Jump to content

Breaking Records, Returning Asteroid Samples Among NASA’s Big 2023


NASA

Recommended Posts

  • Publishers

In 2023, as NASA pushed the limits of exploration for the benefit of humanity, the agency celebrated astronaut Frank Rubio becoming the first American astronaut to spend more than one year in space; delivered samples from an asteroid to Earth; sent a spacecraft to study a metal-rich asteroid for the first time; launched multiple initiatives to share climate data; advanced developments in sustainable aircraft; all while continuing preparations to send the first Artemis astronauts to the Moon.

“This year, NASA continued to make the impossible, possible while sharing our story of discovery with the world,” said NASA Administrator Bill Nelson. “We’ve launched missions that are helping tell the oldest stories of our solar system; continued to safely transport astronauts to the International Space Station to conduct groundbreaking science; our Earth satellites are providing critical climate data to all people; we’re making great strides to make aviation more dependable and sustainable; and we’re growing our commercial and international partnerships as we venture back to the Moon and on to Mars. NASA is home to the world’s finest workforce, and there is no limit to what we can achieve when we work together.”

In support of the Biden-Harris Administration’s efforts to address climate change, NASA is leading the development of U.S. government-wide initiatives focused on bringing Earth science information to the public. The Earth Information Center, a new interactive exhibit at NASA Headquarters in Washington, also includes an online experience that invites visitors to see Earth as NASA sees it from space while providing critical data needed by researchers and policymakers.

Among other notable mentions, the agency’s James Webb Space Telescope – the largest, most powerful telescope humanity has ever put in space – celebrated one year of science. NASA and the Defense Advanced Research Projects Agency (DARPA) announced the two organizations will partner on DRACO (Demonstration Rocket for Agile Cislunar Operations) to test a nuclear-powered rocket in space as soon as 2027.

This year NASA celebrated 25 years of International Space Station operations as the agency continued to foster the growth of the commercial space economy, supporting the development of commercial space station partnerships. It also marks the 65th anniversary of the agency. While celebrating these achievements, NASA also unveiled its NASA 2040 vision for the agency to ensure it remains a global leader in aerospace for decades to come.

Below are additional highlights of NASA’s endeavors in 2023 to explore the unknown in air and space, innovate for the benefit of humanity, and inspire the world through discovery.

Understanding Our Changing Planet

NASA has used its unique vantage point of space to better understand our changing planet since launching its first Earth science satellites in the 1960s. In 2023, NASA’s Office of the Chief Scientist established a cross-agency working group and released a climate strategy. Other agency efforts to share scientific data on Earth.gov and other areas include:

  • Working with its partners, NASA launched the U.S. Greenhouse Gas Center, opening access to trusted data on greenhouse gases.
    • Data from NASA’s Earth Surface Mineral Dust Source Investigation (EMIT) instrument aboard the International Space Station is part of the gas center. EMIT identifies point-source emissions of greenhouse gases with a proficiency greater than expected.
  • NASA’s tracking of greenhouse gases includes both global and focused estimates.
  • Building on the month-by-month worldwide temperature data collected and released by NASA and National Oceanic and Atmospheric Administration both agencies are expected to announce soon 2023 was the warmest year in recorded history.
  • A NASA airborne campaign helped show that methane ‘hot spots’ in the Yukon-Kuskokwim Delta are more likely to be found where recent wildfires burned into the tundra, altering carbon emissions from the land.
  • After successfully launching to space earlier this year, NASA’s TEMPO (Tropospheric Emissions: Monitoring of Pollution) mission to study air quality now is successfully transmitting information about major air pollutants over North America.
  • NASA’s SWOT (Surface Water and Ocean Topography) mission offered the its first detailed perspectives of Earth’s surface water.
  • Among natural hazards, NASA data was put to use in monitoring the heavy rains occurring in the drought-stricken areas, heat waves, wildfires, and subsequent health affects worldwide, as well as expansion of NASA landslide data.

Advancing Moon to Mars Exploration

This year, NASA shared results of its first Moon to Mars Architecture Concept Review as it builds a blueprint for human exploration throughout the solar system for the benefit of humanity. The agency also continues to take significant steps toward landing the first woman and first person of color on the Moon as part of Artemis. Notably in 2023, NASA announced crew for the Artemis II mission, the first Artemis mission with astronauts around the Moon and back to Earth. The crew completed fundamentals training, and is now focusing on training for mission operations. Additional highlights for human deep space exploration include:

  • All major elements for the SLS (Space Launch System) rocket for Artemis II are complete or nearing completion including booster segments delivered to NASA’s Kennedy Space Center in Florida and final core state assembly testing at NASA’s Michoud Assembly Facility in New Orleans.
  • Upgrades and refurbishments continue at Kennedy with the mobile launcher and launch pad, including a water flow test and launch operations simulation.
  • NASA made progress on Artemis III, which will send the first humans to explore the region near the lunar South Pole, building on the previous flight tests and adding a human landing system and advanced spacesuits for moonwalks.
  • The solid rocket booster segments and the four RS-25 engines are complete for the Artemis III SLS, as well as three of the five major core stage elements. Teams are integrating elements of Orion’s crew module, and the European Service Module.
  • NASA selected the geology team to develop a lunar surface science plan for Artemis III.  
  • Beyond Artemis III, teams completed welding the primary structure for Gateway’s HALO (Habitation and Logistics Outpost), where astronauts will live and work in lunar orbit. Fabrication is complete on the primary structure of the Power and Propulsion Element that will provide power, communications, and maintain Gateway’s orbit.
  • In addition to other hardware assembly and certification work for later missions, Artemis V will include a lunar terrain vehicle. NASA asked SpaceX to further develop Starship for Artemis IV, and also selected Blue Origin to develop a human lunar lander for Artemis V.
  • Experiments aboard the International Space Station focused on helping astronauts go farther and stay longer in space. This research included growing sustainable crops such as dwarf tomatoes, understanding how microbes adapt to space to protect crew health, and developing innovative materials that can weather the harsh environments of the Moon and Mars.

To support future NASA Moon missions with crew, the agency’s CLPS (Commercial Lunar Payload Services) initiative is in the final phases of preparations for the first two launches and landings to deliver NASA science and technology demonstrations to the lunar surface.

  • Five NASA payloads are aboard Astrobotic’s Peregrine Mission 1 lander, which is set to launch no earlier than Monday, Jan. 8. Soon after, another six NASA payloads will launch no earlier than Friday, Jan. 12, aboard Intuitive Machine’s Nova-C spacecraft.
  • Since launching CLPS, NASA has contracted with five companies for eight deliveries to the lunar surface. Most recently in 2023, NASA selected Firefly Aerospace for a delivery.
  • Among future CLPS payloads is NASA’s first robotic lunar rover, VIPER – short for the Volatiles Investigating Polar Exploration Rover. The rover will trek into permanently shadowed areas to unravel the mysteries of the Moon’s water and better understand the environment. In preparation for a landing in late 2024, scientists named VIPER’s mission area in honor of NASA mathematician Melba Roy Mouton. Development, assembly and testing also continues for the rover’s solar and battery systems.

While NASA is leading Artemis, international partnerships are a key part of advancing Moon to Mars exploration. In 2023, 10 additional countries signed the Artemis Accords, which lay out a common set of principles governing the civil exploration and use of outer space. So far, 33 countries have signed the Artemis Accords.

Maintaining Low Earth Orbit Operations

Closer to Earth, the International Space Station – humanity’s home in space – passed 25 years of operations. NASA and its partners officially extended operations plans for the microgravity science laboratory for the benefit of humanity. Other space station milestones in 2023 include:

  • NASA and SpaceX continued regular crew rotation flights to and from station, helping maximize science in space, including:
    • NASA astronauts Frank Rubio, Nicole Mann, Josh Cassada, Stephen Bowen, Woody Hoburg, Loral O’Hara, and Jasmin Moghbeli lived and worked aboard the station.
    • Rubio spent a U.S. record-breaking 371 days in space, contributing to a better understanding of long-duration spaceflight as we explore beyond our home planet.
    • Crew-5 returned to Earth with Mann and Cassada, as well as JAXA (Japan Aerospace Exploration Agency) astronaut Koichi Wakata, and Roscosmos cosmonaut Anna Kikina. Crew members tested hydroponic and aeroponic techniques to grow plants without using soil, released Uganda and Zimbabwe’s first satellites, studied how liquids move in a container in simulated lunar gravity to generate data to improve Moon rover designs, and reinstalled the station’s bioprinting facility.
    • Crew-6 included Bowen and Hoburg, as well as UAE (United Arab Emirates) astronaut Sultan Alneyadi and Roscosmos cosmonaut Andrey Fedyaev. The crew assisted a student robotic challenge, studying plant genetic adaptations to space, and monitoring human health in microgravity. The crew also released Saskatchewan’s first satellite, which tests a new radiation detection and protection system.
    • Crew-7 carried Moghbeli, ESA (European Space Agency) astronaut Andreas Mogensen, JAXA astronaut Satoshi Furukawa, and Roscosmos cosmonaut Konstantin Borisov. This crew is conducting a variety of scientific research in areas such the collection of microbial samples from the exterior of the space station, the first study of human response to different spaceflight durations, and a study on astronaut’s sleep.
  • NASA and Boeing continued to make progress on the company’s CST-100 Starliner spacecraft. Starliner and its crew of NASA astronauts Barry Wilmore and Sunita Williams are preparing for the first flight with astronauts in 2024, the final demonstration prior to regular flights to the microgravity complex.
  • Space station crew members completed 12 spacewalks to upgrade and conduct maintenance at the orbiting laboratory before the year’s end. NASA astronauts continued work to install the International Space Station Rollout Solar Arrays (IROSA), which will increase power generation capability by up to 30% when fully complete.
  • Six commercial cargo missions and international partner missions delivered about 28,000 pounds of science investigations, tools, and critical supplies to the space station. By year’s end about 12,500 pounds of investigations and equipment are planned to be returned researchers on Earth.
  • Space station crew members welcomed the second NASA-enabled private astronaut mission, Axiom Mission 2, to the orbital complex advancing the agency’s goal of commercializing low-Earth orbit. NASA also selected Axiom Space for the third private astronaut mission and signed an order for the fourth mission with the company.

Some additional key investigations launched, and operating, on station included NASA and ISS National Lab releasing a joint solicitation to address the goals of the Biden-Harris Administration’s Cancer Moonshot initiative, which aims to conduct science in space to help cure disease on Earth; NASA’s ILLUMA-T (Integrated Laser Communications Relay Demonstration Low-Earth-Orbit User Modem and Amplifier Terminal) is now on station, which aims to test high data rate laser communications via the agency’s LCRD (Laser Communications Relay Demonstration); upgraded NASA’s Cold Atom Laboratory to continue pioneering quantum discovery in space; and launched and installed its Atmospheric Wave Experiment on station to provide insight into how terrestrial weather impacts space weather, which may affect satellite communications and tracking in orbit.

Also on the commercial front, NASA partnered with seven U.S. companies with unfunded Space Act Agreements, and released its third Request for Information for commercials space station services, while working toward a formal call for proposals to provide the agency with low Earth orbit services after the space station’s retirement. Commercial space station partners met major design and engineering milestones, and are on track to serve as potential replacements for the agency’s microgravity research needs. Two companies also are combining efforts, which will allow NASA to apply funding to the other stations to accelerate development.

Reaching Farther into Solar System, Beyond

As part of its first year of operations, NASA’s Webb telescope pulled back the curtain on some of the farthest galaxies, stars, and black holes ever observed; solved a longstanding mystery about the early universe; found methane and carbon dioxide in the atmosphere of a planet outside our solar system; and offered new views and insights into our own cosmic backyard. Additional achievements beyond the solar system included:

  • NASA made important contributions to two missions that international partners launched this year: ESA’s Euclid mission to study dark energy and dark matter, as well as JAXA’s XRISM mission, a powerful new satellite that will revolutionize how we understand the hot, X-ray universe.
  • The Nancy Grace Roman Space Telescope, NASA’s next flagship observatory, finished camera assembly, and its coronagraph instrument passed its first big optics test.

Autumn was host to mission milestone events that showcased the importance of our solar system’s smaller bodies.

  • NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer) spacecraft capped its seven-year journey with the successful deposit of a pristine sample of surface material from the asteroid Bennu in the Utah desert.
  • NASA showed off material from the asteroid Bennu for the first time. Initial studies of the 4.5-billion-year-old asteroid Bennu sample collected in space and brought to Earth show evidence of high-carbon content and water, which together could indicate the building blocks of life on Earth may be found in the rock.
  • The Psyche spacecraft launched from NASA Kennedy toward the asteroid Psyche.
  • NASA’s Lucy spacecraft conducted its first target asteroid flyby of asteroid Dinkinesh at the inner edge of the main asteroid belt, and the first images now are online.
  • An annular eclipse occurred on Oct. 14, visible in parts of the United States, Mexico, and many countries in South and Central America. NASA supported the event with engagement activities, as well as science research. Three Black Brant IX sounding rockets were launched to study the ionosphere – an electrically charged layer of the atmosphere – before, during, and after the peak eclipse.

NASA also kicked off Heliophysics Big Year, a public engagement campaign to make science and information accessible to all and showcase heliophysics-related efforts.

Technology Innovations to Benefit All

NASA’s Deep Space Optical Communications experiment launched aboard the Psyche spacecraft and achieved first light, beaming back a laser encoded with test data from nearly 10 million miles away. NASA will demonstrate data transmission rates 10 to 100 times greater than current radio frequency systems. The following are additional space technology advancements:

Evolving Aviation’s Frontier

In 2023, NASA advanced aviation and aeronautics technologies to improve passenger experiences, stimulate U.S. economic growth, and create a future of cleaner, quieter, safer skies. Through its Sustainable Flight National Partnership and other efforts, NASA supported the U.S. goal of reaching net-zero aviation greenhouse gas emissions by 2050, and the agency released a new strategic implementation plan to guide research for the next 20 years and beyond. NASA also:

  • Made new progress in its Quesst mission, as the X-59 quiet supersonic experimental aircraft had its tail structure installed and was moved from the assembly facility for structural testing.
  • Worked with Boeing on the Sustainable Flight Demonstrator project to produce and test the X-66A, a full-sized, experimental transonic truss brace wing aircraft that will inform a new generation of sustainable airliners.
  • Enhanced transonic truss braced wing research for sustainable aircraft designs using wind tunnel tests for model wings and supercomputing to look at aircraft concepts.
  • Used NASA’s DC-8 flying lab to test emissions from Boeing’s ecoDemonstrator Explorer aircraft to evaluate sustainable aviation fuels’ effects on contrails..
  • Progressed its Electrified Powertrain Flight Demonstration project, which works to create hybrid powertrains for regional and single-aisle aircraft, with GE Aerospace and magniX testing power systems and demonstrator aircraft
  • Entered into an agreement with the U.S. Air Force AFWERX Agility Prime program that will allow NASA to test a new air taxi from the manufacturer Joby Aviation to see how such vehicles could fit into the national airspace
  • Debuted the Advanced Capabilities for Emergency Response Operations project, which uses drones and advanced aviation technologies to improve wildland fire coordination and operations, and tested a mobile air traffic management kit.
  • Demonstrated a breakthrough, 3D-printable, high-temperature-resistant alloy called GRX-810 that could be used for applications like components of aircraft and rocket engines.

Aeronautics efforts led to advancements in construction of the Flight Dynamics Research Facility, the agency’s first major wind tunnel in more than 40 years. NASA used simulators to collect data on how operating electric air taxis could affect pilots and passengers, and gathered data on new ways to use aviation including autonomous air cargo delivery and air taxi operations. Finally, research from the X-57 Maxwell provided aviation researchers with hundreds of lessons learned, as well as revolutionary development in areas ranging from battery technology to cruise motor control design.

Maintaining Focus on Advancing DEIA, Reaching Diverse Communities

NASA remained committed to advancing diversity, equity, inclusion, and accessibility (DEIA) at NASA and the STEM industry in 2023. NASA also took its “The Color of Space” documentary on a road tour, providing free in-person screenings at historically Black colleges and universities, conferences, and festivals nationwide. And, the agency made its Spot the Station app available for download in multiple languages.  

As part of its plans to reach more audiences, NASA continued to focus on developing Spanish-language content. This year, the agency digitally released its second issue of the “First Woman: Expanding Our Universe,” graphic novel series in English and Spanish. NASA also:

Inspiring New Generation of STEM Students

Through a variety of science, technology, engineering, and mathematics (STEM) outreach activities, NASA continues to inspire the Artemis Generation of students and encourage them to become the next scientists, engineers, and astronauts. NASA conducts its STEM work through partnering with key organizations, awarding a variety of grants, and more. Many of these efforts tie closely to NASA’s DEIA activities. Other STEM highlights in 2023 include:

  • Awarded $11.7 million to eight Historically Black Colleges and Universities through the new Data Science Equity, Access, and Priority in Research and Education opportunity. These awards will enable students and faculty to conduct innovative data science research that contributes to NASA’s missions.
  • Partnered with the U.S. Department of Education to strengthen the collaboration between the two agencies, including efforts to increase access to high-quality STEM and space education to students and schools across the nation; and partnered with U.S. Forest Service to bring Artemis Moon Trees to schools and education institutions through NASA’s Artifact Module. NASA received more than 1,200 requests.
  • NASA announced its first women’s universities and college awards, as part of a Biden-Harris Administration initiative. The awards provided more than $5 million in funding to seven women’s colleges and universities to research and develop strategies that increase retention of women in STEM degree programs and careers.
  • Among Earth to space calls, Louisiana, Wyoming and Rhode Island hosted their first downlinks with the space station crew and students.
  • NASA’s Human Rover Exploration Challenge hosted student competitors in-person for the first time since the COVID-19 pandemic. More than 500 students from around the world participated.
  • Issued the NASA Space Tech Catalyst Prize to expand the agency’s network of proposers and foster effective engagement approaches within NASA’s Early-Stage Innovations and Partnerships portfolio.
  • Invited teams to participate in NASA’s TechRise Student Challenge to design, build, and launch science and technology experiments on commercial suborbital rockets and high-altitude balloons. Summer 2023 marked a series of flight tests that successfully flew 80 student payloads on high-altitude balloons with Aerostar and World View.
  • By partnering with Minecraft to inspire students in a game-based learning platform, children were encouraged to build and launch rockets on Moon adventures in the Minecraft universe.
  • NASA’s Space Technology Research Grants program, which supports academic researchers, surpassed a significant milestone, having funded more than 1,000 grants pursuing exciting space technology research since.

NASA’s Growing Public Engagement Efforts

Public Engagement remains a cornerstone of NASA’s mission to share the agency’s work with the world by participating in opportunities to engage the public in a variety of venues, activities, and events. NASA continued to connect with more people than ever before:

  • Grew the agency’s social media following to 389.5 million so far in 2023 – up 18 percent from 330 million in 2022. 
  • Shares on social media posts across the agency reached 6.36 million in 2023, lower than the 2022 total (8.7 million shares).
  • NASA accounts reached follower milestones this year, passing 78 million (X), 26 million (Facebook) and 97 million (Instagram). NASA’s flagship YouTube channel passed 11 million. 
  • NASA elevated its digital platforms by revamping its flagship and science websites, adding its first on-demand streaming service, and upgrading the NASA app. With these changes, everyone now has access to a new world of content from the space agency.
  • NASA’s new streaming service, NASA+, launched on Nov. 8, and as of Nov. 28 had 38,000 hours of content watched. The NASA app had about 34 million lifetime installs across all platforms.
  • Apple Podcasts Latin America selected “Universo Curioso de la NASA” as a “Show We Loved” in 2023. This is the first time a NASA podcast has received this recognition.  
  • NASA podcasts surpassed 8 million all-time plays on Apple Podcasts this year.
  • Supported White House events to reach the public in new and engaging ways including participating in the White House Easter Egg Roll, bringing in astronauts and STEM activities we engaged over 30,000 visitors, including students and children, with more than 148,000 mentions on social media across all platforms, as well as participating in Halloween at the White House engaging 6,000 local schoolchildren and military families with STEM activities.
  • Worked with Elmo to introduce a video greeting from NASA astronauts aboard the space station for the Independence Day celebration and concert.
  • NASA centers around the country hosted more than 1,289 in-person and virtual events with local, regional, national, and international reach, and engaged with more than 6.3 million people through these efforts.
  • Participated in one of the largest state fairs in the United States in Columbus, Ohio, reaching an estimated 100,000 of the one million attendees through talks.
  • Hosted an in-person International Observe the Moon Night, an annual celebration of lunar science and exploration, for the first time since 2019.
  • NASA’s Arts program curated the first exhibition of work from the NASA art collection titled “Launching the Future: Looking Back to Look Forward” and displayed 16 pieces at the National Academy of Sciences.
  • Since opening its doors, NASA’s Earth Information Center has received more 3,400 visitors and hosting more than 1,500 guided tours.
  • More than 100 eligible schools, universities, museums, libraries, and planetariums applied to participate in the NASA Artifacts Module program to receive more than 200 historic NASA objects for their STEM programs.
  • NASA Administrator Bill Nelson was among the participants for “Our Blue Planet, A Concert Celebrating Earth, and its Waters.”
  • Snoopy’s zero-gravity indicator rode on NASA’s Artemis I mission and was returned to Peanuts, and now is on public display at the Schulz Museum.
  • NASA partnered with Google Arts & Culture on a digital artist project titled ‘A Passage of Water’ that incorporated NASA freshwater data from the SWOT mission and GRACE (Gravity Recovery and Climate Experiment) satellites.
  • NASA partnered with Crayola Education for its 2023 Creativity Week, reaching 3.5 million kids with Artemis information and creative activities.
  • The U.S. Postal Service issued an OSIRIS-REx postal stamp in association with the return of the asteroid Bennu sample in September.
  • NASA approved and collaborated on 96 documentaries, 21 TV, Web and streaming shows, 16 feature films, and five immersive experiences, including the Tom Hanks’ new immersive experience “Moonwalkers” and ARTCHOUSE’s “Beyond the Light,” and an upcoming collaboration with influencer, “Mr. Beast.”
  • NASA received 4,500 requests for NASA branded merchandise and/or novelty items from notable brands like Adidas, Garmin, Wham-O, LEGO, Prada, Crate + Barrel, Pottery Barn Kids, Odyssey Toys, H+M, Casio Electronics, Smithsonian, GAP, Round 2, Timex, Sprayground and many more.
  • Published its branding guidelines as part of the NASA Brand Center.
  • Collaborated with Amazon Studios on the “A Million Miles Away” film, starring Michael Peña, telling the story of retired NASA astronaut Jose Hernandez. Rubio narrated a special video from space highlighting Hernandez and other Latino pioneers for Hispanic Heritage Month.
  • Celebrated designer Richard Danne with an agency Exceptional Public Achievement Medal for his outstanding achievement in creating the NASA worm logotype.
  • Collaborated on more than a dozen Artemis documentaries with outlets ranging from PBS to National Geographic/Disney. The Artemis II crew was featured on The Late Show with Stephen Colbert, The Talk, and at the “Guardians of the Galaxy” premiere. Artemis II NASA astronaut Victor Glover participated in the premieres of National Geographic’s “The Space Race” at the Tribeca Film Festival and DC/Dox. 
  • Attracted major talent for various mission-related projects and outreach initiatives, including: Chris Pratt, Harry Styles, Lance Bass for the Annular Solar Eclipse, Aisha Tyler, Adam Driver, Paul Rudd, Scarlett Johansson, Jeffrey Wright, Jason Schwartzmann, and an International Space Station downlink with Post Malone for Earth Day
  • NASA also participated in concerts at the John F. Kennedy Center for the Performing Arts for Earth Day and Wolf Trap for “Star Wars” and Holst’s “The Planets.” 
  • Feature films included “A Million Miles Away” and Disney’s “The Marvels” were uploaded to the International Space Station for the astronauts to enjoy at their leisure.
  • More than 1 million people around the world joined NASA’s Message in a Bottle campaign, inviting people to sign their names to a special message that will travel 1.8 billion miles on the agency’s Europa Clipper mission to explore Jupiter’s icy moon Europa. The message, a poem titled “In Praise of Mystery: A Poem for Europa,” written by U.S. Poet Laureate Ada Limón, will be engraved on the robotic spacecraft.

For more about NASA’s missions, research, and discoveries, visit:

https://www.nasa.gov

-end-

Faith McKie / Cheryl Warner
Headquarters, Washington
202-358-1600
faith.d.mckie@nasa.gov / cheryl.m.warner@nasa.gov

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A mirror that was later installed inside the telescope for NASA’s Near-Earth Object Surveyor shows a reflection of principal optical engineer Brian Monacelli during an inspection of the mirror’s surface at the agency’s Jet Propulsion Laboratory on July 17.NASA/JPL-Caltech A technician operates articulating equipment to rotate NEO Surveyor’s aluminum optical bench — part of the spacecraft’s telescope — in a clean room at NASA’s Jet Propulsion Laboratory in Southern California on July 17.NASA/JPL-Caltech The mirrors for NASA’s Near-Earth Object Surveyor space telescope are being installed and aligned, and work on other spacecraft components is accelerating.
      NASA’s new asteroid-hunting spacecraft is taking shape at NASA’s Jet Propulsion Laboratory in Southern California. Called NEO Surveyor (Near-Earth Object Surveyor), this cutting-edge infrared space telescope will seek out the hardest-to-find asteroids and comets that might pose a hazard to our planet. In fact, it is the agency’s first space telescope designed specifically for planetary defense.
      Targeting launch in late 2027, the spacecraft will travel a million miles to a region of gravitational stability — called the L1 Lagrange point — between Earth and the Sun. From there, its large sunshade will block the glare and heat of sunlight, allowing the mission to discover and track near-Earth objects as they approach Earth from the direction of the Sun, which is difficult for other observatories to do. The space telescope also may reveal asteroids called Earth Trojans, which lead and trail our planet’s orbit and are difficult to see from the ground or from Earth orbit.
      NEO Surveyor relies on cutting-edge detectors that observe two bands of infrared light, which is invisible to the human eye. Near-Earth objects, no matter how dark, glow brightly in infrared as the Sun heats them. Because of this, the telescope will be able to find dark asteroids and comets, which don’t reflect much visible light. It also will measure those objects, a challenging task for visible-light telescopes that have a hard time distinguishing between small, highly reflective objects and large, dark ones.
      This artist’s concept depicts NASA’s NEO Surveyor in deep space. The black-paneled angular structure in the belly of the spacecraft is the instrument enclosure that is being built at JPL. The mission’s infrared telescope will be installed inside the enclosure.NASA/JPL-Caltech “NEO Surveyor is optimized to help us to do one specific thing: enable humanity to find the most hazardous asteroids and comets far enough in advance so we can do something about them,” said Amy Mainzer, principal investigator for NEO Surveyor and a professor at the University of California, Los Angeles. “We aim to build a spacecraft that can find, track, and characterize the objects with the greatest chance of hitting Earth. In the process, we will learn a lot about their origins and evolution.”
      Coming Into Focus
      The spacecraft’s only instrument is its telescope. About the size of a washer-and-dryer set, the telescope’s blocky aluminum body, called the optical bench, was built in a JPL clean room. Known as a three-mirror anastigmat telescope, it will rely on curved mirrors to focus light onto its infrared detectors in such a way that minimizes optical aberrations.
      “We have been carefully managing the fabrication of the spacecraft’s telescope mirrors, all of which were received in the JPL clean room by July,” said Brian Monacelli, principal optical engineer at JPL. “Its mirrors were shaped and polished from solid aluminum using a diamond-turning machine. Each exceeds the mission’s performance requirements.”
      Monacelli inspected the mirror surfaces for debris and damage, then JPL’s team of optomechanical technicians and engineers attached the mirrors to the telescope’s optical bench in August. Next, they will measure the telescope’s performance and align its mirrors.
      Complementing the mirror assembly are the telescope’s mercury-cadmium-telluride detectors, which are similar to the detectors used by NASA’s recently retired NEOWISE (short for Near-Earth Object Wide-field Infrared Survey Explorer) mission. An advantage of these detectors is that they don’t necessarily require cryogenic coolers or cryogens to lower their operational temperatures in order to detect infrared wavelengths. Cryocoolers and cryogens can limit the lifespan of a spacecraft. NEO Surveyor will instead keep its cool by using its large sunshade to block sunlight from heating the telescope and by occupying an orbit beyond that of the Moon, minimizing heating from Earth.
      The telescope will eventually be installed inside the spacecraft’s instrument enclosure, which is being assembled in JPL’s historic High Bay 1 clean room where NASA missions such as Voyager, Cassini, and Perseverance were constructed. Fabricated from dark composite material that allows heat to escape, the enclosure will help keep the telescope cool and prevent its own heat from obscuring observations.
      Once it is completed in coming weeks, the enclosure will be tested to make sure it can withstand the rigors of space exploration. Then it will be mounted on the back of the sunshade and atop the electronic systems that will power and control the spacecraft.
      “The entire team has been working hard for a long time to get to this point, and we are excited to see the hardware coming together with contributions from our institutional and industrial collaborators from across the country,” said Tom Hoffman, NEO Surveyor’s project manager at JPL. “From the panels and cables for the instrument enclosure to the detectors and mirrors for the telescope — as well as components to build the spacecraft — hardware is being fabricated, delivered, and assembled to build this incredible observatory.”
      Assembly of NEO Surveyor can be viewed 24 hours a day, seven days a week, via JPL’s live cam.
      More About NEO Surveyor
      The NEO Surveyor mission marks a major step for NASA toward reaching its U.S. Congress-mandated goal to discover and characterize at least 90% of the near-Earth objects more than 460 feet (140 meters) across that come within 30 million miles (48 million kilometers) of our planet’s orbit. Objects of this size can cause significant regional damage, or worse, should they impact the Earth.
      The mission is tasked by NASA’s Planetary Science Division within the Science Mission Directorate; program oversight is provided by the Planetary Defense Coordination Office, which was established in 2016 to manage the agency’s ongoing efforts in planetary defense. NASA’s Planetary Missions Program Office at the agency’s Marshall Space Flight Center provides program management for NEO Surveyor.
      The project is being developed by JPL and is led by principal investigator Amy Mainzer at UCLA. Established aerospace and engineering companies have been contracted to build the spacecraft and its instrumentation, including BAE Systems, Space Dynamics Laboratory, and Teledyne. The Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder will support operations, and IPAC-Caltech in Pasadena, California, is responsible for processing survey data and producing the mission’s data products. Caltech manages JPL for NASA.
      More information about NEO Surveyor is available at:
      https://science.nasa.gov/mission/neo-surveyor
      News Media Contacts
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      Karen Fox / Alana Johnson
      NASA Headquarters, Washington
      202-358-1600 / 202-358-1501
      karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov
      2024-114
      Share
      Details
      Last Updated Aug 28, 2024 Related Terms
      NEO Surveyor (Near-Earth Object Surveyor Space Telescope) Comets Jet Propulsion Laboratory Near-Earth Asteroid (NEA) Planetary Defense Planetary Defense Coordination Office Explore More
      5 min read NASA’s Europa Clipper Gets Set of Super-Size Solar Arrays
      Article 23 hours ago 2 min read NASA’s DART Team Earns AIAA Space Systems Award for Pioneering Mission
      NASA’s DART (Double​ Asteroid Redirection Test) mission continues to yield scientific discoveries and garner accolades for its groundbreaking…
      Article 7 days ago 5 min read Danish Instrument Helps NASA’s Juno Spacecraft See Radiation
      Article 1 week ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 Min Read Webb Finds Early Galaxies Weren’t Too Big for Their Britches After All
      This image shows a small portion of the field observed by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) for the Cosmic Evolution Early Release Science (CEERS) survey. The full image appears below. Credits:
      NASA, ESA, CSA, S. Finkelstein (University of Texas) It got called the crisis in cosmology. But now astronomers can explain some surprising recent discoveries.
      When astronomers got their first glimpses of galaxies in the early universe from NASA’s James Webb Space Telescope, they were expecting to find galactic pipsqueaks, but instead they found what appeared to be a bevy of Olympic bodybuilders. Some galaxies appeared to have grown so massive, so quickly, that simulations couldn’t account for them. Some researchers suggested this meant that something might be wrong with the theory that explains what the universe is made of and how it has evolved since the big bang, known as the standard model of cosmology.
      According to a new study in the Astrophysical Journal led by University of Texas at Austin graduate student Katherine Chworowsky, some of those early galaxies are in fact much less massive than they first appeared. Black holes in some of these galaxies make them appear much brighter and bigger than they really are.
      “We are still seeing more galaxies than predicted, although none of them are so massive that they ‘break’ the universe,” Chworowsky said.
      The evidence was provided by Webb’s Cosmic Evolution Early Release Science (CEERS) Survey, led by Steven Finkelstein, a professor of astronomy at UT Austin and study co-author.
      Image A : CEERS Deep Field (NIRCam)
      This image shows a small portion of the field observed by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) for the Cosmic Evolution Early Release Science (CEERS) survey. It is filled with galaxies. Some galaxies appear to have grown so massive, so quickly, that simulations couldn’t account for them. However, a new study finds that some of those early galaxies are in fact much less massive than they first appeared. Black holes in some of those galaxies make them appear much brighter and bigger than they really are. NASA, ESA, CSA, S. Finkelstein (University of Texas)
      View 8k pixel full resolution version of the image

      Black Holes Add to Brightness
      According to this latest study, the galaxies that appeared overly massive likely host black holes rapidly consuming gas. Friction in the fast-moving gas emits heat and light, making these galaxies much brighter than they would be if that light emanated just from stars. This extra light can make it appear that the galaxies contain many more stars, and hence are more massive, than we would otherwise estimate. When scientists remove these galaxies, dubbed “little red dots” (based on their red color and small size), from the analysis, the remaining early galaxies are not too massive to fit within predictions of the standard model.
      “So, the bottom line is there is no crisis in terms of the standard model of cosmology,” Finkelstein said. “Any time you have a theory that has stood the test of time for so long, you have to have overwhelming evidence to really throw it out. And that’s simply not the case.”
      Efficient Star Factories
      Although they’ve settled the main dilemma, a less thorny problem remains: There are still roughly twice as many massive galaxies in Webb’s data of the early universe than expected from the standard model. One possible reason might be that stars formed more quickly in the early universe than they do today.
      “Maybe in the early universe, galaxies were better at turning gas into stars,” Chworowsky said.
      Star formation happens when hot gas cools enough to succumb to gravity and condense into one or more stars. But as the gas contracts, it heats up, generating outward pressure. In our region of the universe, the balance of these opposing forces tends to make the star formation process very slow. But perhaps, according to some theories, because the early universe was denser than today, it was harder to blow gas out during star formation, allowing the process to go faster.
      More Evidence of Black Holes
      Concurrently, astronomers have been analyzing the spectra of “little red dots” discovered with Webb, with researchers in both the CEERS team and others finding evidence of fast-moving hydrogen gas, a signature of black hole accretion disks. This supports the idea that at least some of the light coming from these compact, red objects comes from gas swirling around black holes, rather than stars – reinforcing Chworowsky and their team’s conclusion that they are probably not as massive as astronomers initially thought.  However, further observations of these intriguing objects are incoming, and should help solve the puzzle about how much light comes from stars versus gas around black holes.
      Often in science, when you answer one question, that leads to new questions. While Chworowsky and their colleagues have shown that the standard model of cosmology likely isn’t broken, their work points to the need for new ideas in star formation.
      “And so there is still that sense of intrigue,” Chworowsky said. “Not everything is fully understood. That’s what makes doing this kind of science fun, because it’d be a terribly boring field if one paper figured everything out, or there were no more questions to answer.”The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the research results from the Astrophysical Journal .
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov, Rob Gutro – rob.gutro@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Marc Airhart – mairhart@austin.utexas.edu
      University of Texas at Austin
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      VIDEO: CEERS Fly-through data visualization
      ARTICLE: Webb Science – Galaxies Through Time
      INFOGRAPHIC: Learn More about black holes
      VIDEO: Webb Science Snippets Video: “The Early Universe”
      INFOGRAPHIC: What is Cosmological Redshift?
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is a galaxy?
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Para Niños : Qué es una galaxia?
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Exoplanets



      Exoplanet Stories



      Universe


      Share








      Details
      Last Updated Aug 26, 2024 Editor Stephen Sabia Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      Astrophysics Galaxies Galaxies, Stars, & Black Holes Galaxies, Stars, & Black Holes Research Goddard Space Flight Center James Webb Space Telescope (JWST) Science & Research The Universe View the full article
    • By NASA
      As part of an asteroid sample exchange, NASA has transferred to JAXA (Japan Aerospace Exploration Agency) a portion of the asteroid Bennu sample collected by the agency’s OSIRIS-REx mission. The sample was officially handed over by NASA officials during a ceremony on Aug. 22 at JAXA’s Sagamihara, Japan, campus.
      The signature exchange for the Bennu sample transfer took place on Aug. 22, 2024, at JAXA’s (Japan Aerospace Exploration Agency) Institute of Space and Astronautical Science, Sagamihara Campus.JAXA This asteroid sample transfer follows the November 2021 exchange where JAXA transferred to NASA a portion of the sample retrieved from asteroid Ryugu by its Hayabusa2 spacecraft. This agreement allows NASA and JAXA to share achievements and promote scientific and technological cooperation on asteroid sample return missions. The scientific goals of the two missions are to understand the origins and histories of primitive, organic-rich asteroids and what role they may have played in the formation of the planets.

      “We value our continued collaboration with JAXA on asteroid sample return missions to both increase our science return and reduce risk on these and other missions,” said Kathleen Vander Kaaden, chief scientist for astromaterials curation in the Science Mission Directorate at NASA Headquarters in Washington. “JAXA has extensive curation capabilities, and we look forward to what we will learn from the shared analysis of the OSIRIS-REx samples.”

      The Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer, or OSIRIS-REx, spacecraft delivered 4.29 ounces (121.6 grams) of material from Bennu, more than double the mission’s mass requirement, as well as 24 steel Velcro® pads containing dust from the contact with Bennu. As part of the agreement, the Astromaterials Research and Exploration Science Division at NASA’s Johnson Space Center in Houston transferred to JAXA 0.023 ounces (0.66 grams) of the Bennu sample, equaling 0.55% of the total sample mass, and one of the 24 contact pads.

      Hayabusa2 collected 0.19 ounces (5.4 grams) of Ryugu between two samples and, in 2021, JAXA provided NASA with 23 millimeter-sized grains plus aggregate sample material from Ryugu, enabling both countries to get the most out of the samples and share the responsibility of sample curation.

      JAXA’s portion of the Bennu samples will be housed in the newly expanded clean rooms in the extraterrestrial sample curation center on the JAXA Sagamihara campus. The JAXA team received the samples enclosed in non-reactive nitrogen gas and will open them in similarly nitrogen-filled clean chambers, accessed with air-tight gloves. JAXA will now work to create an initial description of the sample, including weight measurements, imaging with both visible light and infrared light microscopes, and infrared spectroscopy. The sample will then be distributed through a competitively selected process for detailed analysis at other research institutes to study the differences and similarities between asteroids Bennu and Ryugu.
      JAXA “Thank you for safely bringing the precious asteroid samples from Bennu to Earth and then to Japan,” said Tomohiro Usui, Astromaterials Science Research Group Manager, Institute of Space and Astronautical Science, JAXA. “As fellow curators, we understand the tension and responsibility that accompany these tasks. Now, it is our turn at JAXA. We will go ahead with our plans to derive significant scientific outcomes from these valuable samples.”

      Asteroids are debris left over from the dawn of the solar system. The Sun and its planets formed from a cloud of dust and gas about 4.6 billion years ago, and asteroids are thought to date back to the first few million years of our solar system’s history. Sample return missions like OSIRIS-REx and Hayabusa2 help provide new data on how the solar system’s evolution unfolded.

      Initial analysis of the Bennu samples has revealed dust rich in carbon and nitrogen. Members of the OSIRIS-REx sample analysis team have also found evidence of organic molecules and minerals bearing phosphorous and water, which together could indicate the building blocks essential for life.

      Both the Bennu sample and the asteroid Ryugu sample delivered by JAXA’s Hayabusa2 mission appear to have come from an ancient parent object formed beyond the current orbit of Saturn that was broken up and transported into the inner solar system. The differences between these asteroids are emerging as the detailed chemistry is analyzed.

      NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provided overall mission management, systems engineering, and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator. The university leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Littleton, Colorado, built the spacecraft and provided flight operations. Goddard and KinetX Aerospace were responsible for navigating the OSIRIS-REx spacecraft. Curation for OSIRIS-REx takes place at NASA Johnson. International partnerships on this mission include the OSIRIS-REx Laser Altimeter instrument from CSA (Canadian Space Agency) and asteroid sample science collaboration with JAXA’s Hayabusa2 mission. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington.

      Find more information about NASA’s OSIRIS-REx mission at:

      https://science.nasa.gov/mission/osiris-rex

      -end-

      News Media Contacts

      Wynn Scott
      NASA’s Johnson Space Center, Houston
      281-910-6835
      wynn.b.scott@nasa.gov  

      Karen Fox / Alana Johnson
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov
      View the full article
    • By NASA
      This final image captured by NASA’s NEOWISE shows part of the Fornax constellation in the Southern Hemisphere. Processed by IPAC at Caltech, this is the mission’s 26,886,704th exposure. It was taken by the spacecraft just before 3 a.m. EDT on Aug. 1, when the mission’s survey ended.Credits: NASA/JPL-Caltech/IPAC/UCLA Engineers on NASA’s NEOWISE (Near-Earth Object Wide-field Infrared Survey Explorer) mission commanded the spacecraft to turn its transmitter off for the last time Thursday. This concludes more than 10 years of its planetary defense mission to search for asteroids and comets, including those that could pose a threat to Earth.
      The final command was sent from the Earth Orbiting Missions Operation Center at NASA’s Jet Propulsion Laboratory in Southern California, with mission members past and present in attendance alongside officials from the agency’s headquarters in Washington. NASA’s Tracking and Data Relay Satellite System then relayed the signal to NEOWISE, decommissioning the spacecraft. As NASA previously shared, the spacecraft’s science survey ended on July 31, and all remaining science data was downlinked from the spacecraft.
      “The NEOWISE mission has been an extraordinary success story as it helped us better understand our place in the universe by tracking asteroids and comets that could be hazardous for us on Earth,” said Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters. “While we are sad to see this brave mission come to an end, we are excited for the future scientific discoveries it has opened by setting the foundation for the next generation planetary defense telescope.”
      NASA ended the mission because NEOWISE will soon drop too low in its orbit around Earth to provide usable science data. An uptick in solar activity is heating the upper atmosphere, causing it to expand and create drag on the spacecraft, which does not have a propulsion system to keep it in orbit. Now decommissioned, NEOWISE is expected to safely burn up in our planet’s atmosphere in late 2024.
      During its operational lifetime, the infrared survey telescope exceeded scientific objectives for not one but two missions, starting with the WISE (Wide-field Infrared Survey Explorer) mission. Managed by JPL, WISE launched in December 2009 with a seven-month mission to scan the entire infrared sky. By July 2010, WISE had accomplished this with far greater sensitivity than previous surveys. A few months later, the telescope ran out of the coolant that kept heat produced by the spacecraft from interfering with its infrared observations. (Invisible to the human eye, infrared wavelengths are associated with heat.)
      NASA extended the mission under the name NEOWISE until February 2011 to complete a survey of the main belt asteroids, at which point the spacecraft was put into hibernation. Analysis of this data showed that although the lack of coolant meant the space telescope could no longer observe the faintest infrared objects in the universe, it could still make precise observations of asteroids and comets that generate a strong infrared signal from being heated by the Sun as they travel past our planet.
      NASA brought the telescope out of hibernation in 2013 under the Near-Earth Object Observations Program, a precursor for the agency’s Planetary Defense Coordination Office, to continue the NEOWISE survey of asteroids and comets in the pursuit of planetary defense.
      “The NEOWISE mission has been instrumental in our quest to map the skies and understand the near-Earth environment. Its huge number of discoveries have expanded our knowledge of asteroids and comets, while also boosting our nation’s planetary defense,” said Laurie Leshin, director, NASA JPL. “As we bid farewell to NEOWISE, we also celebrate the team behind it for their impressive achievements.” 
      By repeatedly observing the sky from low Earth orbit, NEOWISE created all-sky maps featuring 1.45 million infrared measurements of more than 44,000 solar system objects. Of the 3,000-plus near-Earth objects it detected, 215 were first spotted by NEOWISE. The mission also discovered 25 new comets, including the famed comet C/2020 F3 NEOWISE that streaked across the night sky in the summer of 2020.
      In addition to leaving behind a trove of science data, the spacecraft has helped inform the development of NASA’s first infrared space telescope purpose-built for detecting near-Earth objects: NEO Surveyor.
      “The NEOWISE mission has provided a unique, long-duration data set of the infrared sky that will be used by scientists for decades to come,” said Amy Mainzer, principal investigator for both NEOWISE and NEO Surveyor at the University of California, Los Angeles. “But its additional legacy is that it has helped lay the groundwork for NASA’s next planetary defense infrared space telescope.”
      Also managed by JPL, NEO Surveyor will seek out some of the hardest-to-find near-Earth objects, such as dark asteroids and comets that don’t reflect much visible light, as well as objects that approach Earth from the direction of the Sun. The next-generation infrared space telescope will greatly enhance the capabilities of the international planetary defense community, which includes NASA-funded ground surveys. Construction of NEO Surveyor is already well under way, with a launch date set for no earlier than 2027.
      More Mission Information
      The NEOWISE and NEO Surveyor missions support the objectives of NASA’s Planetary Defense Coordination Office at the agency’s headquarters. The NASA Authorization Act of 2005 directed NASA to discover and characterize at least 90% of the near-Earth objects more than 460 feet (140 meters) across that come within 30 million miles (48 million kilometers) of our planet’s orbit. Objects of this size can cause significant regional damage, or worse, should they impact the Earth.
      NASA JPL manages and operates the NEOWISE mission for the agency’s Planetary Defense Coordination Office within the Science Mission Directorate. The Space Dynamics Laboratory in Logan, Utah, built the science instrument. BAE Systems of Boulder, Colorado, built the spacecraft. Science data processing, archiving, and distribution is done at IPAC at Caltech in Pasadena, California. Caltech manages JPL for NASA.
      To learn more about NEOWISE, visit:
      https://www.nasa.gov/neowise
      -end-
      Karen Fox / Alana Johnson
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov 
      Share
      Details
      Last Updated Aug 08, 2024 LocationNASA Headquarters Related Terms
      NEOWISE Jet Propulsion Laboratory NASA Headquarters NEO Surveyor (Near-Earth Object Surveyor Space Telescope) Planetary Defense Coordination Office Planetary Science Division Science & Research Science Mission Directorate WISE (Wide-field Infrared Survey Explorer) View the full article
    • By NASA
      Learn Home Celebrate Heliophysics Big… Heliophysics Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Stories Science Activation Highlights Citizen Science   2 min read
      Celebrate Heliophysics Big Year: Free Monthly Webinars on the Sun Touches Everything
      Once a month (usually on the first Tuesday), the Heliophysics Education Community meets online to share knowledge and opportunities. During the Heliophysics Big Year (HBY) – a global celebration of the Sun’s influence on Earth and the entire solar system, beginning with the Annular Solar Eclipse on October 14, 2023, continuing through the Total Solar Eclipse on April 8, 2024, and concluding with the Parker Solar Probe’s closest approach to the Sun in December, 2024 – the meetings are structured to include short presentations by subject matter experts both inside and outside NASA.
      Challenged by the NASA Heliophysics Division to participate in as many Sun-related activities as possible, the NASA Heliophysics Education community has been hosting these short monthly presentations for formal and informal educators, science communicators, and other heliophysics enthusiasts to promote the understanding of heliophysics in alignment with monthly HBY themes. Presenters and team members from the NASA Science Activation program’s NASA Heliophysics Education Activation Team (NASA HEAT) connect these themes with the Framework of Heliophysics Education in mind, mapping them directly to the Next Generation Science Standards (NGSS) – a set of research-based science content standards for grades K–12. Using the three main questions that heliophysicists investigate as a foundation, NASA HEAT cross-references heliophysics topics with the NGSS Disciplinary Core Ideas to create NGSS-aligned “heliophysics big ideas.” These community meetings welcome an average of 30 attendees, but NASA celebrated a record-breaking 234 attendees for the July meeting, which explored the Sun’s impact on physical and mental health.
      Everyone is welcome to participate in upcoming presentations and topics on the following dates at 1 p.m. EDT:
      8/6/24 Youth/Informal Education – NASA PUNCH Mission
      9/02/24 Environment and Sustainability – Solar Sail
      10/15/24 Solar Cycle and Solar Max – National Solar Observatory
      11/19/24 Bonus Science
      12/03/24 Parker’s Perihelion
      Join the Meeting
      NASA HEAT is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      Dr. Erin Flynn-Evans of NASA Ames Research Center gave a short presentation of her research on how sunlight affects the behavioral health of astronauts. Share








      Details
      Last Updated Aug 06, 2024 Editor NASA Science Editorial Team Related Terms
      2023 Solar Eclipse 2024 Solar Eclipse Grades 5 – 8 for Educators Grades 9-12 for Educators Grades K – 4 for Educators Heliophysics Opportunities For Educators to Get Involved Parker Solar Probe (PSP) Science Activation Explore More
      4 min read AstroViz: Iconic Pillars of Creation Star in NASA’s New 3D Visualization


      Article


      23 hours ago
      4 min read GLOBE Alumna and Youth for Habitat Program Lead Named Scientist of the Month in Alaska


      Article


      1 week ago
      2 min read PLACES team publishes blog post on NextGenScience Blog


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
  • Check out these Videos

×
×
  • Create New...