Jump to content

NASA’s Commercial Partners Continue Progress on New Space Stations


Recommended Posts

  • Publishers
Posted

Three NASA-funded commercial space station partners are on track for the design and development of their orbital destinations and the transition of agency’s low Earth orbit needs from the International Space Station.

“We are ending the year on a high note with multiple important milestones being completed by our partners,” said Angela Hart, manager of the Commercial Low Earth Orbit Development Program at NASA Johnson Space Center in Houston. “Over the past few months, we have been able to dig into the details of the specific hardware and processes of these stations and are moving forward to multiple comprehensive design reviews next year.”

Axiom Space

axiom-hatch.jpg?w=1950
A hatch of the Axiom Hab One module, which will attach the module to the International Space Station.
Axiom Space

Axiom Space, which holds a firm-fixed price, indefinite-delivery, indefinite-quantity contract with NASA, is on schedule to launch and attach its first module, named Axiom Hab One, to the International Space Station in 2026. A total of four modules are planned for the Axiom Commercial Segment attached to the station. After the space station’s retirement, the Axiom Commercial Segment will separate and become a free-flying commercial destination named Axiom Station.

The hatches of the Axiom Hab One module are fabricated and prepared to undergo pressure testing to ensure a strong enough seal to withstand the vacuum of space. Manufacturing of the Axiom Hab One module is underway, and the critical design review will occur in 2024. During this review, NASA will assess the maturity of the Axiom Space design and provide feedback necessary to ensure safe operations when it is attached to the International Space Station.

Orbital Reef

blue-social-photo-orbital-reef.jpg?w=743
NASA engineers work alongside Blue Origin team members to conduct testing on prototype windows for the Orbital Reef commercial space station.
Blue Origin

Blue Origin, which NASA awarded a Space Act Agreement in 2021 to develop a free-flying space station named Orbital Reef, recently completed tests for a window system and a structural demonstration.

For the structural test, Blue Origin used a prototype of their space station’s main module, called the Core, to demonstrate the manufacturing processes required to build the final pressurized modules of the station. The test supports validation of the structural models and analytical tools for the Core’s structural design.

The International Space Station’s cupola, a room with seven windows overlooking the Earth, is the cornerstone of crewed missions for both research and astronaut morale. Orbital Reef will incorporate multiple windows on its Core, with each window spanning about twice the size of a car windshield. For the window test, Blue Origin evaluated the window integration structure design concept and its performance against the pressures and temperatures the windows will be exposed to while in orbit.

Starlab

tumblr-inline-ntljncskoz1tumwls-1280.jpg
A test unit of a water recovery system used on board the International Space Station in 2015 that helped transform urine from crew members into usable water.
NASA

NASA also awarded Starlab, a station being developed by Voyager Space’s Exploration Segment, a Space Act Agreement in 2021. Voyager Space recently announced a partnership with Airbus and Northrop Grumman. Voyager’s Exploration Segment, which includes Nanoracks, recently completed three milestones: a system definition review and the initiation of two pairs of milestones for an optical link demonstration and alternative urine processor demonstration.

Free-space optical, also called laser communications, allows for higher data rates and more energy-efficient communications than radio frequency communication systems. A major goal of the optical communication demonstration is to conduct testing from the International Space Station to the ground to establish the capabilities needed for Starlab. This initial milestone, within the optical link demonstration milestone pair scope, validated the Starlab testing plan. The optical link is planning to be tested next on the International Space Station.

As on the International Space Station, Starlab will recover purified water from urine to reduce water needed to resupply the station. Starlab will test an alternative urine processor under realistic operating conditions to validate functional performance and reduce implementation risk. Similar to the optical link demonstration, the processor demonstration is divided into a pair of milestones, with this initial completed milestone validating the testing plan.

Starlab’s third recently completed milestone was a system definition review. Teams examined how NASA’s potential commercial space station requirements aligned to the functional areas of the Starlab system to define the space station architecture. The completion of this milestone initiated preparations for the next step in the comprehensive review process, the preliminary design review.

NASA is working closely with commercial companies to develop new space stations capable of providing services to NASA and others, which will ensure that the U.S. maintains a continuous human presence in low Earth orbit and provides direct benefits for people on Earth. Leading into NASA’s future procurement for commercial low Earth orbit services, the agency recently released its third request for information.

For more information about NASA’s commercial space strategy, visit:

https://www.nasa.gov/humans-in-space/commercial-space/

Joshua Finch
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov

Rebecca Turkington
Johnson Space Center, Houston
281-483-5111
rebecca.turkington@nasa.gov

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA Administrator Bill Nelson, and NASA Deputy Administrator Pam Melroy, react as they are recognized by employees during a NASA agencywide all hands on Dec. 6, 2024, at the NASA Headquarters Mary W. Jackson Building in Washington.Credit: NASA/Bill Ingalls NASA Administrator Bill Nelson and Deputy Administrator Pam Melroy will speak with NASA astronauts Nick Hague, Butch Wilmore, Suni Williams, and Don Pettit on Monday, Jan. 6, to discuss their mission aboard the International Space Station.
      The Earth to space call coverage begins at 1:30 p.m. EST on NASA+. Learn how to watch NASA content through a variety of platforms, including social media. 
      NASA’s Commercial Crew Program has delivered on its goal of safe, reliable, and cost-effective transportation to and from the International Space Station from the United States through a partnership with American private industry. This partnership is opening access to low Earth orbit and the space station to more people, science, and commercial opportunities. The space station remains the springboard to NASA’s next great leap in space exploration, including future missions to the Moon and eventually, to Mars.
      For NASA’s launch blog and more information about the mission, visit:
      https://www.nasa.gov/commercialcrew
      -end-
      Meira Bernstein / Josh Finch
      Headquarters, Washington
      202-358-1100
      meira.b.bernstein@nasa.gov / joshua.a.finch@nasa.gov
      Share
      Details
      Last Updated Dec 30, 2024 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Commercial Crew Humans in Space ISS Research Johnson Space Center View the full article
    • By NASA
      Through NASA’s Artemis campaign, astronauts will land on the lunar surface and use a new generation of spacesuits and rovers as they live, work, and conduct science in the Moon’s South Pole region, exploring more of the lunar surface than ever before. Recently, the agency completed the first round of testing on three commercially owned and developed LTVs (Lunar Terrain Vehicle) from Intuitive Machines, Lunar Outpost, and Venturi Astrolab at NASA’s Johnson Space Center in Houston.NASA/Bill Stafford Venturi Astrolab’s FLEX, Intuitive Machines’ Moon RACER, and Lunar Outpost’s Eagle lunar terrain vehicle – three commercially owned and developed LTVs (Lunar Terrain Vehicle) – are pictured at NASA’s Johnson Space Center in Houston in this photo from Nov. 21, 2024.
      As part of an ongoing year-long feasibility study, each company delivered a static mockup of their vehicle to Johnson at the end of September, initiated rover testing in October and completed the first round of testing in December inside the Active Response Gravity Offload System (ARGOS) test facility. Lunar surface gravity is one-sixth of what we experience here on Earth, so to mimic this, ARGOS offers an analog environment that can offload pressurized suited subjects for various reduced gravity simulations.
      See how these LTVs were tested.
      Image credit: NASA/Bill Stafford
      View the full article
    • By NASA
      NASA has selected multiple companies to expand the agency’s Near Space Network’s commercial direct-to-Earth capabilities services, which is a mission-critical communication capability that allows spacecraft to transmit data directly to ground stations on Earth.
      The work will be awarded under new Near Space Network services contracts that are firm-fixed-price, indefinite-delivery/indefinite-quantity contracts. Project timelines span from February 2025 to September 2029, with an additional five-year option period that could extend a contract through Sept. 30, 2034. The cumulative maximum value of all Near Space Network Services contracts is $4.82 billion.
      Some companies received multiple task orders for subcategories identified in their contracts. Awards are as follows:
      Intuitive Machines of Houston will receive two task order awards on its contract for Subcategory 1.2 GEO to Cislunar Direct to Earth (DTE) Services and Subcategory 1.3 xCislunar DTE Services to support NASA’s Lunar Exploration Ground Segment, providing additional capacity to alleviate demand on the Deep Space Network and to meet the mission requirements for unique, highly elliptical orbits. The company also previously received a task order award for Subcategory 2.2 GEO to Cislunar Relay Services. Kongsberg Satellite Services of Tromsø, Norway, will receive two task order awards on its contract for Subcategory 1.1 Earth Proximity DTE and Subcategory 1.2 to support science missions in low Earth orbit and NASA’s Lunar Exploration Ground Segment, providing additional capacity to alleviate demand on the Deep Space Network. SSC Space U.S. Inc. of Horsham, Pennsylvania, will receive two task order awards on its contract for Subcategories 1.1 and 1.3 to support science missions in low Earth orbit and to meet the mission requirements for unique, highly elliptical orbits. Viasat, Inc. of Duluth, Georgia, will be awarded a task order on its contract for Subcategory 1.1 to support science missions in low Earth orbit. The Near Space Network’s direct-to-Earth capability supports many of NASA’s missions ranging from climate studies on Earth to research on celestial objects. It also will play a role in NASA’s Artemis campaign, which calls for long-term exploration of the Moon.
      NASA’s goal is to provide users with communication and navigation services that are secure, reliable, and affordable, so that all NASA users receive the services required by their mission within their latency, accuracy, and availability requirements.
      These awards demonstrate NASA’s ongoing commitment to fostering strong partnerships with the commercial space sector, which plays an essential role in delivering the communications infrastructure critical to the agency’s science and exploration missions.
      As part of the agency’s SCaN (Space Communications and Navigation) Program, teams at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, will carry out the work of the Near Space Network. The Near Space Network provides missions out to 1.2 million miles (2 million kilometers) with communications and navigation services, enabling spacecraft to exchange critical data with mission operators on Earth. Using space relays in geosynchronous orbit and a global system of government and commercial direct-to-Earth antennas on Earth, the network brings down terabytes of data each day.
      Learn more about NASA’s Near Space Network:
      https://www.nasa.gov/near-space-network
      -end-
      Joshua Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Jeremy Eggers
      Goddard Space Flight Center, Greenbelt, Maryland
      757-824-2958
      jeremy.l.eggers@nasa.gov
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The SpaceX Dragon Freedom spacecraft carrying NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov approaches the International Space Station as it orbited 261 miles above Ontario, Canada, near James Bay. NASA published a new report Thursday highlighting 17 agency mechanisms that have directly and indirectly supported the development and growth of the U.S. commercial space sector for the benefit of humanity.
      The report, titled Enabling America on the Space Frontier: The Evolution of NASA’s Commercial Space Development Toolkit, is available on the agency’s website.
      “This is the most extensive and comprehensive historical analysis produced by NASA on how it has contributed to commercial space development over the decades,” said Alex MacDonald, NASA chief economist. “These efforts have given NASA regular access to space with companies, such as SpaceX and Rocket Lab, modernizing our communications infrastructure, and even led to the first private lunar lander thanks to Intuitive Machines. With commercial space growth accelerating, this report can help agency leaders and stakeholders assess the numerous mechanisms that the agency uses to support this growth, both now and in the future.”
      Throughout its history, NASA has supported the development of the commercial space sector, not only leading the way in areas such as satellite communications, launch, and remote sensing, but also developing new contract and operational models to encourage commercial participation and growth. In the last three decades, NASA has seen the results of these efforts with commercial partners able to contribute more to missions across NASA domains, and increasingly innovative agency-led efforts to engage, nurture, and integrate these capabilities. These capabilities support the agency’s mission needs, and have seen a dramatic rise in importance, according to the report.
      NASA has nurtured technology, companies, people, and ideas in the commercial space sector, contributing to the U.S. and global economies, across four distinct periods in the agency’s history:
      1915–1960: NASA’s predecessor, the National Advisory Committee on Aeronautics (NACA), and NASA’s pre-Apollo years. 1961–1980: Apollo era. 1981–2010: Space shuttle era. 2011–present: Post-shuttle commercial era. Each of these time periods are defined by dominant technologies, programs, or economic trends further detailed in the report.
      Though some of these mechanisms are relatively recent, others have been used throughout the history of NASA and NACA, leading to some overlap. The 17 mechanisms are as follows:
      Contracts and Partnership Agreements Research and Technology Development (R&TD) Dissemination of Research and Scientific Data Education and Workforce Development Workforce External Engagement and Mobility Technology Transfer Technical Support Enabling Infrastructure Launch Direct In-Space Support Standards and Regulatory Framework Support Public Engagement Industry Engagement Venture Capital Engagement Market Stimulation Funding Economic Analysis and Due Diligence Capabilities Narrative Encouragement NASA supports commercial space development in everything from spaceflight to supply chains. Small satellite capabilities have inspired a new generation of space start-ups, while new, smaller rockets, as well as new programs are just starting. Examples include CLPS (Commercial Lunar Payload Services), commercial low Earth orbit destinations, human landing systems, commercial development of NASA spacesuits, and lunar terrain vehicles. The report also details many indirect ways the agency has contributed to the vibrance of commercial space, from economic analyses to student engagement.
      The agency’s use of commercial capabilities has progressed from being the exception to the default method for many of its missions. The current post-shuttle era of NASA-supported commercial space development has seen a level of technical development comparable to the Apollo era’s Space Race. Deploying the 17 commercial space development mechanisms in the future are part of NASA’s mission to continue encouraging commercial space activities.
      To learn more about NASA’s missions, please visit:
      https//:www.nasa.gov
      Share
      Details
      Last Updated Dec 19, 2024 EditorBill Keeter Related Terms
      Office of Technology, Policy and Strategy (OTPS) View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      With a shared commitment to fostering U.S. economic growth that benefits the American public, NASA’s Space Technology Mission Directorate and the Department of Commerce’s U.S. Patent and Trademark Office (USPTO) have signed a memorandum of understanding to strengthen collaboration in transferring federally-developed technology into the private sector, known as tech transfer. 

      “NASA has to invent new technology every day to carry out audacious missions like building an outpost on the Moon or looking for signs of life on the frozen moons of distant planets,” said Clayton Turner, associate administrator of the agency’s Space Technology Mission Directorate. “That is one of our greatest strengths. And with the help of the U.S. Patent and Trademark Office, we’re streamlining the process of getting those inventions into the hands of the public, boosting the economy, and benefiting everyone on Earth along the way.” 

      The agency’s Space Technology Mission Directorate and USPTO have been working together to share information and cooperate in mutual areas of interest, find ways to advance both agencies’ technology transfer missions, identify barriers to technology transfer, and coordinate initiatives to overcome those barriers. By combining expertise, both agencies are driving inclusive innovation and adoption of best practices, which will advance commercialization of the space agency’s most cutting-edge technology. 

      As part of the new agreement, NASA and USPTO are conducting an extensive study of technology transfer best practices across university and federal labs. The effort will increase opportunities for learning and growth in the technology transfer community. 

      “NASA’s Technology Transfer program and the U.S. Patent and Trademark Office had candid conversations with dozens of tech transfer experts about what we could do better,” said Dan Lockney, executive for NASA’s Technology Transfer program. “I can’t wait to share what we’ve learned with the entire tech transfer community nationwide. We look forward to addressing common challenges, and this paper will offer some assurance that we are on a solid, strong path to transferring technologies effectively.” 

      The two agencies will publish a detailed study of their findings, which will be shared at the Federal Laboratory Consortium for Technology Transfer’s national meeting in the spring. The effort will increase opportunities for learning and growth in the technology transfer community.

      “We are excited to join NASA’s Space Technology Mission Directorate in publishing and sharing this insight with the larger tech transfer community, so that everyone can benefit from the successes and lessons learned from our study participants,” said Parikha Solanki, senior advisor at the U.S. Patent and Trademark Office. “We hope that the impact of this study will extend well beyond the paper, such that it might be a springboard for ongoing dialogue and knowledge sharing between tech transfer practitioners across institutions, ultimately for the benefit of the public at large.”

      Learn more about NASA’s Technology Transfer Program: 
      https://go.nasa.gov/3VEZcmZ
      Share
      Details
      Last Updated Dec 19, 2024 Related Terms
      Technology Transfer Spinoffs Technology Technology Transfer & Spinoffs Explore More
      5 min read NASA Mars Orbiter Spots Retired InSight Lander to Study Dust Movement
      Article 3 days ago 3 min read NASA Gives The World a Brake
      Article 1 week ago 3 min read An Electronic Traffic Monitor for Airports 
      Ground traffic management program saves passengers and airlines time while cutting fuel costs
      Article 3 weeks ago Keep Exploring Discover Related Topics
      Technology Transfer & Spinoffs
      TechPort – Find it, Build it, Share it.
      Space Technology Research Grants
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...