expand, modernize, or operate aerospace-related capabilities at NASA Johnson and help preserve the historic and iconic building through preservation and adaptive reuse.
        NASA plans to sign a National Historic Preservation Act (NHPA) lease agreement for the facility, also known as Building 49, for a five-year base period and one five-year extension to be negotiated between NASA and the tenant. To request a walk-through, send an email to hq-realestate@mail.nasa.gov.
        “This historic facility has been used for decades to ensure the success and safety of all human spaceflight missions by putting engineering designs and hardware to the ultimate stress tests,” said NASA Johnson Director Vanessa Wyche. “For more than 60 years, NASA Johnson has been the hub of human space exploration and this agreement will be a vital part of the center’s efforts to develop a robust and durable space economy that refines our understanding of the solar system and space exploration.”
        All proposals must adhere to the guidelines detailed in the Agency Announcement for Proposals describing concept plans for development of the property, including any modifications proposed to the building; a statement of financial capability to successfully achieve and sustain operations, demonstrated experience with aerospace-related services or other space-related activities, and a detailed approach to propelling the space economy.
        The nine-story building complex has a gross square footage of 62,737 square feet and consists of a north wing measuring 62 feet long, 268 feet wide and 106 feet tall, and a central wing about 64 feet long and 115 feet wide. Building 49 currently houses five laboratories, including the General Vibration Laboratory, Modal Operations Laboratory, Sonic Fatigue Laboratory, Spacecraft Acoustic Laboratory, and Spacecraft Vibration Laboratory. The south administrative portion of the building is not included in the property offered for lease. 
        As the home of Mission Control Center for the agency’s human space missions, astronaut training, robotics, human health and space medicine, NASA Johnson leads the way for the human exploration. Leveraging its unique role and location, the center is developing multiple lease agreements, including the recently announced Exploration Park, to sustain its key role in helping the human spaceflight community foster a robust space.
        In the coming years, NASA and its academic, commercial, and international partners will see the completion of the International Space Station Program, the commercial development of low Earth orbit, and the first human Artemis campaign missions establishing sustainable human presence on the Moon in preparation for human missions to Mars.
        Johnson already is leading the commercialization of space with the commercial cargo and crew programs and private astronaut missions to the space station. The center also is supporting the development of commercial space stations in low Earth orbit, and lunar-capable commercial spacesuits and lunar landers that will be provided as services to both NASA and the private sector to accelerate human access to space. Through the development of Exploration Park, the center will broaden the scope of the human spaceflight community that is tackling the many difficult challenges ahead.
        Learn more about NASA Johnson’s efforts to collaborate with industry partners:
        https://www.nasa.gov/johnson/frontdoor
        -end-
        Kelly Humphries
        Johnson Space Center, Houston
        281-483-5111
        kelly.o.humphries@nasa.gov
        View the full article
      • By NASA
        Peru’s Vice Minister of Defense Policies for Ministry of Defense César Medardo Torres Vega, NASA Administrator Bill Nelson, and Director of Peru’s National Commission for Aerospace Research and Development (CONIDA) Maj. Gen. Roberto Melgar Sheen meet in Lima, Peru, Nov. 14, 2024, where the U.S. and Peru signed a memorandum of understanding agreeing to study a potential sounding rocket campaign.Credit: U.S. Embassy Peru NASA and Peru’s National Commission for Aerospace Research and Development (CONIDA) laid the groundwork for a potential multi-year scientific rocket launch campaign in the South American country.
        Both countries signed a non-binding memorandum of understanding Thursday that includes safety training, a joint feasibility study for the potential campaign, and technical assistance for CONIDA on sounding rocket launches. Sounding rockets are small, low-cost rockets that provide suborbital access to space.
        “We are excited to look at the possibility of once again launching sounding rockets from Peru,” said NASA Administrator Bill Nelson, who signed on behalf of the United States. “This agreement deepens our international partnership with Peru and the scientific research we conduct because of the country’s location along the magnetic equator. Together we will go farther.” 
        Maj. Gen. Roberto Melgar Sheen, head of CONIDA, signed on behalf of Peru. Brian Nichols, assistant secretary for Western Hemisphere Affairs for the U.S. State Department, and Stephanie Syptak-Ramnath, U.S. ambassador to Peru, also participated, among other Peruvian officials. The event took place during the week of the Asia-Pacific Economic Cooperation forum beginning Nov. 9 in Lima.
        During his visit to Peru, Nelson also discussed the importance of international partnerships and collaboration in space and celebrated Peru’s signing of the Artemis Accords earlier this year.
        The United States and Peru have a long history of space cooperation. NASA conducted sounding rocket campaigns at CONIDA’s Punta Lobos launch base in 1975 and 1983.
        NASA uses sounding rockets to carry scientific instruments into space on suborbital flights to collect important science data and test prototype instruments. They yield invaluable data that enhance our understanding of Earth’s atmosphere and weather, our solar system, and the universe, and test equipment for deeper space travel.
        Understanding our Earth’s atmosphere and how it is influenced by the Sun is crucial to protecting ground and space-based assets that we rely on every day, from the power grid to weather data and even navigation. 
        For more information about NASA’s international partnerships, visit:
        https://www.nasa.gov/oiir
        -end-
        Meira Bernstein / Elizabeth Shaw
        Headquarters, Washington
        202-358-1600
        meira.b.bernstein@nasa.gov / elizabeth.a.shaw@nasa.gov
        Share
        Details
        Last Updated Nov 14, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
        Office of International and Interagency Relations (OIIR) Sounding Rockets View the full article
      • By NASA
        In the unforgiving lunar environment, the possibility of an astronaut crewmember becoming incapacitated due to unforeseen circumstances (injury, medical emergency, or a mission-related accident) is a critical concern, starting with the upcoming Artemis III mission, where two astronaut crewmembers will explore the Lunar South Pole. The Moon’s surface is littered with rocks ranging from 0.15 to 20 meters in diameter and craters spanning 1 to 30 meters wide, making navigation challenging even under optimal conditions. The low gravity, unique lighting conditions, extreme temperatures, and availability of only one person to perform the rescue, further complicate any rescue efforts. Among the critical concerns is the safety of astronauts during Extravehicular Activities (EVAs). If an astronaut crewmember becomes incapacitated during a mission, the ability to return them safely and promptly to the human landing system is essential. A single crew member should be able to transport an incapacitated crew member distances up to 2 km and a slope of up to 20 degrees on the lunar terrain without the assistance of a lunar rover. This pressing issue opens the door for innovative solutions. We are looking for a cutting-edge design that is low in mass and easy to deploy, enabling one astronaut crewmember to safely transport their suited (343 kg (~755lb)) and fully incapacitated partner back to the human landing system. The solution must perform effectively in the Moon’s extreme South Pole environment and operate independently of a lunar rover. Your creativity and expertise could bridge this critical gap, enhancing the safety measures for future lunar explorers. By addressing this challenge, you have the opportunity to contribute to the next “giant leap” in human space exploration.
        Award: $45,000 in total prizes
        Open Date: November 14, 2024
        Close Date: January 23, 2025
        For more information, visit: https://www.herox.com/NASASouthPoleSafety
        View the full article
    • Check out these Videos

    ×
    ×
    • Create New...