Jump to content

NASA Sensor Produces First Global Maps of Surface Minerals in Arid Regions


Recommended Posts

  • Publishers
Posted
1-pia26115-emit-mineral-maps.png?w=2048
NASA’s EMIT produced its first global maps of hematite, goethite, and kaolinite in Earth’s dry regions using data from the year ending November 2023. The mission collected billions of measurements of the three minerals and seven others that may affect climate when lofted into the air as dust storms.
NASA/JPL-Caltech

EMIT delivers first-of-a-kind maps of minerals in Earth’s dust-source areas, enabling scientists to model the fine particles’ role in climate change and more.

NASA’s EMIT mission has created the first comprehensive maps of the world’s mineral dust-source regions, providing precise locations of 10 key minerals based on how they reflect and absorb light. When winds loft these substances into the air, they either cool or warm the atmosphere and Earth’s surface, depending on their composition. Understanding their abundance around the globe will help researchers predict future climate impacts.

Launched to the International Space Station in 2022, EMIT – short for Earth Surface Mineral Dust Source Investigation – is an imaging spectrometer developed by NASA’s Jet Propulsion Laboratory in Southern California. The mission fills a crucial need among climate scientists for more detailed information on surface mineral composition.

Surveying Earth’s surface from about 250 miles (410 kilometers) above, EMIT scans broad areas that would be impossible for a geologist on the ground or instruments carried by aircraft to survey, yet it does this while achieving effectively the same level of detail.

e1-pia26115-emit-mineral-maps-fig-a.png?
EMIT, a NASA mission launched to the International Space Station in 2022, mapped hematite, goethite, and kaolinite in North Africa and the Arabian Peninsula. The three minerals are among 10 key substances the mission studied that are thought to influence climate change.
NASA/JPL-Caltech

To date, the mission has captured more than 55,000 “scenes” – 50-by-50-mile (80-by-80-kilometer) images of the surface – in its study area, which includes arid regions within a 6,900-mile-wide (11,000-kilometer-wide) belt around Earth’s mid-section. Taken together, the scenes comprise billions of measurements – more than enough to create detailed maps of surface composition.

The mission has also demonstrated a range of additional capabilities in its 17 months in orbit, including detecting plumes of methane and carbon dioxide being emitted by landfills, oil facilities, and other infrastructure.

“Wherever we need chemistry to understand something on the surface, we can do that with imaging spectroscopy,” said Roger Clark, an EMIT science team member and senior scientist at the Planetary Science Institute in Tucson, Arizona. “Now, with EMIT, we’re going to see the big picture, and that’s certainly going to open some eyes.” 

Dust and Climate

Scientists have long known that airborne mineral dust affects the climate. They know that darker, iron oxide-rich substances absorb the Sun’s energy and warm the surrounding air, while non-iron-based, brighter substances reflect light and heat, cooling the air. Whether those effects have a net warming or cooling impact, however, has remained uncertain.

Researchers have an idea of how dust travels through the atmosphere, but the missing piece has been the composition – the color, essentially – of the surface in the places dust typically originates, which until now was derived from fewer than 5,000 sample sites around the world. Based on billions of samples, EMIT’s maps offer much more detail.

“We’ll take the new maps and put them into our climate models,” said Natalie Mahowald, EMIT’s deputy principal investigator and an Earth system scientist at Cornell University in Ithaca, New York. “And from that, we’ll know what fraction of aerosols are absorbing heat versus reflecting to a much greater extent than we have known in the past.”

Dust and Ecosystems

Beyond harnessing EMIT’s mineral data to improve Earth climate modeling, scientists can use the information to study dust’s impact on the ecosystems where it lands. There’s strong evidence that particles settling in the ocean can spur phytoplankton blooms, which can have implications for aquatic ecosystems and the planet’s carbon cycle. Scientists also have shown that dust originating in the Andes of South America, as well as in parts of northern and sub-Saharan Africa, provides nutrients for rainforest growth in the Amazon basin.

EMIT data can enable researchers to pinpoint the sources of mineral dust and get a more detailed look at its composition, helping estimate the travel of key elements such as phosphorus, calcium, and potassium, which are thought to factor into this long-distance fertilization.

“EMIT could help us to build more intricate and finely resolved dust-transport models to track the movement of those nutrients across long distances,” said Eric Slessarev, a soil researcher at Yale University in New Haven, Connecticut. “That will help us to better understand the chemistry of soils in places very far from the dust-generating regions.” 

A New Generation of Science

Aside from tracking 10 key minerals that are part of its primary mission, EMIT data is being used to identify a range of other minerals, types of vegetation, snow and ice, and even human-produced substances at or near Earth’s surface. And with vastly more measurements at their disposal, researchers will be able to find statistical relationships between surface characteristics and other features of interest.

For example, they might spot signals in EMIT data that correspond with the presence of rare-earth elements and lithium-bearing minerals, said Robert Green, a senior research scientist at JPL and EMIT’s principal investigator. This new information could be used to look for those substances in previously unknown places.

“To this point we simply haven’t known the distribution of surface minerals over huge swaths of the planet,” said Phil Brodrick, a JPL data scientist who spearheaded the creation of the mineral maps. With the EMIT data, “there will likely be a new generation of science that comes out that we don’t know about yet, and that’s a really cool thing.”

More About the Mission

EMIT was selected from the Earth Venture Instrument-4 solicitation under the Earth Science Division of NASA’s Science Mission Directorate and was developed at NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech in Pasadena, California. The instrument’s data is available at the NASA Land Processes Distributed Active Archive Center for use by other researchers and the public.

To learn more about the mission, visit:

https://earth.jpl.nasa.gov/emit/

News Media Contacts

Andrew Wang / Jane J. Lee
Jet Propulsion Laboratory, Pasadena, Calif.
626-379-6874 / 818-354-0307
andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov

2023-180

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Skywatching Skywatching Home What’s Up Eclipses Explore the Night Sky Night Sky Network More Tips and Guides FAQ Four Planets in One View!
      Each evening this month, enjoy a sweeping view of four bright planets at once. Also look for a close approach of Venus and Saturn, Mars occulted by the Moon, and meteors!
      Skywatching Highlights
      January 3 – Quadrantid meteor shower peaks: This is a moderate shower, usually delivering 20 to 30 meteors per hour under clear, dark skies at its peak. No interference from the Moon makes this year’s peak a better bet for meteor watching.
      January 13 – Moon Occults Mars: For skywatchers in the continental U.S. and Eastern Canada, the Moon will appear to pass in front of Mars this evening. Times vary by location, so check your favorite skywatching app for details.
      January 17-18 – Venus and Saturn conjunction: Over a couple of weeks, the two planets come within just a couple of finger widths’ distance apart in the sky (about 2 degrees). They’re at their closest on the 17th and 18th. 
      All month – Four planets Visible: In the first couple of hours after dark, you’ll find Venus and Saturn in the southwest, Jupiter high overhead, and Mars in the east. (Uranus and Neptune are there too, but a telescope is needed to see them.) Planets always appear a long a line on the sky to the “alignment” isn’t special. What’s less common is seeing four or five bright planets at once, which doesn’t happen every year. Is it a “planet parade”? This isn’t a technical term in astronomy, so call it what you wish!
      All month – Mars at Opposition: The Red Planet is directly opposite the Sun from Earth and shines brightly all night. It’s in the east as night falls and in the southwest at dawn.
      Transcript
      What’s Up for January?
      Cue the planet parade, Saturn and Venus cross paths, Mars expresses its opposition, and the outlook for the Quadrantid meteors.
      In January, you’ll have the opportunity to take in four bright planets in a single, sweeping view.
      Sky chart showing the planetary lineup visible after dark in January 2025. NASA/JPL-Caltech All month after dark, you’ll find Venus and Saturn in the southwest for the first couple of hours, while Jupiter shines brightly high overhead, and Mars rises in the east. Uranus and Neptune are there too, technically, but they don’t appear as “bright planets.” These multi-planet viewing opportunities aren’t super rare, but they don’t happen every year, so it’s worth checking it out. 
      Now, these events are sometimes called “alignments” of the planets, and while it’s true that they will appear more or less along a line across the sky, that’s what planets always do. That line is called the ecliptic, and it represents the plane of the solar system in which the planets orbit around the Sun. This is, incidentally, why we sometimes observe planets appearing to approach closely to each other on the sky, as we view them along a line while they careen around the cosmic racetrack.
      Sky chart showing Venus and Saturn appearing quite close together on Jan. 17 and 18, 2025. NASA/JPL-Caltech This is exactly what we’ll be seeing from Venus and Saturn as they head for a super close approach in mid-January. After the beginning of the month, they quickly get closer and closer each evening, appearing at their most cozy on the 17th and 18th before going their separate ways. Remember, they’re really hundreds of millions of miles apart in space, so when you observe them, you’re staring clear across the solar system!  
      Mars reaches “opposition” this month, which is when the planet lies directly on the opposite side of Earth from the Sun, forming a straight line. This is around the time when the planet is at its closest to Earth, making it appear at its biggest and brightest. For Mars, oppositions happen about every two years. This one won’t be the most spectacular ever, but it’s still closer than average, and provides a great opportunity to observe the nearby planet where NASA has five missions currently operating. 
      And on the 13th, the full Moon cozies up to Mars, appearing super close to the Red Planet that evening. Across the U.S. and Eastern Canada, the Moon will appear to pass in front of Mars over a couple of hours, as the pair rise into the eastern sky. Mars also will be the lone planet in the sky on January mornings. You’ll find it hanging out in the west in morning twilight.
      The Quadrantid meteors peak in the early morning hours on January 3rd. Interference from moonlight won’t be a problem, as the Moon is a mere crescent and sets early in the night. The way to see the most meteors is to observe after midnight from clear, dark skies away from bright city lights, and let your eyes adapt to the dark. The meteor rate will be highest as dawn approaches, and you’ll see more meteors from rural locations than in the suburbs. Now, this is a shower best seen from the Northern Hemisphere, and observers in the Northwest and Pacific region will likely have the best viewing this year.
      Here are the phases of the Moon for January:
      The phases of the Moon for January 2025. NASA/JPL-Caltech Stay up to date on all of NASA’s missions exploring the solar system and beyond at science.nasa.gov. I’m Preston Dyches from NASA’s Jet Propulsion Laboratory, and that’s What’s Up for this month.
      Keep Exploring Discover More Topics From NASA
      Solar System Exploration



      Planets



      Moons



      Asteroids, Comets & Meteors


      View the full article
    • By NASA
      NASA Administrator Bill Nelson, and NASA Deputy Administrator Pam Melroy, react as they are recognized by employees during a NASA agencywide all hands on Dec. 6, 2024, at the NASA Headquarters Mary W. Jackson Building in Washington.Credit: NASA/Bill Ingalls NASA Administrator Bill Nelson and Deputy Administrator Pam Melroy will speak with NASA astronauts Nick Hague, Butch Wilmore, Suni Williams, and Don Pettit on Monday, Jan. 6, to discuss their mission aboard the International Space Station.
      The Earth to space call coverage begins at 1:30 p.m. EST on NASA+. Learn how to watch NASA content through a variety of platforms, including social media. 
      NASA’s Commercial Crew Program has delivered on its goal of safe, reliable, and cost-effective transportation to and from the International Space Station from the United States through a partnership with American private industry. This partnership is opening access to low Earth orbit and the space station to more people, science, and commercial opportunities. The space station remains the springboard to NASA’s next great leap in space exploration, including future missions to the Moon and eventually, to Mars.
      For NASA’s launch blog and more information about the mission, visit:
      https://www.nasa.gov/commercialcrew
      -end-
      Meira Bernstein / Josh Finch
      Headquarters, Washington
      202-358-1100
      meira.b.bernstein@nasa.gov / joshua.a.finch@nasa.gov
      Share
      Details
      Last Updated Dec 30, 2024 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Commercial Crew Humans in Space ISS Research Johnson Space Center View the full article
    • By NASA
      President Carter, wife Rosalynn and daughter Amy are shown a scale model of the crawler that transported the total shuttle launch configuration to Pad 39 from the Vehicle Assembly Building by NASA’s Kennedy Space Center Director Lee Scherer in 1978.NASA The following is a statement from NASA Administrator Bill Nelson on Sunday’s passing of President Jimmy Carter:
      “President Carter was the pinnacle of a public servant, dedicating his life to making our world a better place. He showed us each and every person has the power to make a difference. From providing for those in need, protecting the environment, and championing civil and human rights, President Carter was a good man who always strove to do what was right. He embodied the very best of humanity and his life and legacy are an example to the United States and the world.
      “NASA’s Voyager 1, the most distant human-made object from Earth, carries a message from President Carter that captures his core goodness and grace:
      “’If one such civilization intercepts Voyager and can understand these recorded contents, here is our message: This is a present from a small distant world, a token of our sounds, our science, our images, our music, our thoughts, and our feelings. We are attempting to survive our time so we may live into yours. We hope someday, having solved the problems we face, to join a community of galactic civilizations. This record represents our hope and our determination, and our good will in a vast and awesome universe.’   
      “President Carter understood an important truth: that we find common ground when we look to the stars. His words will forever belong to the heavens, and his legacy has forever bettered our country – and our Earth. The NASA family and I are keeping the Carter family close in our thoughts. May President Carter rest in peace.”
      -end-
      Meira Bernstein / Cheryl Warner
      Headquarters, Washington
      202-358-1600
      meira.b.bernstein@nasa.gov / cheryl.m.warner@nasa.gov
      Share
      Details
      Last Updated Dec 29, 2024 EditorJennifer M. DoorenLocationNASA Headquarters View the full article
    • By NASA
      5 Min Read NASA’s Parker Solar Probe Makes History With Closest Pass to Sun
      An artist’s concept showing Parker Solar Probe. Credits:
      NASA/APL Operations teams have confirmed NASA’s mission to “touch” the Sun survived its record-breaking closest approach to the solar surface on Dec. 24, 2024.
      Breaking its previous record by flying just 3.8 million miles above the surface of the Sun, NASA’s Parker Solar Probe hurtled through the solar atmosphere at a blazing 430,000 miles per hour — faster than any human-made object has ever moved. A beacon tone received late on Dec. 26 confirmed the spacecraft had made it through the encounter safely and is operating normally.
      This pass, the first of more to come at this distance, allows the spacecraft to conduct unrivaled scientific measurements with the potential to change our understanding of the Sun.
      Flying this close to the Sun is a historic moment in humanity’s first mission to a star.
      Nicky fox
      NASA Associate Administrator, Science Mission Directorate
      “Flying this close to the Sun is a historic moment in humanity’s first mission to a star,” said Nicky Fox, who leads the Science Mission Directorate at NASA Headquarters in Washington. “By studying the Sun up close, we can better understand its impacts throughout our solar system, including on the technology we use daily on Earth and in space, as well as learn about the workings of stars across the universe to aid in our search for habitable worlds beyond our home planet.”
      NASA’s Parker Solar Probe survived its record-breaking closest approach to the solar surface on Dec. 24, 2024. Breaking its previous record by flying just 3.8 million miles above the surface of the Sun, the spacecraft hurtled through the solar atmosphere at a blazing 430,000 miles per hour — faster than any human-made object has ever moved.
      Credits: NASA This video can be freely shared and downloaded at https://svs.gsfc.nasa.gov/14741.
      Parker Solar Probe has spent the last six years setting up for this moment. Launched in 2018, the spacecraft used seven flybys of Venus to gravitationally direct it ever closer to the Sun. With its last Venus flyby on Nov. 6, 2024, the spacecraft reached its optimal orbit. This oval-shaped orbit brings the spacecraft an ideal distance from the Sun every three months — close enough to study our Sun’s mysterious processes but not too close to become overwhelmed by the Sun’s heat and damaging radiation. The spacecraft will remain in this orbit for the remainder of its primary mission.
      “Parker Solar Probe is braving one of the most extreme environments in space and exceeding all expectations,” said Nour Rawafi, the project scientist for Parker Solar Probe at the Johns Hopkins Applied Physics Laboratory (APL), which designed, built, and operates the spacecraft from its campus in Laurel, Maryland. “This mission is ushering a new golden era of space exploration, bringing us closer than ever to unlocking the Sun’s deepest and most enduring mysteries.”
      Close to the Sun, the spacecraft relies on a carbon foam shield to protect it from the extreme heat in the upper solar atmosphere called the corona, which can exceed 1 million degrees Fahrenheit. The shield was designed to reach temperatures of 2,600 degrees Fahrenheit — hot enough to melt steel — while keeping the instruments behind it shaded at a comfortable room temperature. In the hot but low-density corona, the spacecraft’s shield is expected to warm to 1,800 degrees Fahrenheit.
      The spacecraft’s record close distance of 3.8 million miles may sound far, but on cosmic scales it’s incredibly close. If the solar system was scaled down with the distance between the Sun and Earth the length of a football field, Parker Solar Probe would be just four yards from the end zone — close enough to pass within the tenuous outer atmosphere of the Sun known as the corona. NASA/APL “It’s monumental to be able to get a spacecraft this close to the Sun,” said John Wirzburger, the Parker Solar Probe mission systems engineer at APL. “This is a challenge the space science community has wanted to tackle since 1958 and had spent decades advancing the technology to make it possible.”
      By flying through the solar corona, Parker Solar Probe can take measurements that help scientists better understand how the region gets so hot, trace the origin of the solar wind (a constant flow of material escaping the Sun), and discover how energetic particles are accelerated to half the speed of light.
      “The data is so important for the science community because it gives us another vantage point,” said Kelly Korreck, a program scientist at NASA Headquarters and heliophysicist who worked on one of the mission’s instruments. “By getting firsthand accounts of what’s happening in the solar atmosphere, Parker Solar Probe has revolutionized our understanding of the Sun.”
      Previous passes have already aided scientists’ understanding of the Sun. When the spacecraft first passed into the solar atmosphere in 2021, it found the outer boundary of the corona is wrinkled with spikes and valleys, contrary to what was expected. Parker Solar Probe also pinpointed the origin of important zig-zag-shaped structures in the solar wind, called switchbacks, at the visible surface of the Sun — the photosphere.
      Since that initial pass into the Sun, the spacecraft has been spending more time in the corona, where most of the critical physical processes occur.
      This conceptual image shows Parker Solar Probe about to enter the solar corona. NASA/Johns Hopkins APL/Ben Smith “We now understand the solar wind and its acceleration away from the Sun,” said Adam Szabo, the Parker Solar Probe mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This close approach will give us more data to understand how it’s accelerated closer in.”
      Parker Solar Probe has also made discoveries across the inner solar system. Observations showed how giant solar explosions called coronal mass ejections vacuum up dust as they sweep across the solar system, and other observations revealed unexpected findings about solar energetic particles. Flybys of Venus have documented the planet’s natural radio emissions from its atmosphere, as well as the first complete image of its orbital dust ring.
      So far, the spacecraft has only transmitted that it’s safe, but soon it will be in a location that will allow it to downlink the data it collected on this latest solar pass.
      The data that will come down from the spacecraft will be fresh information about a place that we, as humanity, have never been.
      Joe Westlake
      Heliophysics Division Director, NASA Headquarters
      “The data that will come down from the spacecraft will be fresh information about a place that we, as humanity, have never been,” said Joe Westlake, the director of the Heliophysics Division at NASA Headquarters. “It’s an amazing accomplishment.”
      The spacecraft’s next planned close solar passes come on March 22, 2025, and June 19, 2025.
      By Mara Johnson-Groh
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact: Sarah Frazier
      Share








      Details
      Last Updated Dec 27, 2024 Editor Abbey Interrante Related Terms
      Goddard Space Flight Center Heliophysics Heliophysics Division Parker Solar Probe (PSP) Science & Research Science Mission Directorate Solar Flares Solar Wind Space Weather The Sun The Sun & Solar Physics Explore More
      1 min read NASA’s Parker Solar Probe Touches The Sun For The First Time


      Article


      3 years ago
      4 min read Final Venus Flyby for NASA’s Parker Solar Probe Queues Closest Sun Pass


      Article


      2 months ago
      6 min read 10 Things to Know About Parker Solar Probe
      On Aug. 12, 2018, NASA launched Parker Solar Probe to the Sun, where it will…


      Article


      6 years ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By European Space Agency
      In a world first, ESA and Telesat have successfully connected a Low Earth Orbit (LEO) satellite to the ground using 5G Non-Terrestrial Network (NTN) technology in the Ka-band frequency range, marking a crucial step towards making space-based connections as simple as using a mobile phone.
      View the full article
  • Check out these Videos

×
×
  • Create New...