Jump to content

Seeing and Believing: 15 Years of Exoplanet Images


NASA

Recommended Posts

  • Publishers
5 Min Read

Seeing and Believing: 15 Years of Exoplanet Images

At the upper left of a dark, star-filled sky is a bright, bluish light. It is the star Beta Pictoris with a glow around it showing the surrounding disk of debris.
Beta Pictoris is located about 60 light-years away toward the constellation of Pictor (the Painter’s Easel) and is one of the best-known examples of a star surrounded by a dusty debris disk. Earlier observations showed a warp of the disc, a secondary inclined disc and comets falling onto the star, all indirect, but tell-tale signs that strongly suggested the presence of a massive planet. Observations by ESO proved the presence of a planet around Beta Pictoris, and another planet was later discovered. To see the planets, we must block the light of the star.
Credits: ESO/Digitized Sky Survey 2

First there was a gloriously dusty disk. Then the traceable tracks of “exocomets.” But 15 years ago this fall, the star system Beta Pictoris yielded one of the most iconic pictures in astrophysics: a direct image of a planet orbiting another star.

The young, bright star, some 63 light-years distant and visible to the naked eye, all but overwhelmed the faint light of the planet. When astronomers, using a European Southern Observatory telescope, subtracted the starlight, all that remained of the planet was a tiny dot, a few pixels. But it was enough to throw open a new window on direct imaging.

An exoplanet is seen as a tiny dotof light blue light next to a str that has been masked with a screen. Protruding from both sides are bright, yellow-orange jets. Those indicate the disk of debris.
This composite image represents the close environment of Beta Pictoris as seen in near infrared light. The exoplanet Beta Pictoris b is the small dot next to the masked star at the center. This very faint environment is revealed after a very careful subtraction of the much brighter stellar halo. The outer part of the image shows the reflected light on the dust disk, as observed in 1996 by a European Southern Observatory ground telescope. The newly detected source is more than 1000 times fainter than Beta Pictoris, aligned with the disc, at a projected distance of 8 times the Earth-Sun distance.
ESO/A.-M. Lagrange et al.

“After that, I knew what I wanted to do in astronomy,” said Marie Ygouf, a researcher who specializes in direct imaging of exoplanets – planets around other stars – at NASA’s Jet Propulsion Laboratory in Southern California.

An undergraduate when she first saw the image of the planet, called Beta Pictoris b, Ygouf said she was awestruck.

“It was so exciting to try to take pictures of exoplanets, to try to detect life on another planet,” she said. “I was sold.”

Today the Beta Pictoris system, called Beta Pic for short, is famous for the early, breathtaking images of its surrounding disk of dusty debris, and for abundant evidence of exocomets, or comets detected in star systems other than our own. The discovery of a second planet in the system, Beta Pictoris c, was revealed to much scientific excitement in 2018.

It is, as one astronomer said, the gift that keeps on giving.

But the scientists deeply involved in early observations of the system had a bit of an uphill struggle convincing some colleagues that their groundbreaking discoveries were real, said Anne-Marie Lagrange, an astronomer at LESIA, Observatoire de Paris, who has been working to understand the system for more than 30 years.

As an intern, Lagrange began her work on Beta Pic in the mid-1980s, just after the disk image made its big splash. Among her research milestones was the discovery, in the late 1980s, of massive clumps of gas falling onto the surface of the system’s central star – and at high rates of speed, up to 200 miles (350 kilometers) per second.

Lagrange and her fellow researchers relied on observations from the IUE (International Ultraviolet Explorer) satellite – “an ancestor” of NASA’s Hubble Space Telescope, she said – to propose that the infalling gas was caused by evaporating comets.

“They were the first exocomets [observed] around another star,” she said. “At the beginning, many people were laughing at it.” The findings held up, and the presence of exocomets in the system was confirmed by further observations announced in 2022.

With this technique, we may be able to answer that very fundamental question: Is there any life in the universe outside of Earth?”

Marie Ygouf

Marie Ygouf

Researcher on the Nancy Grace Roman Space Telescope science team

In the mid 1990s, relying on the recently launched Hubble as well as increasingly sophisticated ground-based instruments, scientists realized that the debris disk around Beta Pictoris was warped, like a vinyl record left too long in the Sun.

Computer modeling results suggested the warp was a gravitational skew caused by an orbiting planet. And in 2008, after long effort, Lagrange and her team hit paydirt: a direct image of the giant, gaseous planet, so young it was still glowing from its recent formation.

“The nice thing is, we predicted it 10 years before,” she said.

The future of exoplanet imaging

Still a relatively minor player in the detection of exoplanets, direct imaging’s role will expand in the years and decades to come, promising deep insights into the nature of distant planets as technology improves. But even then, each “image” of a planet will still be just a handful of pixels.

That might sound disappointing, especially in the era of spectacular sci-fi movie effects. If we find an “Earth-like” planet, we won’t see continents and oceans – at least not yet. But that tiny dot of light will contain a flood of information: details of the planet’s atmosphere, clouds, temperature, and perhaps even signs of some form of life.

By splitting the light from that tiny dot into a spectrum of colors, scientists can spot missing lines from that spectrum – slices of light absorbed by molecules in the planet’s atmosphere as starlight is reflected from the atmosphere or surface. The missing slices correspond to specific gases and molecules in the planet’s atmosphere, a detection method known as spectroscopy.

NASA’s James Webb Space Telescope is already using onboard spectrographs to tease out the components of exoplanet atmospheres. In the years ahead, the agency’s Nancy Grace Roman Space Telescope, to be launched by May 2027, is designed to study the cloudy atmospheres of mature, Jupiter-sized exoplanets. The Habitable Worlds Observatory, a mission concept now in the early planning stages, is expected to refine this technology, to measure the atmospheric composition of small, rocky planets like our own, all from those little dots of directly imaged exoplanets.

Ygouf is part of the project science team for the Roman telescope’s coronagraph instrument, which will block the glare from a parent star so the light from its planets can be detected. Meant to be a technology demonstration, the instrument includes two flexible mirrors to correct distortions in the light caused by the instrument and by the telescope itself.

She says the direct imaging techniques that caught fire with Beta Pictoris could someday solve one of the ultimate mysteries.

“With this technique, we may be able to answer that very fundamental question: Is there any life in the universe outside of Earth?” she said. “It’s astonishing, incredible, that from a few pixels we’ll be able to learn so many things about a planet: whether those planets are terrestrial or gaseous, whether they have an atmosphere or not. If it’s done right, in the future we may be able to create pretty maps of those planets, seeing potential clouds. It may be a few pixels, but [there’s] so much information you can get from that.”

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Environmentalist and former Vice President Al Gore visited NASA’s Goddard Space Flight Center in Greenbelt, Maryland, on Oct. 16, 2024, to commemorate the upcoming 10th anniversary of the DSCOVR (Deep Space Climate Observatory) mission.
      “The image of our Earth from space is the single most compelling iconic image that any of us have ever seen,” Gore said at a panel discussion for employees. “Now we have, thanks to DSCOVR, 50,000 ‘Blue Marble’ photographs … To date there are more than 100 peer-reviewed scientific publications that are based on the unique science gathered at the L1 point by DSCOVR. For all of the scientists who are here and those on the teams that are represented here, I want to say congratulations and thank you.”
      To commemorate the upcoming 10th anniversary of the DSCOVR (Deep Space Climate Observatory) mission, NASA’s Goddard Space Flight Center in Greenbelt, Md., hosted environmentalist and former Vice President Al Gore, shown here addressing a crowd in the Building 3 Harry J. Goett Auditorium, on Oct. 16, 2024.NASA/Travis Wohlrab Following opening remarks from Gore, Goddard scientists participated in a panel discussion entitled “Remote Sensing and the Future of Earth Observations. From left to right: Dalia Kirschbaum, director, NASA Goddard Earth Sciences Division; Miguel Román, deputy director, atmospheres, NASA Goddard Earth Sciences Division; Lesley Ott, project scientist, U.S. Greenhouse Gas Center; John Bolten, chief, NASA Goddard Hydrological Sciences Laboratory.NASA/Travis Wohlrab Gore shakes hands with Kirschbaum following the panel discussion. Goddard Center Director Makenzie Lystrup stands between the two.NASA/Katy Comber Gore visits the overlook for the NASA Goddard clean room where the Roman Space Telescope is being assembled. Julie McEnery, Roman senior project scientist, stands at right.NASA/Katy Comber Christa Peters-Lidard, NASA Goddard’s Sciences and Exploration Directorate director (left), speaks with Gore in the lobby of Building 32, where the former vice president viewed the control room of NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission.NASA/Katy Comber Following Gore’s talk on climate monitoring, Goddard scientists participated in a panel discussion, “Remote Sensing and the Future of Earth Observations,” which explored the latest advancements in technology that allow for the monitoring of the atmosphere from space and showcased how Goddard’s research drives the future of Earth science.
      Gore’s visit also entailed a meeting with the DSCOVR science team, a view into the clean room where Goddard is assembling the Roman Space Telescope, and a stop at the control center for PACE: NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem mission.
      Launched Feb. 11, 2015, DSCOVR is a space weather station that monitors changes in the solar wind, providing space weather alerts and forecasts for geomagnetic storms that could disrupt power grids, satellites, telecommunications, aviation and GPS.
      DSCOVR is a joint mission among NASA, the National Oceanic and Atmospheric Administration (NOAA), and the U.S. Air Force. The project originally was called Triana, a mission conceived of by Gore in 1998 during his vice presidency.
      Share
      Details
      Last Updated Oct 17, 2024 EditorRob GarnerContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      Goddard Space Flight Center Deep Space Climate Observatory (DSCOVR) View the full article
    • By European Space Agency
      ESA’s Hera mission for planetary defence has taken its first images using three of the instruments that will be used to explore and study the asteroids Dimorphos and Didymos.
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 4 min read
      Sols 4331-4333: Today’s Rover ABC – Aurora, Backwards Driving, and Chemistry, with a Side of Images
      This image shows just how variable and interesting the terrain is in the area that NASA’s Mars rover Curiosity is currently investigating. Curiosity captured this long-distance Remote Micro Imager (RMI) image using the Chemistry & Camera (ChemCam) aboard the rover on sol 4329 — Martian day 4,329 of the Mars Science Laboratory mission — on Oct. 10, 2024 at 02:30:12 UTC. NASA/JPL-Caltech/LANL Earth planning date: Friday, Oct. 11, 2024
      This blogger is in the United Kingdom, just north of London, where we yesterday had beautiful night skies with a red aurora that was even visible with the unaided eye, and looked stunning on photographs. That reminded me of the solar storm that made it all the way to Mars earlier this year. Here is my colleague Deborah’s blog about it: “Aurora Watch on Mars.” And, of course, that was a great opportunity to do atmospheric science and prepare for future crewed missions, to assess radiation that future astronauts might encounter. You can read about it in the article, “NASA Watches Mars Light Up During Epic Solar Storm.” But now, back from shiny red night skies north of London, and auroras on Mars six months ago, to today’s planning!
      Power — always a negotiation! Today, I was the Science Operations Working Group chair, the one who has to watch for the more technical side of things, such as the question if all the activities will fit into the plan. Today there were many imaging ideas to capture the stunning landscape in detail with Mastcam and very close close-ups with the long-distance imaging capability of ChemCam (RMI). Overall, we have two long-distance RMIs in the plan to capture the details of the ridge we are investigating. You can see in the accompanying image an example from last sol of just how many stunning details we can see. I so want to go and pick up that smooth white-ish looking rock to find out if it is just the light that makes it so bright, or if the surface is different from the underside… but that’s just me, a mineralogist by training, used to wandering around a field site! Do you notice the different patterns — textures as we call them in geology — on the rocks to the left of that white-ish rock and the right of it? So much stunning detail, and we are getting two more RMI observations of 10 frames each in today’s plan! In addition there are more than 80 Mastcam frames planned. Lots of images to learn from!
      Chemistry is also featuring in the plan. The rover is stable on its wheels, which means we can get the arm out and do an APXS measurement on the target “Midnight Lake,” which MAHLI also images. The LIBS investigations are seconding the APXS investigation on Midnight Lake, and add another target to the plan, “Pyramidal Pinnacle.” On the third sol there is an AEGIS, the LIBS measurement where the rover picks its own target before we here on Earth even see where it is! Power was especially tight today, because the CheMin team does some housekeeping, in particular looking at empty cells in preparation for the next drill. The atmosphere team adds many investigations to look out for dust devils and the dustiness of the atmosphere, and APXS measures the argon content of the atmosphere. This is a measure for the seasonal changes of the atmosphere, as argon is an inert gas that does not react with other components of the atmosphere. It is only controlled by the temperature in various places of the planet — mainly the poles. DAN continues to monitor water in the subsurface, and RAD — prominently featured during the solar storm I was talking about earlier — continues to collect data on the radiation environment.
      Let’s close with a fun fact from planning today: During one of the meetings, the rover drivers were asked, “Are you driving backwards again?” … and the answer was yes! The reason: We need to make sure that in this rugged terrain, with its many interesting walls (interesting for the geologists!), the antenna can still see Earth when we want to send the plan. So the drive on sol 4332 is all backwards. I am glad we have hazard cameras on the front and the back of the vehicle!
      Written by Susanne Schwenzer, Planetary Geologist at The Open University
      Share








      Details
      Last Updated Oct 13, 2024 Related Terms
      Blogs Explore More
      3 min read Sols 4329-4330: Continuing Downhill


      Article


      2 days ago
      3 min read Sols 4327-4328: On the Road Again


      Article


      4 days ago
      3 min read Sols 4325-4326: (Not Quite) Dipping Our Toes in the Sand


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By European Space Agency
      Week in images: 07-11 October 2024
      Discover our week through the lens
      View the full article
    • By European Space Agency
      Video: 00:01:20 Approximately 41 000 years ago, Earth’s magnetic field briefly reversed during what is known as the Laschamp event. During this time, Earth’s magnetic field weakened significantly—dropping to a minimum of 5% of its current strength—which allowed more cosmic rays to reach Earth’s atmosphere.
      Scientists at the Technical University of Denmark and the German Research Centre for Geosciences used data from ESA’s Swarm mission, along with other sources, to create a sounded visualisation of the Laschamp event. They mapped the movement of Earth’s magnetic field lines during the event and created a stereo sound version which is what you can hear in the video.
      The soundscape was made using recordings of natural noises like wood creaking and rocks falling, blending them into familiar and strange, almost alien-like, sounds. The process of transforming the sounds with data is similar to composing music from a score.
      Data from ESA’s Swarm constellation are being used to better understand how Earth’s magnetic field is generated. The satellites measure magnetic signals not only from the core, but also from the mantle, crust, oceans and up to the ionosphere and magnetosphere. These data are crucial for studying phenomena such as geomagnetic reversals and Earth’s internal dynamics.
      The sound of Earth’s magnetic field, the first version of the magnetic field sonification produced with Swarm data, was originally played through a 32-speaker system set up in a public square in Copenhagen, with each speaker representing changes in the magnetic field at different places around the world over the past 100 000 years.
      View the full article
  • Check out these Videos

×
×
  • Create New...