Jump to content

Seeing and Believing: 15 Years of Exoplanet Images


Recommended Posts

  • Publishers
Posted
5 Min Read

Seeing and Believing: 15 Years of Exoplanet Images

At the upper left of a dark, star-filled sky is a bright, bluish light. It is the star Beta Pictoris with a glow around it showing the surrounding disk of debris.
Beta Pictoris is located about 60 light-years away toward the constellation of Pictor (the Painter’s Easel) and is one of the best-known examples of a star surrounded by a dusty debris disk. Earlier observations showed a warp of the disc, a secondary inclined disc and comets falling onto the star, all indirect, but tell-tale signs that strongly suggested the presence of a massive planet. Observations by ESO proved the presence of a planet around Beta Pictoris, and another planet was later discovered. To see the planets, we must block the light of the star.
Credits: ESO/Digitized Sky Survey 2

First there was a gloriously dusty disk. Then the traceable tracks of “exocomets.” But 15 years ago this fall, the star system Beta Pictoris yielded one of the most iconic pictures in astrophysics: a direct image of a planet orbiting another star.

The young, bright star, some 63 light-years distant and visible to the naked eye, all but overwhelmed the faint light of the planet. When astronomers, using a European Southern Observatory telescope, subtracted the starlight, all that remained of the planet was a tiny dot, a few pixels. But it was enough to throw open a new window on direct imaging.

An exoplanet is seen as a tiny dotof light blue light next to a str that has been masked with a screen. Protruding from both sides are bright, yellow-orange jets. Those indicate the disk of debris.
This composite image represents the close environment of Beta Pictoris as seen in near infrared light. The exoplanet Beta Pictoris b is the small dot next to the masked star at the center. This very faint environment is revealed after a very careful subtraction of the much brighter stellar halo. The outer part of the image shows the reflected light on the dust disk, as observed in 1996 by a European Southern Observatory ground telescope. The newly detected source is more than 1000 times fainter than Beta Pictoris, aligned with the disc, at a projected distance of 8 times the Earth-Sun distance.
ESO/A.-M. Lagrange et al.

“After that, I knew what I wanted to do in astronomy,” said Marie Ygouf, a researcher who specializes in direct imaging of exoplanets – planets around other stars – at NASA’s Jet Propulsion Laboratory in Southern California.

An undergraduate when she first saw the image of the planet, called Beta Pictoris b, Ygouf said she was awestruck.

“It was so exciting to try to take pictures of exoplanets, to try to detect life on another planet,” she said. “I was sold.”

Today the Beta Pictoris system, called Beta Pic for short, is famous for the early, breathtaking images of its surrounding disk of dusty debris, and for abundant evidence of exocomets, or comets detected in star systems other than our own. The discovery of a second planet in the system, Beta Pictoris c, was revealed to much scientific excitement in 2018.

It is, as one astronomer said, the gift that keeps on giving.

But the scientists deeply involved in early observations of the system had a bit of an uphill struggle convincing some colleagues that their groundbreaking discoveries were real, said Anne-Marie Lagrange, an astronomer at LESIA, Observatoire de Paris, who has been working to understand the system for more than 30 years.

As an intern, Lagrange began her work on Beta Pic in the mid-1980s, just after the disk image made its big splash. Among her research milestones was the discovery, in the late 1980s, of massive clumps of gas falling onto the surface of the system’s central star – and at high rates of speed, up to 200 miles (350 kilometers) per second.

Lagrange and her fellow researchers relied on observations from the IUE (International Ultraviolet Explorer) satellite – “an ancestor” of NASA’s Hubble Space Telescope, she said – to propose that the infalling gas was caused by evaporating comets.

“They were the first exocomets [observed] around another star,” she said. “At the beginning, many people were laughing at it.” The findings held up, and the presence of exocomets in the system was confirmed by further observations announced in 2022.

With this technique, we may be able to answer that very fundamental question: Is there any life in the universe outside of Earth?”

Marie Ygouf

Marie Ygouf

Researcher on the Nancy Grace Roman Space Telescope science team

In the mid 1990s, relying on the recently launched Hubble as well as increasingly sophisticated ground-based instruments, scientists realized that the debris disk around Beta Pictoris was warped, like a vinyl record left too long in the Sun.

Computer modeling results suggested the warp was a gravitational skew caused by an orbiting planet. And in 2008, after long effort, Lagrange and her team hit paydirt: a direct image of the giant, gaseous planet, so young it was still glowing from its recent formation.

“The nice thing is, we predicted it 10 years before,” she said.

The future of exoplanet imaging

Still a relatively minor player in the detection of exoplanets, direct imaging’s role will expand in the years and decades to come, promising deep insights into the nature of distant planets as technology improves. But even then, each “image” of a planet will still be just a handful of pixels.

That might sound disappointing, especially in the era of spectacular sci-fi movie effects. If we find an “Earth-like” planet, we won’t see continents and oceans – at least not yet. But that tiny dot of light will contain a flood of information: details of the planet’s atmosphere, clouds, temperature, and perhaps even signs of some form of life.

By splitting the light from that tiny dot into a spectrum of colors, scientists can spot missing lines from that spectrum – slices of light absorbed by molecules in the planet’s atmosphere as starlight is reflected from the atmosphere or surface. The missing slices correspond to specific gases and molecules in the planet’s atmosphere, a detection method known as spectroscopy.

NASA’s James Webb Space Telescope is already using onboard spectrographs to tease out the components of exoplanet atmospheres. In the years ahead, the agency’s Nancy Grace Roman Space Telescope, to be launched by May 2027, is designed to study the cloudy atmospheres of mature, Jupiter-sized exoplanets. The Habitable Worlds Observatory, a mission concept now in the early planning stages, is expected to refine this technology, to measure the atmospheric composition of small, rocky planets like our own, all from those little dots of directly imaged exoplanets.

Ygouf is part of the project science team for the Roman telescope’s coronagraph instrument, which will block the glare from a parent star so the light from its planets can be detected. Meant to be a technology demonstration, the instrument includes two flexible mirrors to correct distortions in the light caused by the instrument and by the telescope itself.

She says the direct imaging techniques that caught fire with Beta Pictoris could someday solve one of the ultimate mysteries.

“With this technique, we may be able to answer that very fundamental question: Is there any life in the universe outside of Earth?” she said. “It’s astonishing, incredible, that from a few pixels we’ll be able to learn so many things about a planet: whether those planets are terrestrial or gaseous, whether they have an atmosphere or not. If it’s done right, in the future we may be able to create pretty maps of those planets, seeing potential clouds. It may be a few pixels, but [there’s] so much information you can get from that.”

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 Min Read NASA’s Ames Research Center Celebrates 85 Years of Innovation
      The NACA Ames laboratory in 1944 Credits: NASA Ames Research Center in California’s Silicon Valley pre-dates a lot of things. The center existed before NASA – the very space and aeronautics agency it’s a critical part of today. And of all the marvelous advancements in science and technology that have fundamentally changed our lives over the last 85 years since its founding, one aspect has remained steadfast; an enduring commitment to what’s known by some on-center simply as, “an atmosphere of freedom.” 
      Years before breaking ground at the site that would one day become home to the world’s preeminent wind tunnels, supercomputers, simulators, and brightest minds solving some of the world’s toughest challenges, Joseph Sweetman Ames, the center’s namesake, described a sentiment that would guide decades of innovation and research: 
      My hope is that you have learned or are learning a love of freedom of thought and are convinced that life is worthwhile only in such an atmosphere
      Joseph sweetman ames
      Founding member of the N.A.C.A.
      “My hope is that you have learned or are learning a love of freedom of thought and are convinced that life is worthwhile only in such an atmosphere,” he said in an address to the graduates of Johns Hopkins University in June 1935.
      That spirit and the people it attracted and retained are a crucial part of how Ames, along with other N.A.C.A. research centers, ultimately made technological breakthroughs that enabled humanity’s first steps on the Moon, the safe return of spacecraft through Earth’s atmosphere, and many other discoveries that benefit our day-to-day lives.
      Russell Robinson momentarily looks to the camera while supervising the first excavation at what would become Ames Research Center.NACA “In the context of my work, an atmosphere of freedom means the freedom to pursue high-risk, high-reward, innovative ideas that may take time to fully develop and — most importantly — the opportunity to put them into practice for the benefit of all,” said Edward Balaban, a researcher at Ames specializing in artificial intelligence, robotics, and advanced mission concepts.
      Balaban’s career at Ames has involved a variety of projects at different stages of development – from early concept to flight-ready – including experimenting with different ways to create super-sized space telescopes in space and using artificial intelligence to help guide the path a rover might take to maximize off-world science results. Like many Ames researchers over the years, Balaban shared that his experience has involved deep collaborations across science and engineering disciplines with colleagues all over the center, as well as commercial and academic partners in Silicon Valley where Ames is nestled and beyond. This is a tradition that runs deep at Ames and has helped lead to entirely new fields of study and seeded many companies and spinoffs.
      Before NASA, Before Silicon Valley: The 1939 Founding of Ames Aeronautical Laboratory “In the fields of aeronautics and space exploration the cost of entry can be quite high. For commercial enterprises and universities pursuing longer term ideas and putting them into practice often means partnering up with an organization such as NASA that has the scale and multi-disciplinary expertise to mature these ideas for real-world applications,” added Balaban.
      “Certainly, the topics of inquiry, the academic freedom, and the benefit to the public good are what has kept me at Ames,” reflected Ross Beyer, a planetary scientist with the SETI Institute at Ames. “There’s not a lot of commercial incentive to study other planets, for example, but maybe there will be soon. In the meantime, only with government funding and agencies like NASA can we develop missions to explore the unknown in order to make important fundamental science discoveries and broadly share them.”
      For Beyer, his boundary-breaking moment came when he searched – and found – software engineers at Ames capable and passionate about open-source software to generate accurate, high-resolution, texture-mapped, 3D terrain models from stereo image pairs. He and other teams of NASA scientists have since applied that software to study and better understand everything from changes in snow and ice characteristics on Earth, as well as features like craters, mountains, and caves on Mars or the Moon. This capability is part of the Artemis campaign, through which NASA will establish a long-term presence at the Moon for scientific exploration with commercial and international partners. The mission is to learn how to live and work away from home, promote the peaceful use of space, and prepare for future human exploration of Mars. 
      “As NASA and private companies send missions to the Moon, they need to plan landing sites and understand the local environment, and our software is freely available for anyone to use,” Beyer said. “Years ago, our management could easily have said ‘No, let’s keep this software to ourselves; it gives us a competitive advantage.’ They didn’t, and I believe that NASA writ large allows you to work on things and share those things and not hold them back.” 
      When looking forward to what the next 85 years might bring, researchers shared a belief that advancements in technology and opportunities to innovate are as expansive as space itself, but like all living things, they need a healthy atmosphere to thrive. Balaban offered, “This freedom to innovate is precious and cannot be taken for granted. It can easily fall victim if left unprotected. It is absolutely critical to retain it going forward, to ensure our nation’s continuing vitality and the strength of the other freedoms we enjoy.”
      Ames Aeronautical Laboratory.NACAView the full article
    • By NASA
      “Trying to do stellar observations from Earth is like trying to do birdwatching from the bottom of a lake.” James B. Odom, Hubble Program Manager 1983-1990.

      The third servicing mission to the Hubble Space Telescope, placed in orbit in 1990, occurred during the STS-103 mission in December 1999. During the mission, originally planned for June 2000 but accelerated by six months following unexpected failures of the telescope’s attitude control gyroscopes, the astronauts restored the facility to full functionality. During their eight-day mission that featured the first space shuttle crew to spend Christmas in space, the seven-member U.S. and European crew rendezvoused with and captured Hubble, and four astronauts in rotating teams of two conducted three lengthy and complex spacewalks to service and upgrade the telescope. They redeployed the telescope with greater capabilities than ever before to continue its mission to help scientists unlock the secrets of the universe.
      Schematic showing the Hubble Space Telescope’s major components. Workers inspect the Hubble Space Telescope’s 94-inch diameter primary mirror prior to assembly. Astronauts release the Hubble Space Telescope in April 1990 during the STS-31 mission. The discovery after the Hubble Space Telescope’s launch in 1990 that its primary mirror suffered from a flaw called spherical aberration disappointed scientists who could not obtain the sharp images they had expected. But thanks to the Hubble’s built-in feature of on-orbit servicing, NASA devised a plan to correct the telescope’s optics during the first planned repair mission in 1993. A second servicing mission in 1997 upgraded the telescope’s capabilities until the next mission planned for three years later. But after three of the telescope’s six gyroscopes failed in 1997, 1998, and 1999, mission rules dictated a call up mission in case additional gyroscope failures sent Hubble into a safe mode. NASA elected to move up some of the servicing tasks from the third mission, splitting it into missions 3A and 3B, planning to fly 3A in October 1999 on Discovery’s STS-103 mission primarily to replace the failed gyroscopes. Delays to the shuttle fleet resulting from anomalies during the launch of STS-93 in July 1993 slipped STS-103 first into November and ultimately into December. Technical issues with Discovery itself pushed the launch date to mid-December, and raised concerns about having a shuttle in orbit during the Y2K transition. Once the launch had slipped to Dec. 19, mission planners cut the mission from 10 to eight days, deleting one of the four spacewalks, to ensure a return before the end of the calendar year. The servicing mission couldn’t come soon enough, as a fourth gyroscope failed aboard Hubble in mid-November, with Discovery already poised on the launch pad to prepare for STS-103. Controllers placed Hubble in a safe mode until the astronauts arrived.
      The STS-103 crew of C. Michael Foale, left, Claude Nicollier, Scott J. Kelly, Curtis L. Brown, Jean-François A. Clervoy, John M. Grunsfeld, and Steven L. Smith. The STS-103 crew patch. The mission patch for the Hubble Servicing Mission-3A. To execute the third Hubble Servicing Mission, in July 1998 NASA selected an experienced four-person team to carry out a record-breaking six spacewalks on the flight then planned for June 2000. The spacewalkers included Mission Specialists Steven L. Smith serving as payload commander, John M. Grunsfeld, C. Michael Foale, and European Space Agency (ESA) astronaut Claude Nicollier from Switzerland. The addition in March 1999 of Commander Curtis L. Brown, Pilot Scott J. Kelly, and Mission Specialist ESA astronaut Jean-François A. Clervoy of France rounded out the highly experienced crew with 18 previous spaceflights among them. Brown earned the distinction as only the fifth person to fly in space six times. For Kelly, STS-103 marked his first spaceflight. Smith, Clervoy, and Grunsfeld each had flown two previous missions, Foale four including a long-duration mission aboard Mir, and Nicollier three. Smith participated in three spacewalks during the second Hubble Servicing Mission and Nicollier served as the Remote Manipulator System (RMS) or robotic arm operator during the first.
      The STS-103 crew at the traditional prelaunch breakfast at NASA’s Kennedy Space Center in Florida. Suited up, the STS-103 astronauts leave crew quarters for the trip to Launch Pad 39B. Space shuttle Discovery on Launch Pad 39B, awaiting launch. Discovery arrived back to KSC at the end of the STS-96 mission on June 6, 1999, and workers towed it to the Orbiter Processing Facility the same day to begin readying it for STS-103. The vehicle rolled over to the Vehicle Assembly Building on Nov. 4, where workers mated it with its external tank and twin solid rocket boosters, before rolling the stack out to Launch Pad 39B on Nov. 13.
      Liftoff of space shuttle Discovery on the STS-103 Hubble Space Telescope servicing mission 3A. The Hubble Space Telescope as Discovery approaches. The STS-103 crew berthing the Hubble into the payload bay. Beginning its 27th trip into space, Discovery lifted off from Launch Pad 39B at 7:50 p.m. EST on Dec. 19 to fix the ailing space telescope. Two days later, Brown and Kelly maneuvered Discovery to within range of Hubble so Clervoy operating the 50-foot-long RMS could grapple the telescope and berth it into the payload bay.
      During the first spacewalk, astronauts John M. Grunsfeld, left, and Steven L. Smith replacing one of the Rate Sensor Units containing two gyroscopes. Smith gives a thumbs up with his image reflected in the Hubble Space Telescope. Smith and Grunsfeld conducted the mission’s first spacewalk on Dec. 22, the flight’s fourth day in space. The duo, aided by Clervoy operating the RMS from inside Discovery, completed two of mission’s highest priority objectives. They replaced the failed gyroscopes, installing three new Rate Sensor Units, each containing two gyroscopes, to return control to the ailing telescope. They also installed six Voltage/Temperature Improvement Kits to prevent the telescope’s batteries from overheating as they aged. The excursion lasted eight hours 15 minutes, at the time the second longest spacewalk.
      During the second spacewalk, astronauts C. Michael Foale, left, and Claude Nicollier during the changeout of the fine guidance sensor. Foale at the end of the Remote Manipulator System services the Hubble Space Telescope. The next day, Nicollier and Foale conducted the mission’s second spacewalk. The main task for this excursion involved installing a new computer aboard Hubble, replacing the original 1970s vintage unit. The new radiation-hardened system ran 20 times faster and carried six times more memory while using one-third the electrical power. They also installed a fine guidance sensor before concluding the eight-hour 10-minute spacewalk.
      Astronauts Steven L. Smith, left, and John M. Grunsfeld begin their servicing activities during the third spacewalk. At the end of the third and final spacewalk, Grunsfeld, left, and Smith provide closing comments about the work the mission accomplished to service the Hubble Space Telescope. Smith and Grunsfeld ventured outside for a second time to complete the flight’s third and final spacewalk on Dec. 24, the first spacewalk conducted on Christmas Eve day. First, they replaced an old reel-to-reel tape recorder with a solid state unit providing a 10-fold increase in recording capability and replaced a failed data transmitter. They installed seven new covers on Hubble’s electronics bay doors for added protection of the telescope’s insulation. This third spacewalk lasted eight hours eight minutes.
      The first space shuttle crew to celebrate Christmas in space, the STS-103 astronauts pose wearing Santa hats. The Hubble Space Telescope shortly after the STS-103 crew released it. The next day, the STS-103 astronauts earned the distinction as the first space shuttle crew to spend Christmas Day in space. Clervoy grappled Hubble, lifted it out of the payload bay and released it to continue its mission. Hubble Space Telescope Program Manager John H. Campbell said after the release, “The spacecraft is being guided by its new gyros under the control of its brand new computer. [It] is now orbiting freely and is in fantastic shape.” After deploying Hubble, the astronauts enjoyed a well-deserved Christmas dinner, with Clervoy providing French delicacies. The crew spent Dec. 26 readying Discovery for its return to Earth, including testing its reaction control system thrusters and aerodynamic surfaces and stowing unneeded gear.
      Astronauts Steven L. Smith, left, Claude Nicollier, and John M. Grunsfeld complete their fluid loading protocol and put on their launch and entry suits prior to reentry. Space shuttle Discovery makes a perfect night landing at NASA’s Kennedy Space Center in Florida. The crew welcome home ceremony at Ellington Field in Houston. On Dec. 27, the astronauts donned their launch and entry suits and prepared for the return to Earth. They closed the payload bay doors and fired Discovery’s engines to bring them out of orbit. Just before landing, Kelly lowered the craft’s landing gear and Brown guided Discovery to a smooth night landing at KSC, concluding a flight of seven days, 23 hours, 11 minutes. They circled the Earth 119 times. The flight marked Discovery’s last solo flight as all its subsequent missions docked with the International Space Station. Workers at KSC began readying it for its next mission, STS-92 in October 2000.

      The Hubble Space Telescope continues to operate today, far exceeding the five-year life extension expected from the last of the servicing missions in 2009. Joined in space by the James Webb Space Telescope in 2021, the two instruments together continue to image the skies across a broad range of the electromagnetic spectrum to provide scientists with the tools to gain unprecedented insights into the universe and its formation.

      Watch the STS-103 crew narrate a video of their Hubble servicing mission.
      View the full article
    • By European Space Agency
      Video: 00:10:27 In 1975, 10 European countries came together with a vision to collaborate on key space activities: science and astronomy, launch capabilities and space applications: the European Space Agency, ESA, was born.
      In 2025, we mark half a century of joint European achievement – filled with firsts and breakthroughs in science, exploration and technology, and the space infrastructure and economy that power Europe today.
       
      During the past five decades ESA has grown, developing ever bolder and bigger projects and adding more Member States, with Slovenia joining as the latest full Member State in January.
       
      We’ll also celebrate the 50th anniversary of ESA’s Estrack network, 30 years of satellite navigation in Europe and 20 years since ESA launched the first demonstration satellite Giove-A which laid the foundation for the EU’s own satnav constellation Galileo. Other notable celebrations are the 20th anniversary of ESA’s Business Incubation Centres, or BICs, and the 30th year in space for SOHO, the joint ESA and NASA Solar and Heliospheric Observatory.
       
      Sadly though, 2025 will mean end of science operations for Integral and Gaia. Integral, ESA's gamma-ray observatory has exotic objects in space since 2002 and Gaia concludes a decade of mapping the stars. But as some space telescopes retire, another one provides its first full data release. Launched in 2023, we expect Euclid’s data release early in the new year.
       
      Launch-wise, we’re looking forward to Copernicus Sentinel-4 and -5 (Sentinel-4 will fly on an MTG-sounder satellite and Sentinel-5 on the MetOp-SG-A1 satellite), Copernicus Sentinel-1D, Sentinel-6B and Biomass. We’ll also launch the SMILE mission, or Solar wind Magnetosphere Ionosphere Link Explorer, a joint mission with the Chinese academy of science.
       
      The most powerful version of Europe’s new heavy-lift rocket, Ariane 6, is set to fly operationally for the first time in 2025. With several European commercial launcher companies planning to conduct their first orbital launches in 2025 too, ESA is kicking off the European Launcher Challenge to support the further development of European space transportation industry.
       
      In human spaceflight, Polish ESA project astronaut Sławosz Uznański will fly to the ISS on the commercial Axiom-4 mission. Artemis II will be launched with the second European Service Module, on the first crewed mission around the Moon since 1972.
      The year that ESA looks back on a half century of European achievement will also be one of key decisions on our future. At the Ministerial Council towards the end of 2025, our Member States will convene to ensure that Europe's crucial needs, ambitions and the dreams that unite us in space become reality.
      So, in 2025, we’ll celebrate the legacy of those who came before but also help establish a foundation for the next 50 years. Join us as we look forward to a year that honours ESA’s legacy and promises new milestones in space.
      View the full article
    • By European Space Agency
      Year in images 2024
      Our year through the lens: a selection of our favourite images for 2023
      View the full article
    • By NASA
      NASA’s Glenn Research Center leaders stand with Evening With the Stars presenters. Left to right: Tim Smith, Nikki Welch, Center Director Dr. Jimmy Kenyon, Acting Deputy Director Dr. Wanda Peters, and Carlos Garcia-Galan. Credit: NASA/Jef Janis  NASA Glenn Research Center’s “An Evening With the Stars” showcased research and technology innovations that addressed this year’s theme, NASA Glenn’s Spotlight on the Stars: 10 Years and Counting. The event featured presentations from Glenn subject matter experts and a networking reception. 
      Held at Windows on the River near Cleveland’s historic waterfront on Nov. 20, the event attracted sponsors and guests from more than 50 companies, universities, and organizations eager to learn more about the center’s recent accomplishments.  
      Special guests Dennis Andersh, CEO and president of Parallax Advanced Research/Ohio Aerospace Institute; Terrence Slaybaugh, vice president of Sites and Infrastructure for JobsOhio; and Dr. Wanda Peters, NASA Glenn’s acting deputy  director, provided remarks. 
      Center Director Dr. Jimmy Kenyon took the stage to welcome visitors and share some accomplishments from an exciting year at NASA Glenn. Kenyon then introduced the presenters – NASA’s stars of the evening – and their topics. 
      “I relish this evening each year because it spotlights what is most important to our success at NASA: our people,” Kenyon said.  

      Nikki Welch is the digital manager in the Office of Communications. In this role, she helps to tell the NASA Glenn story in engaging ways for Glenn’s hundreds of thousands of followers on social media. Welch shared details about her efforts and the importance of “Connecting People to the Mission.”  
      NASA Glenn Research Center’s Nikki Welch talks about connecting people to the NASA mission through storytelling. Credit: NASA/Jef Janis  Tim Smith leads high-temperature alloy development at NASA Glenn and has led research that resulted in over a dozen research licenses and four commercial licenses. As one of the inventors of the metal alloy GRX-810, Smith shared information about Glenn’s “Super Alloy Achievements.” 
      NASA Glenn Research Center’s Tim Smith talks about NASA’s superalloy achievements. Credit: NASA/Jef Janis  Carlos Garcia-Galan is the manager of the Orion program’s European Service Module Integration Office. This module, being provided by ESA (European Space Agency), is Orion’s powerhouse. Garcia-Galan shared information on the topic “Dreaming of Going to the Moon.”  

      NASA Glenn Research Center’s Carlos Garcia-Galan talks about the spacecraft that will bring humanity back to the Moon. Credit: NASA/Jef Janis  Return to Newsletter Explore More
      1 min read Program Manager at NASA Glenn Earns AIAA Sustained Service Award 
      Article 9 mins ago 1 min read NASA Glenn’s Office of Communications Earns Top Honors 
      Article 9 mins ago 10 min read 55 Years Ago: Apollo 13, Preparations for the Third Moon Landing
      Article 2 hours ago View the full article
  • Check out these Videos

×
×
  • Create New...