Jump to content

Recommended Posts

Posted
Star_Cluster_IC_348_NIRCam_image_card_fu

Discovery helps answer the question: How small can you go when forming stars?
Brown dwarfs are sometimes called failed stars, since they form like stars through gravitational collapse, but never gain enough mass to ignite nuclear fusion. The smallest brown dwarfs can overlap in mass with giant planets. In a quest to find the smallest brown dwarf, astronomers using the NASA/ESA/CSA James Webb Space Telescope have found the new record-holder: an object weighing just three to four times the mass of Jupiter.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Illustration of the main asteroid belt, orbiting the Sun between Mars and JupiterNASA NASA’s powerful James Webb Space Telescope includes asteroids on its list of objects studied and secrets revealed. 
      A team led by researchers at the Massachusetts Institute of Technology (MIT) in Cambridge repurposed Webb’s observations of a distant star to reveal a population of small asteroids — smaller than astronomers had ever detected orbiting the Sun in the main asteroid belt between Mars and Jupiter.
      The 138 new asteroids range from the size of a bus to the size of a stadium — a size range in the main belt that has not been observable with ground-based telescopes. Knowing how many main belt asteroids are in different size ranges can tell us something about how asteroids have been changed over time by collisions. That process is related to how some of them have escaped the main belt over the solar system’s history, and even how meteorites end up on Earth.  
      “We now understand more about how small objects in the asteroid belt are formed and how many there could be,” said Tom Greene, an astrophysicist at NASA’s Ames Research Center in California’s Silicon Valley and co-author on the paper presenting the results. “Asteroids this size likely formed from collisions between larger ones in the main belt and are likely to drift towards the vicinity of Earth and the Sun.”
      Insights from this research could inform the work of the Asteroid Threat Assessment Project at Ames. ATAP works across disciplines to support NASA’s Planetary Defense Coordination Office by studying what would happen in the case of an Earth impact and modeling the associated risks. 
      “It’s exciting that Webb’s capabilities can be used to glean insights into asteroids,” said Jessie Dotson, an astrophysicist at Ames and member of ATAP. “Understanding the sizes, numbers, and evolutionary history of smaller main belt asteroids provides important background about the near-Earth asteroids we study for planetary defense.”
      Illustration of the James Webb Space TelescopeNASA The team that made the asteroid detections, led by research scientist Artem Burdanov and professor of planetary science Julien de Wit, both of MIT, developed a method to analyze existing Webb images for the presence of asteroids that may have been inadvertently “caught on film” as they passed in front of the telescope. Using the new image processing technique, they studied more than 10,000 images of the star TRAPPIST-1, originally taken to search for atmospheres around planets orbiting the star, in the search for life beyond Earth. 
      Asteroids shine more brightly in infrared light, the wavelength Webb is tuned to detect, than in visible light, helping reveal the population of main belt asteroids that had gone unnoticed until now. NASA will also take advantage of that infrared glow with an upcoming mission, the Near-Earth Object (NEO) Surveyor. NEO Surveyor is the first space telescope specifically designed to hunt for near-Earth asteroids and comets that may be potential hazards to Earth.
      The paper presenting this research, “Detections of decameter main-belt asteroids with JWST,” was published Dec. 9 in Nature.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      For news media:
      Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
      View the full article
    • By NASA
      ESA/Webb, NASA & CSA, P. Zeidler This new image of star cluster NGC 602, released on Dec. 17, 2024, combines data from NASA’s Chandra X-ray Observatory with a previously released image from the agency’s James Webb Space Telescope. Webb data provide the ring-like outline of the “wreath,” while X-rays from Chandra (red) show young, massive stars that are illuminating the wreath, sending high-energy light into interstellar space.
      NGC 602 lies on the outskirts of the Small Magellanic Cloud, which is one of the closest galaxies to the Milky Way, about 200,000 light-years from Earth. 
      See another new, festive image: the “Christmas tree cluster.”
      Image credit: X-ray: NASA/CXC; Infrared: ESA/Webb, NASA & CSA, P. Zeilder, E.Sabbi, A. Nota, M. Zamani; Image Processing: NASA/CXC/SAO/L. Frattare and K. Arcand
      View the full article
    • By NASA
      Webb Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 7 Min Read NASA’s Webb Finds Planet-Forming Disks Lived Longer in Early Universe
      This is a James Webb Space Telescope image of NGC 346, a massive star cluster in the Small Magellanic Cloud, a dwarf galaxy that is one of the Milky Way’s nearest neighbors. Credits:
      NASA, ESA, CSA, STScI, Olivia C. Jones (UK ATC), Guido De Marchi (ESTEC), Margaret Meixner (USRA) NASA’s James Webb Space Telescope just solved a conundrum by proving a controversial finding made with the agency’s Hubble Space Telescope more than 20 years ago.
      In 2003, Hubble provided evidence of a massive planet around a very old star, almost as old as the universe. Such stars possess only small amounts of heavier elements that are the building blocks of planets. This implied that some planet formation happened when our universe was very young, and those planets had time to form and grow big inside their primordial disks, even bigger than Jupiter. But how? This was puzzling.
      To answer this question, researchers used Webb to study stars in a nearby galaxy that, much like the early universe, lacks large amounts of heavy elements. They found that not only do some stars there have planet-forming disks, but that those disks are longer-lived than those seen around young stars in our Milky Way galaxy.
      “With Webb, we have a really strong confirmation of what we saw with Hubble, and we must rethink how we model planet formation and early evolution in the young universe,” said study leader Guido De Marchi of the European Space Research and Technology Centre in Noordwijk, Netherlands.
      Image A: Protoplanetary Disks in NGC 346 (NIRCam Image)
      This is a James Webb Space Telescope image of NGC 346, a massive star cluster in the Small Magellanic Cloud, a dwarf galaxy that is one of the Milky Way’s nearest neighbors. With its relative lack of elements heavier than hydrogen and helium, the NGC 346 cluster serves as a nearby proxy for studying stellar environments with similar conditions in the early, distant universe. Ten, small, yellow circles overlaid on the image indicate the positions of the ten stars surveyed in this study. NASA, ESA, CSA, STScI, Olivia C. Jones (UK ATC), Guido De Marchi (ESTEC), Margaret Meixner (USRA) A Different Environment in Early Times
      In the early universe, stars formed from mostly hydrogen and helium, and very few heavier elements such as carbon and iron, which came later through supernova explosions.
      “Current models predict that with so few heavier elements, the disks around stars have a short lifetime, so short in fact that planets cannot grow big,” said the Webb study’s co-investigator Elena Sabbi, chief scientist for Gemini Observatory at the National Science Foundation’s NOIRLab in Tucson. “But Hubble did see those planets, so what if the models were not correct and disks could live longer?”
      To test this idea, scientists trained Webb on the Small Magellanic Cloud, a dwarf galaxy that is one of the Milky Way’s nearest neighbors. In particular, they examined the massive, star-forming cluster NGC 346, which also has a relative lack of heavier elements. The cluster served as a nearby proxy for studying stellar environments with similar conditions in the early, distant universe.
      Hubble observations of NGC 346 from the mid 2000s revealed many stars about 20 to 30 million years old that seemed to still have planet-forming disks around them. This went against the conventional belief that such disks would dissipate after 2 or 3 million years.
      “The Hubble findings were controversial, going against not only empirical evidence in our galaxy but also against the current models,” said De Marchi. “This was intriguing, but without a way to obtain spectra of those stars, we could not really establish whether we were witnessing genuine accretion and the presence of disks, or just some artificial effects.”
      Now, thanks to Webb’s sensitivity and resolution, scientists have the first-ever spectra of forming, Sun-like stars and their immediate environments in a nearby galaxy.
      “We see that these stars are indeed surrounded by disks and are still in the process of gobbling material, even at the relatively old age of 20 or 30 million years,” said De Marchi. “This also implies that planets have more time to form and grow around these stars than in nearby star-forming regions in our own galaxy.”
      Image B: Protoplanetary Disks in NGC 346 Spectra (NIRSpec)
      This graph shows, on the bottom left in yellow, a spectrum of one of the 10 target stars in this study (as well as accompanying light from the immediate background environment). Spectral fingerprints of hot atomic helium, cold molecular hydrogen, and hot atomic hydrogen are highlighted. On the top left in magenta is a spectrum slightly offset from the star that includes only light from the background environment. This second spectrum lacks a spectral line of cold molecular hydrogen.
      On the right is the comparison of the top and bottom lines. This comparison shows a large peak in the cold molecular hydrogen coming from the star but not its nebular environment. Also, atomic hydrogen shows a larger peak from the star. This indicates the presence of a protoplanetary disk immediately surrounding the star. The data was taken with the microshutter array on the James Webb Space Telescope’s NIRSpec (Near-Infrared Spectrometer) instrument. Illustration: NASA, ESA, CSA, Joseph Olmsted (STScI) A New Way of Thinking
      This finding refutes previous theoretical predictions that when there are very few heavier elements in the gas around the disk, the star would very quickly blow away the disk. So the disk’s life would be very short, even less than a million years. But if a disk doesn’t stay around the star long enough for the dust grains to stick together and pebbles to form and become the core of a planet, how can planets form?
      The researchers explained that there could be two distinct mechanisms, or even a combination, for planet-forming disks to persist in environments scarce in heavier elements.
      First, to be able to blow away the disk, the star applies radiation pressure. For this pressure to be effective, elements heavier than hydrogen and helium would have to reside in the gas. But the massive star cluster NGC 346 only has about ten percent of the heavier elements that are present in the chemical composition of our Sun. Perhaps it simply takes longer for a star in this cluster to disperse its disk.
      The second possibility is that, for a Sun-like star to form when there are few heavier elements, it would have to start from a larger cloud of gas. A bigger gas cloud will produce a bigger disk. So there is more mass in the disk and therefore it would take longer to blow the disk away, even if the radiation pressure were working in the same way.
      “With more matter around the stars, the accretion lasts for a longer time,” said Sabbi. “The disks take ten times longer to disappear. This has implications for how you form a planet, and the type of system architecture that you can have in these different environments. This is so exciting.”
      The science team’s paper appears in the Dec. 16 issue of The Astrophysical Journal.
      Image C: NGC 346: Hubble and Webb Observations
      Image Before/After The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt manages the telescope and mission operations. Lockheed Martin Space, based in Denver also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Downloads
      Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the science paper from the The Astrophysical Journal.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Ann Jenkins – jenkins@stsci.edu, Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Past releases on NGC 346: Webb NIRCam image and MIRI image
      Article: Highlighting other Webb Star Formation Discoveries
      Simulation Video: Planetary Systems and Origins of Life
      Animation Video: Exploring star and planet formation (English), and in Spanish
      More Images of NGC 346 on AstroPix
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is a planet?
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      ¿Qué es un planeta?
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars



      Galaxies



      Universe


      Share








      Details
      Last Updated Dec 15, 2024 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      Astrophysics Galaxies Galaxies, Stars, & Black Holes Goddard Space Flight Center James Webb Space Telescope (JWST) Science & Research Stars The Universe View the full article
    • By European Space Agency
      For the first time, the NASA/ESA/CSA James Webb Space Telescope has detected and ‘weighed’ a galaxy, in the early Universe, that has a mass that is similar to what our Milky Way galaxy’s mass might have been at the same stage of development. Found at around 600 million years after the Big Bang, this lightweight galaxy, nicknamed the Firefly Sparkle, is gleaming with star clusters – 10 in total – that researchers examined in great detail. Other galaxies Webb has detected at this period in the history of the Universe are significantly more massive.
      View the full article
    • By NASA
      The Artemis II Orion spacecraft is lifted from the Final Assembly and Testing (FAST) Cell and placed in the west altitude chamber inside the Operations and Checkout Building at NASA’S Kennedy Space Center in Florida on June 28, 2024. Inside the altitude chamber, the spacecraft underwent a series of tests simulating deep space vacuum conditions.Photo Credit: NASA / Rad Sinyak After extensive analysis and testing, NASA has identified the technical cause of unexpected char loss across the Artemis I Orion spacecraft’s heat shield.

      Engineers determined as Orion was returning from its uncrewed mission around the Moon, gases generated inside the heat shield’s ablative outer material called Avcoat were not able to vent and dissipate as expected. This allowed pressure to build up and cracking to occur, causing some charred material to break off in several locations.

      “Our early Artemis flights are a test campaign, and the Artemis I test flight gave us an opportunity to check out our systems in the deep space environment before adding crew on future missions,” said Amit Kshatriya, deputy associate administrator, Moon to Mars Program Office, NASA Headquarters in Washington. “The heat shield investigation helped ensure we fully understand the cause and nature of the issue, as well as the risk we are asking our crews to take when they venture to the Moon.”

      Findings
      Teams took a methodical approach to understanding and identifying the root cause of the char loss issue, including detailed sampling of the Artemis I heat shield, review of imagery and data from sensors on the spacecraft, and comprehensive ground testing and analysis.

      During Artemis I, engineers used the skip guidance entry technique to return Orion to Earth. This technique provides more flexibility by extending the range Orion can fly after the point of reentry to a landing spot in the Pacific Ocean. Using this maneuver, Orion dipped into the upper part of Earth’s atmosphere and used atmospheric drag to slow down. Orion then used the aerodynamic lift of the capsule to skip back out of the atmosphere, then reenter for final descent under parachutes to splashdown.

      Using Avcoat material response data from Artemis I, the investigation team was able to replicate the Artemis I entry trajectory environment — a key part of understanding the cause of the issue — inside the arc jet facilities at NASA’s Ames Research Center in California. They observed that during the period between dips into the atmosphere, heating rates decreased, and thermal energy accumulated inside the heat shield’s Avcoat material. This led to the accumulation of gases that are part of the expected ablation process. Because the Avcoat did not have “permeability,” internal pressure built up, and led to cracking and uneven shedding of the outer layer.

      After NASA’s Orion spacecraft was recovered at the conclusion of the Artemis I test flight and transported to NASA’s Kennedy Space Center in Florida, its heat shield was removed from the crew module inside the Operations and Checkout Building and rotated for inspection. Credit: NASA Teams performed extensive ground testing to replicate the skip phenomenon before Artemis I. However, they tested at much higher heating rates than the spacecraft experienced in flight. The high heating rates tested on the ground allowed the permeable char to form and ablate as expected, releasing the gas pressure. The less severe heating seen during the actual Artemis I reentry slowed down the process of char formation, while still creating gases in the char layer. Gas pressure built up to the point of cracking the Avcoat and releasing parts of the charred layer. Recent enhancements to the arc jet facility have enabled a more accurate reproduction of the Artemis I measured flight environments, so that this cracking behavior could be demonstrated in ground testing.

      While Artemis I was uncrewed, flight data showed that had crew been aboard, they would have been safe. The temperature data from the crew module systems inside the cabin were also well within limits and holding steady in the mid-70s Fahrenheit. Thermal performance of the heat shield exceeded expectations.

      Engineers understand both the material phenomenon and the environment the materials interact with during entry. By changing the material or the environment, they can predict how the spacecraft will respond. NASA teams unanimously agreed the agency can develop acceptable flight rationale that will keep crew safe using the current Artemis II heat shield with operational changes to entry.
      NASA’s Investigation Process
      Soon after NASA engineers discovered the condition on the Artemis I heat shield, the agency began an extensive investigation process, which included a multi-disciplinary team of experts in thermal protection systems, aerothermodynamics, thermal testing and analysis, stress analysis, material test and analysis, and many other related technical areas. NASA’s Engineering and Safety Center was also engaged to provide technical expertise including nondestructive evaluation, thermal and structural analysis, fault tree analysis, and other testing support.

      “We took our heat shield investigation process extremely seriously with crew safety as the driving force behind the investigation,” said Howard Hu, manager, Orion Program, NASA’s Johnson Space Center in Houston. “The process was extensive. We gave the team the time needed to investigate every possible cause, and they worked tirelessly to ensure we understood the phenomenon and the necessary steps to mitigate this issue for future missions.”

      The Artemis I heat shield was heavily instrumented for flight with pressure sensors, strain gauges, and thermocouples at varying ablative material depths. Data from these instruments augmented analysis of physical samples, allowing the team to validate computer models, create environmental reconstructions, provide internal temperature profiles, and give insight into the timing of the char loss.

      Approximately 200 Avcoat samples were removed from the Artemis I heat shield at NASA’s Marshall Space Flight Center in Alabama for analysis and inspection. The team performed non-destructive evaluation to “see” inside the heat shield.

      One of the most important findings from examining these samples was that local areas of permeable Avcoat, which had been identified prior to the flight, did not experience cracking or char loss. Since these areas were permeable at the start of the entry, the gases produced by ablation were able to adequately vent, eliminating the pressure build up, cracking, and char loss. 
      A test block of Avcoat undergoes heat pulse testing inside an arc jet test chamber at NASA’s Ames Research Center in California. The test article, configured with both permeable (upper) and non-permeable (lower) Avcoat sections for comparison, helped to confirm understanding of the root cause of the loss of charred Avcoat material that engineers saw on the Orion spacecraft after the Artemis I test flight beyond the Moon.Credit: NASA
      Engineers performed eight separate post-flight thermal test campaigns to support the root cause analysis, completing 121 individual tests. These tests took place in facilities with unique capabilities across the country, including the Aerodynamic Heating Facility at the Arc-Jet Complex at Ames to test convective heating profiles with various test gases; the Laser Hardened Materials Evaluation Laboratory at Wright‐Patterson Air Force Base in Ohio to test radiative heating profiles and provide real-time radiography; as well as the Interaction Heating Facility at Ames to test combined convective and radiative heating profiles in the air at full-block scale.
      Aerothermal experts also completed two hypersonic wind tunnel test campaigns at NASA’s Langley Research Center in Virginia and CUBRC aerodynamic test facilities in Buffalo, New York, to test a variety of char loss configurations and enhance and validate analytical models. Permeability testing was also performed at Kratos in Alabama, the University of Kentucky, and Ames to help further characterize the Avcoat’s elemental volume and porosity. The Advanced Light Source test facility, a U.S. Department of Energy scientific user facility at Lawrence Berkeley National Laboratory, was also used by engineers to examine the heating behavior of the Avcoat at a microstructure level.

      In the spring of 2024, NASA stood up an independent review team to conduct an extensive review of the agency’s investigation process, findings, and results. The independent review was led by Paul Hill, a former NASA leader who served as the lead space shuttle flight director for Return to Flight after the Columbia accident, led NASA’s Mission Operations Directorate, and is a current member of the agency’s Aerospace Safety Advisory Panel. The review occurred over a three-month period to assess the heat shield’s post-flight condition, entry environment data, ablator thermal response, and NASA’s investigation progress. The review team agreed with NASA’s findings on the technical cause of the physical behavior of the heat shield.

      Heat Shield Advancements
      Knowing that permeability of Avcoat is a key parameter to avoid or minimize char loss, NASA has the right information to assure crew safety and improve performance of future Artemis heat shields. Throughout its history, NASA has learned from each of its flights and incorporated improvements into hardware and operations. The data gathered throughout the Artemis I test flight has provided engineers with invaluable information to inform future designs and refinements. Lunar return flight performance data and a robust ground test qualification program improved after the Artemis I flight experience are supporting production enhancements for Orion’s heat shield. Future heat shields for Orion’s return from Artemis lunar landing missions are being produced to achieve uniformity and consistent permeability. The qualification program is currently being completed along with the production of more permeable Avcoat blocks at NASA’s Michoud Assembly Facility in New Orleans.

      For more information about NASA’s Artemis campaign, visit:
      https://www.nasa.gov/artemis
      View the full article
  • Check out these Videos

×
×
  • Create New...