Jump to content

The Marshall Star for December 6, 2023


Recommended Posts

  • Publishers
Posted
23 Min Read

The Marshall Star for December 6, 2023

Marshall team members and their family members smile cheerfully as they pose in front of the tree after it was lit. “The holiday season is such a special time for so many people,” Pelfrey said. “To see all the Marshall team members out celebrating with their kids makes for a special day. It was really great to see.”

Marshall Kicks Off Holiday Season with Tree-Lighting Ceremony

NASA’s Marshall Space Flight Center celebrated its annual tree-lighting ceremony in the courtyard of Building 4221 on Nov 30.

NASA Marshall Space Flight Center team members and family members form a circle as they bask in the light of the 32-foot artificial tree decorated with blue lights and a ten-pointed star representing each NASA center.
NASA Marshall Space Flight Center team members and family members form a circle as they bask in the light of the 32-foot artificial tree decorated with blue lights and a 10-pointed star representing each NASA center.
NASA/Charles Beason

Marshall team members and their children gathered for the lighting of the 32-foot artificial tree decorated with blue lights and a 10-pointed star representing each NASA center.

From left, Robert Champion, director of the Office of Center Operations at Marshall, Santa Claus, Lance D. Davis, Marshall news chief who is dressed as an elf, and Bill Marks, deputy director of Center Operations, smile for a photo after the tree-lighting ceremony.
From left, Robert Champion, director of the Office of Center Operations at Marshall, Santa Claus, Lance D. Davis, Marshall news chief who is dressed as an elf, and Bill Marks, deputy director of Center Operations, smile for a photo after the tree-lighting ceremony.
NASA/Charles Beason

Joseph Pelfrey, acting center director, opened the ceremony by welcoming team members and reflecting on some of the accomplishments at Marshall in 2023.

Marshall team members and their family members smile cheerfully as they pose in front of the tree after it was lit. “The holiday season is such a special time for so many people,” Pelfrey said. “To see all the Marshall team members out celebrating with their kids makes for a special day. It was really great to see.”
Marshall team members and their family members smile cheerfully as they pose in front of the tree after it was lit. “The holiday season is such a special time for so many people,” Pelfrey said. “To see all the Marshall team members out celebrating with their kids makes for a special day. It was really great to see.”
NASA/Charles Beason

“On behalf of the entire leadership team, I want to thank you so much for all the hard work and the accomplishments we’ve had,” Pelfrey said. “The amazing missions we’ve worked will lead us to the future. We want to make sure that everybody has a great holiday season where everyone takes some time to rest for next year. It’s going to be a great year for Marshall and NASA.”

A young boy gleefully gives an open mouth smile after meeting Santa Claus. Children were given the chance to meet and take photos with Santa in the foray of Building 4221. There was also hot chocolate and cookies for attendees.
A young boy gleefully gives an open mouth smile after meeting Santa Claus. Children were given the chance to meet and take photos with Santa in the foray of Building 4221. There was also hot chocolate and cookies for attendees.
NASA/Charles Beason

› Back to Top

Marshall Team Members March in 9th Annual Huntsville Christmas Parade

By Celine Smith

Team members from NASA’s Marshall Space Flight Center came together to spread holiday cheer with thousands on Dec. 5 during the 9th annual Huntsville Christmas Parade.

The Marshall float displayed a test version of the RS-25 engine – the workhorse engine that powered the space shuttle for more than three decades and is now used to power NASA’s SLS (Space Launch System) rocket for Artemis missions. The engine was outfitted with a handmade Santa Claus sleigh full of Christmas presents, crafted by Marshall’s Model and Exhibits Shop.

A Santa Claus sleigh, powered by an RS-25 rocket engine, makes its way through the 9th annual Huntsville Christmas Parade on Dec. 5. The float was designed by team members from NASA’s Marshall Space Flight Center.
A Santa Claus sleigh, powered by an RS-25 rocket engine, makes its way through the 9th annual Huntsville Christmas Parade on Dec. 5. The float was designed by team members from NASA’s Marshall Space Flight Center.
NASA/Drew Davis

Children wowed and cheered as the sleigh passed through the city streets. Marshall volunteers dressed in fun holiday gear walked alongside the float passing out candy and stickers to attendees.

The Marshall team was awarded third place for Best Float Design by the parade committee. Winning first place was the City of Huntsville Landscape Management, while second place went to the Ice Queen Alabama float.

“It’s amazing to see Huntsville’s growth through all the organizations that participated by making a float,” said Chad Emerson, grand marshal of the parade and managing director of Huntsville’s City Football Club.

The parade was presented by Bank Independent and hosted by radio station Mix 96.9, along with the VBC (Von Braun Center). This year, the parade’s theme was Christmas through the decades. More than 80 organizations decorated their floats to reflect Christmas in the past.

The parade had plenty of fun-filled activities for children in the VIP FunZone, sponsored by Lander’s McLarty Chevrolet. There, children took pictures with Santa Claus, met Elsa and Anna from Frozen, built gingerbread houses, and drank hot chocolate. The ticket also provided access to bleachers in the VBC’s Saturn Ballroom parking lot, where families could enjoy the parade. A donation of clothing for Kids to Love was all that was needed for tickers to the VIP FunZone.

Smith, a Media Fusion employee, supports the Marshall Office of Communications.

› Back to Top

Julie Bassler Named Manager of Marshall’s Science and Technology Office

Julie Bassler has been named as the manager in the Science and Technology Office at NASA’s Marshall Space Flight Center, upon the retirement of Dave Burns at the end of December.

Bassler will lead the organization responsible for exploring planets, conducting science research, and developing new technologies. This includes creating and managing academic and industrial partnerships; managing and conducting basic scientific research, data science, and instrument development; managing technology development; hosting major agency programs in Planetary Missions and Technology Demonstration Mission offices; and operating science and technology projects.

Julie Bassler
Julie Bassler has been named as the manager in the Science and Technology Office at NASA’s Marshall Space Flight Center, upon the retirement of Dave Burns at the end of December.
NASA/Danielle Burleson

Bassler has led numerous projects and programs during the past 34 years in support of NASA’s goals, which have spanned the areas of human space flight, robotic missions, science payloads, and technology developments.

Since 2018, Bassler has been the manager of the Stages Office of NASA’s SLS (Space Launch System) Program at Marshall. She led the SLS core stage team through the design, development, test, and successful inaugural launch of the 212-foot core stage on the Artemis 1 mission. Prior to that selection, Bassler was deputy element manager of the SLS Stages Office for five years and integration manager for one year.

In 2008, Bassler was named project manager for the International Lunar Network Anchor Nodes mission and the Robotic Lunar Lander Development Project in the Lunar Quest Program in the Science Mission Directorate at Marshall.

From 2006 to 2008, she was deputy program manager of the Lunar Precursor Robotic Program and supervisor of Marshall’s Lunar Precursor Robotic Office. In 2004, Bassler established and led Marshall’s first Technology and Capability Development Projects Office in support of the NASA Exploration Mission.

From 2002 to 2004, she was program manager of the International Space Station Materials Science Research Rack. Prior to that role, Bassler was business manager for all microgravity science racks and payload for the space station. She joined Marshall as a safety engineer for the space station in 1997 after working for several years at Johnson Space Center on both the International Space Station and Space Shuttle programs.

Her honors include a Meritorious Presidential Rank award, two NASA Outstanding Leadership Medals, Exceptional Achievement Medal, Space Flight Awareness award, Silver Achievement Medal, a Redstone Leadership Women Rocks award, and numerous other individual and group achievement awards.

A native of Breese, Illinois, Bassler received a bachelor’s degree in aerospace engineering from Parks College of St. Louis University in Cahokia, Illinois, and a master’s in space science from the University of Houston in Clear Lake, Texas.

She and her husband of 35 years, Brad, live in New Market. They have four children.

› Back to Top

Six Finalists Advance in NASA’s $3.5 Million Lunar Regolith Challenge

By Savannah Bullard

The stage is set for the finale of NASA’s Break the Ice Lunar Challenge.

Conceived in 2020, Break the Ice tasked innovators with creating robotic systems that can traverse the volatile terrain of the Lunar South Pole. These robots must be able to dig into the Moon’s regolith – the dusty, icy “dirt” that makes up the lunar surface – and transport it to a secondary location for in-situ resource utilization processing.

A Graphic of the Break the Ice Lunar Challenge Logo placed on a photo of the Moon.

If deployed on a NASA mission, these systems would operate in the permanently shadowed regions of the Moon, an area that receives no sunlight. These technologies must survive bitterly cold conditions and cannot rely on solar power regeneration. If successful, NASA can excavate the regolith from this area and use the resources derived from the materials, like frozen water, to aid astronauts living on the Moon.

“Our goal is to provide solutions to make living on the Moon a reality, and Break the Ice directly contributes to that mission,” said Denise Morris, program manager for NASA’s Centennial Challenges. “Excavating lunar regolith before humans arrive on the Moon will allow us to find uses for that material before they get there – if we could build a lunar habitat out of the regolith or extract the water for our astronauts to drink, that means less mass on our vehicles and less work for our crews.”

Phase 1 of the competition focused on designing systems that could achieve three components: excavation, travel, and delivery. Of the 31 teams who submitted eligible proposals, 13 won cash prizes ranging from $25,000 to $125,000.

Phase 2, Level 1 opened in June 2022. Consisting of Phase 1 winners and newcomers, 25 teams developed their initial designs into prototypes with technical reports, engineering designs, and test plans. Six months later, 13 U.S. semifinalists were named, each earning an equal share of $500,000. Two international teams were also recognized as semifinalists, though they were not eligible to receive monetary prizes from NASA.

In Phase 2, Level 2, the finalist pool comprised of garage inventors, academics, industry professionals, and hobbyists from 11 U.S. states, the Netherlands, and India. Nine of these teams attempted a 15-day demonstration trial at their own testing sites to prove the capabilities of their prototypes. The teams live-streamed the tests and took turns hosting representatives from Centennial Challenges for in-person observations.

“What impresses me the most with this batch of competitors is their innate ability to each find unique ways to approach the solution,” said Break the Ice Challenge Manager Naveen Vetcha, who supports Centennial Challenges through Jacobs Space Exploration Group. “Each site visit provided our subject matter experts with new ways to think about this technology and operations, and some of these teams expanded our expectations for how to bridge this technology gap.”

The Phase 2, Level 2 winning teams are:

  • 1st place ($300,000): Starpath Robotics (San Francisco, California)
  • 2nd place ($200,000): Terra Engineering (Gardena, California)
  • 3rd place ($125,000): The Ice Diggers (Golden, Colorado)

Three teams finished as runners up ($75,000 each):

  • Cislune Excavators (Los Angeles, California)
  • Space Trajectory (Brookings, South Dakota)
  • MTU Planetary Surface Technology Development Lab (Houghton, Michigan)

In this last round of competitions, scheduled to take place in the spring of 2024, the above winners will bring their prototypes to a NASA-designated test facility for a series of head-to-head matchups. Expected testing includes excavation under reduced gravity – using gravity off-loading – and transportation over complex terrain, including rocks, craters, slopes, turns, and loose granular soil.

“Bringing the competitors to one central location is the best way to end a challenge like Break the Ice because it provides us with an opportunity to observe and test their designs in a common relevant environment,” said Mark Hilburger, a senior research engineer in the Space Technology Exploration Directorate at NASA’s Langley Research Center and principal technologist for Break the Ice. “These technologies must be thoroughly tested to survive on the Moon, so a test opportunity like this helps the teams prove if their prototypes are up to the task.”

This final round of competition will offer up to $1.5 million in cash prizes, split between first place ($1 million) and second place ($500,000). NASA will also award opportunities for teams to test their concepts at one of the agency’s Thermal Vacuum Chambers, which can simulate the temperature and atmospheric pressure conditions at the Lunar South Pole.

The Break the Ice Lunar Challenge is a NASA Centennial Challenge led by the agency’s Marshall Space Flight Center with support from NASA’s Kennedy Space Center. Centennial Challenges are part of the Prizes, Challenges, and Crowdsourcing program led by NASA’s Space Technology Mission Directorate and managed at Marshall. Ensemble Consultancy supports the management of competitors for this challenge.

Bullard, a Manufacturing Technical Solutions employee, supports the Marshall Office of Communications.

› Back to Top

New Course from NASA Helps Build Open, Inclusive Science Community

NASA released its free Open Science 101 curriculum Dec. 6 to empower researchers, early career scientists, and underrepresented communities with the knowledge and tools necessary to embrace open science practices.

The curriculum’s initial goal is to train 20,000 scientists and researchers over the next five years, enabling them to embrace open science practices and maximize the impact of their work.

“NASA is committed to ensuring people around the world have equal and open access to science data whenever they need it,” said NASA Administrator Bill Nelson. “This innovative curriculum will support the White House’s Year of Open Science to help people make informed, research-based decisions that will benefit humanity and improve life here on Earth.”

Developed by NASA’s Transform to Open Science initiative in collaboration with subject matter experts, the curriculum is designed to meet researchers at every stage of their open science journey – catering to those new to open science, established researchers, and aspiring students looking to embark on scientific careers. It also helps prepare researchers to incorporate required open science data management plans when applying for NASA grant funding.

“We believe education is a shared endeavor that can be achieved through community-driven learning,” said Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters. “Our new curriculum is a testament to the incredible potential that emerges when open science experts from academia, industry, and government unite. With this initial rollout, we’re not just launching a course; we’re igniting a movement where learners actively shape the course’s trajectory.”

In its initial form, the Open Science 101 curriculum presents an introduction to the world of open science while also setting the stage for its continued evolution. It introduces learners to definitions, tools, and resources and provides valuable best practices throughout the scientific workflow. All five modules of the course are accessible through an open online platform, where participants can learn at their own pace. In addition to the platform, the modules will also be covered in virtual and in-person instructor-led training sessions.

To further support engagement and knowledge exchange, NASA has forged strategic partnerships with scientific associations, allowing open science to be taught during large annual meetings, special science team summer schools, and other events. These initiatives aim to create a dynamic learning environment where participants can interact with experts, ask questions, and explore the frontiers of open science. The diversity in learning options ensures that participants can choose the mode that best suits their learning style and schedule, optimizing the learning experience.

The Open Science 101 curriculum is accessible to all interested individuals, aligning with NASA’s commitment to inclusivity and promoting equitable access to scientific resources. 

The TOPS Project Office is located at NASA’s Marshall Space Flight Center. The team at Marshall supports the TOPS project by providing project coordination, digital resources, and communications support for the duration of the project. The office complements existing TOPS activities led by the Chief Science Data Office, including ROSES elements, events, partnerships, and activities at NASA centers.

Visit Transform to Open Science to learn more, register for Open Science 101, and begin taking the curriculum.

› Back to Top

NASA Continues Progress on Artemis III Rocket Adapter with Key Joint Installation

Engineers and technicians at NASA’s Marshall Space Flight Center recently installed a key component called the frangible joint assembly onto the adapter that connects the core stage to the upper part of NASA’s SLS (Space Launch System) rocket.

The cone-shaped launch vehicle stage adapter, seen in yellow, is in a production area.
Engineers and technicians at NASA’s Marshall Space Flight Center recently installed a key component called the frangible joint assembly onto the adapter that connects the core stage to the upper part of NASA’s SLS rocket.
NASA/Sam Lott

The cone-shaped stage adapter, called the launch vehicle stage adapter, will be part of the SLS mega rocket that will power NASA’s Artemis III mission to the Moon. The frangible joint sits atop the adapter and operates as a separation mechanism. The frangible joint is designed to break apart upon command, allowing the upper part of the rocket, NASA’s Orion spacecraft, and the crew inside Orion to quickly separate from the SLS core stage and adapter.

Frangible joint assemblies are widely used across the space industry in a variety of crewed and uncrewed spacecraft to efficiently separate fairings or stages during launch, during ascent, in orbit and during payload deployment. The stage adapter used for Artemis III is set to be the last of its kind as SLS evolves into a larger and more powerful configuration for future Artemis missions, beginning with Artemis IV. The adapter is fully assembled at Marshall by NASA and lead contractor Teledyne Brown, which is also based in Huntsville. Marshall manages the SLS Program.

The cone-shaped launch vehicle stage adapter, seen in yellow, is in a production area.
The cone-shaped launch vehicle stage adapter, seen in yellow, is in a production area.
NASA/Sam Lott

SLS is part of NASA’s backbone for deep space exploration, along with Orion and the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.

› Back to Top

NASA Tests In-Flight Capability of Artemis Moon Rocket Engine

NASA conducted the third RS-25 engine hot fire in a critical 12-test certification series Nov. 29, demonstrating a key capability necessary for flight of the SLS (Space Launch System) rocket during Artemis missions to the Moon and beyond.

NASA is conducting the series of tests to certify new manufacturing processes for producing RS-25 engines for future deep space missions, beginning with Artemis V. Aerojet Rocketdyne, an L3Harris Technologies Company and lead engines contractor for the SLS rocket, is incorporating new manufacturing techniques and processes, such as 3D printing, in production of new RS-25 engines.

Vapor clouds erupt from a RS-25 Engine during testing
NASA conducts a full duration, 650-second hot fire of the RS-25 certification engine Nov. 29 on the Fred Haise Test Stand at NASA’s Stennis Space Center, continuing a critical test series to support future SLS missions to deep space.
NASA/Danny Nowlin

Crews gimbaled, or pivoted, the RS-25 engine around a central point during the almost 11-minute (650 seconds) hot fire on the Fred Haise Test Stand at NASA’s Stennis Space Center. The gimbaling technique is used to control and stabilize SLS as it reaches orbit.

During the Nov. 29 test, operators also pushed the engine beyond any parameters it might experience during flight to provide a margin of operational safety. The 650-second test exceeded the 500 seconds RS-25 engines must operate to help power SLS to space. The RS-25 engine also was fired to 113% power level, exceeding the 111% level needed to lift SLS to orbit.

The ongoing series will stretch into 2024 as NASA continues its mission to return humans to the lunar surface to establish a long-term presence for scientific discovery and to prepare for human missions to Mars.

Four RS-25 engines fire simultaneously to generate a combined 1.6 million pounds of thrust at launch and 2 million pounds of thrust during ascent to help power each SLS flight. NASA and Aerojet Rocketdyne modified 16 holdover space shuttle main engines, all proven flightworthy at NASA Stennis, for Artemis missions I through IV.

Every new RS-25 engine that will help power SLS also will be tested at NASA Stennis. RS-25 tests at the site are conducted by a combined team of NASA, Aerojet Rocketdyne, and Syncom Space Services operators. Syncom Space Services is the prime contractor for Stennis facilities and operations.

NASA’s Marshall Space Flight Center manages the SLS Program.

› Back to Top

Chandra Catches Spider Pulsars Destroying Nearby Stars

A group of dead stars known as “spider pulsars” are obliterating companion stars within their reach. Data from NASA’s Chandra X-ray Observatory of the globular cluster Omega Centauri is helping astronomers understand how these spider pulsars prey on their stellar companions.

A pulsar is the spinning dense core that remains after a massive star collapses into itself to form a neutron star. Rapidly rotating neutron stars can produce beams of radiation. Like a rotating lighthouse beam, the radiation can be observed as a powerful, pulsing source of radiation, or pulsar. Some pulsars spin around dozens to hundreds of times per second, and these are known as millisecond pulsars.

A cluster brimming with millions of stars glistens like an iridescent opal in this image from NASA's Spitzer Space Telescope. Called Omega Centauri, the sparkling orb of stars is like a miniature galaxy. It is the biggest and brightest of the 150 or so similar objects, called globular clusters, that orbit around the outside of our Milky Way galaxy. Stargazers at southern latitudes can spot the stellar gem with the naked eye in the constellation Centaurus. Globular clusters are some of the oldest objects in our universe. Their stars are over 12 billion years old, and, in most cases, formed all at once when the universe was just a toddler. Omega Centauri is unusual in that its stars are of different ages and possess varying levels of metals, or elements heavier than boron. Astronomers say this points to a different origin for Omega Centauri than other globular clusters: they think it might be the core of a dwarf galaxy that was ripped apart and absorbed by our Milky Way long ago. In this new view of Omega Centauri, Spitzer's infrared observations have been combined with visible-light data from the National Science Foundation's Blanco 4-meter telescope at Cerro Tololo Inter-American Observatory in Chile. Visible-light data with a wavelength of .55 microns is colored blue, 3.6-micron infrared light captured by Spitzer's infrared array camera is colored green and 24-micron infrared light taken by Spitzer's multiband imaging photometer is colored red. Where green and red overlap, the color yellow appears. Thus, the yellow and red dots are stars revealed by Spitzer. These stars, called red giants, are more evolved, larger and dustier. The stars that appear blue were spotted in both visible and 3.6-micron-, or near-, infrared light. They are less evolved, like our own sun. Some of the red spots in the picture are distant galaxies beyond our own.
A group of dead stars known as “spider pulsars” are obliterating companion stars within their reach. Data from NASA’s Chandra X-ray Observatory of the globular cluster Omega Centauri is helping astronomers understand how these spider pulsars prey on their stellar companions
X-ray: NASA/CXC/SAO; Optical: NASA/ESA/STScI/AURA; IR:NASA/JPL/Caltech; Image Processing: NASA/CXC/SAO/N. Wolk

Spider pulsars are a special class of millisecond pulsars, and get their name for the damage they inflict on small companion stars in orbit around them. Through winds of energetic particles streaming out from the spider pulsars, the outer layers of the pulsar’s companion stars are methodically stripped away.

Astronomers recently discovered 18 millisecond pulsars in Omega Centauri located about 17,700 light-years from Earth – using the Parkes and MeerKAT radio telescopes. A pair of astronomers from the University of Alberta in Canada then looked at Chandra data of Omega Centauri to see if any of the millisecond pulsars give off X-rays.

They found 11 millisecond pulsars emitting X-rays, and five of those were spider pulsars concentrated near the center of Omega Centauri. The researchers next combined the data of Omega Centauri with Chandra observations of 26 spider pulsars in 12 other globular clusters.

There are two varieties of spider pulsars based on the size of the star being destroyed. “Redback” spider pulsars are damaging companion stars weighing between a tenth and a half the mass of the Sun. Meanwhile, the “black widow” spider pulsars are damaging companion stars with less than 5 percent of the Sun’s mass.

The team found a clear difference between the two classes of spider pulsars, with the redbacks being brighter in X-rays than the black widows, confirming previous work. The team is the first to show a general correlation between X-ray brightness and companion mass for spider pulsars, with pulsars that produce more X-rays being paired with more massive companions. This gives clear evidence that the mass of the companion to spider pulsars influences the X-ray dose the star receives.

The X-rays detected by Chandra are mainly thought to be generated when the winds of particles flowing away from the pulsars collide with winds of matter blowing away from the companion stars and produce shock waves, similar to those produced by supersonic aircraft.

A close-up image of Omega Centauri, in X-ray & optical light, shows the locations of some of the spider pulsars. Spider pulsars are a special class of millisecond pulsars, and get their name for the damage they inflict on small companion stars in orbit around them.
A close-up image of Omega Centauri, in X-ray & optical light, shows the locations of some of the spider pulsars. Spider pulsars are a special class of millisecond pulsars, and get their name for the damage they inflict on small companion stars in orbit around them.
X-ray: NASA/CXC/SAO; Optical: NASA/ESA/STScI/AURA; Image Processing: NASA/CXC/SAO/N. Wolk

Spider pulsars are typically separated from their companions by only about one to 14 times the distance between the Earth and Moon. This close proximity – cosmically speaking – causes the energetic particles from the pulsars to be particularly damaging to their companion stars.

This finding agrees with theoretical models that scientists have developed. Because more massive stars produce a denser wind of particles, there is a stronger shock – producing brighter X-rays – when their wind collides with the particles from the pulsar. The proximity of the companion stars to their pulsars means the X-rays can cause significant damage to the stars, along with the pulsar’s wind.

Chandra’s sharp X-ray vision is crucial for studying millisecond pulsars in globular clusters because they often contain large numbers of X-ray sources in a small part of the sky, making it difficult to distinguish sources from each other. Several of the millisecond pulsars in Omega Centauri have other, unrelated X-ray sources only a few arc seconds away. (One arc second is the apparent size of a penny seen at a distance of 2.5 miles.)

The paper describing these results will be published in the December issue of the Monthly Notices of the Royal Astronomical Society, and a preprint of the accepted paper is available online. The authors of the paper are Jiaqi (Jake) Zhao and Craig Heinke, both from the University of Alberta in Canada.

NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.

Read more about Chandra.

› Back to Top

Psyche Delivers First Images, Other Data

NASA’s Psyche spacecraft is on a roll. In the eight weeks since it left Earth on Oct. 13, the orbiter has performed one successful operation after another, powering on scientific instruments, streaming data toward home, and setting a deep-space record with its electric thrusters. The latest achievement: On Dec. 4, the mission turned on Psyche’s twin cameras and retrieved the first images – a milestone called “first light.”

Already 16 million miles from Earth, the spacecraft will arrive at its destination – the asteroid Psyche in the main asteroid belt between Mars and Jupiter – in 2029. The team wanted to test all of the science instruments early in the long journey to make sure they are working as intended, and to ensure there would be plenty of time to calibrate and adjust them as needed.

This mosaic was made from “first light” images acquired Dec. 4 by both of the cameras on NASA’s Psyche spacecraft. The star field lies in the constellation Pisces.
This mosaic was made from “first light” images acquired Dec. 4 by both of the cameras on NASA’s Psyche spacecraft. The star field lies in the constellation Pisces.
NASA/JPL-Caltech/ASU

The imager instrument, which consists of a pair of identical cameras, captured a total of 68 images, all within a star field in the constellation Pisces. The imager team is using the data to verify proper commanding, telemetry analysis, and calibration of the images.

“These initial images are only a curtain-opener,” said Arizona State University’s Jim Bell, the Psyche imager instrument lead. “For the team that designed and operates this sophisticated instrument, first light is a thrill. We start checking out the cameras with star images like these, then in 2026 we’ll take test images of Mars during the spacecraft’s flyby. And finally, in 2029 we’ll get our most exciting images yet – of our target asteroid Psyche. We look forward to sharing all of these visuals with the public.”

The imager takes pictures through multiple color filters, all of which were tested in these initial observations. With the filters, the team will use photographs in wavelengths of light both visible and invisible to the human eye to help determine the composition of the metal-rich asteroid Psyche. The imager team will also use the data to create 3D maps of the asteroid to better understand its geology, which will give clues about Psyche’s history.

Earlier in the mission, in late October, the team powered on the magnetometer, which will provide crucial data to help determine how the asteroid formed. Evidence that the asteroid once had a magnetic field would be a strong indication that the body is a partial core of a planetesimal, a building block of an early planet. The information could help us better understand how our own planet formed.

Shortly after being powered on, the magnetometer gave scientists an unexpected gift: It detected a solar eruption, a common occurrence called a coronal mass ejection, where the Sun expels large quantities of magnetized plasma. Since then, the team has seen several of these events and will continue to monitor space weather as the spacecraft travels to the asteroid.

The good news is twofold. Data collected so far confirms that the magnetometer can precisely detect very small magnetic fields. It also confirms that the spacecraft is magnetically “quiet.” The electrical currents powering a probe of this size and complexity have the potential to generate magnetic fields that could interfere with science detections. Because Earth has its own powerful magnetic field, scientists obtained a much better measurement of the spacecraft magnetic field once it was in space.

On Nov. 8, amid all the work with the science instruments, the team fired up two of the four electric propulsion thrusters, setting a record: the first-ever use of Hall-effect thrusters in deep space. Until now, they’d been used only on spacecraft going as far as lunar orbit. By expelling charged atoms, or ions, of xenon gas, the ultra-efficient thrusters will propel the spacecraft to the asteroid (a 2.2-billion-mile journey) and help it maneuver in orbit.

Less than a week later, on Nov. 14, the technology demonstration built into the spacecraft, an experiment called Deep Space Optical Communications, or DSOC, set its own record. DSOC achieved first light by sending and receiving optical data from far beyond the Moon. The instrument beamed a near-infrared laser encoded with test data from nearly 10 million miles away – the farthest-ever demonstration of optical communications.

The Psyche team has also successfully powered on the gamma-ray detecting component of its third science instrument, the gamma-ray and neutron spectrometer. Next, the instrument’s neutron-detecting sensors will be turned on the week of Dec. 11. Together those capabilities will help the team determine the chemical elements that make up the asteroid’s surface material.

Arizona State University leads the Psyche mission. A division of Caltech, NASA’s JPL (Jet Propulsion Laboratory) is responsible for the mission’s overall management, system engineering, integration and test, and mission operations. Maxar Technologies in Palo Alto, California, provided the high-power solar electric propulsion spacecraft chassis. Arizona State leads the operations of the imager instrument, working in collaboration with Malin Space Science Systems in San Diego on the design, fabrication, and testing of the cameras.

JPL manages DSOC for the Technology Demonstration Missions program within NASA’s Space Technology Mission Directorate and the Space Communications and Navigation program within the Space Operations Mission Directorate.

Psyche is the 14th mission selected as part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center. NASA’s Launch Services Program, based at Kennedy, managed the launch service.

Read more about NASA’s Psyche mission.

› Back to Top

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Image: Planetary Nebula NGC 1514 (MIRI image) View the full article
    • By NASA
      Explore This Section Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read With NASA’s Webb, Dying Star’s Energetic Display Comes Into Full Focus
      NASA’s James Webb Space Telescope has taken the most detailed image of planetary nebula NGC 1514 to date thanks to its unique mid-infrared observations. Webb shows its rings as intricate clumps of dust. It’s also easier to see holes punched through the bright pink central region. Credits:
      NASA, ESA, CSA, STScI, Michael Ressler (NASA-JPL), Dave Jones (IAC) Gas and dust ejected by a dying star at the heart of NGC 1514 came into complete focus thanks to mid-infrared data from NASA’s James Webb Space Telescope. Its rings, which are only detected in infrared light, now look like “fuzzy” clumps arranged in tangled patterns, and a network of clearer holes close to the central stars shows where faster material punched through.
      “Before Webb, we weren’t able to detect most of this material, let alone observe it so clearly,” said Mike Ressler, a researcher and project scientist for Webb’s MIRI (Mid-Infrared Instrument) at NASA’s Jet Propulsion Laboratory in southern California. He discovered the rings around NGC 1514 in 2010 when he examined the image from NASA’s Wide-field Infrared Survey Explorer (WISE). “With MIRI’s data, we can now comprehensively examine the turbulent nature of this nebula,” he said.
      This scene has been forming for at least 4,000 years — and will continue to change over many more millennia. At the center are two stars that appear as one in Webb’s observation, and are set off with brilliant diffraction spikes. The stars follow a tight, elongated nine-year orbit and are draped in an arc of dust represented in orange.
      One of these stars, which used to be several times more massive than our Sun, took the lead role in producing this scene. “As it evolved, it puffed up, throwing off layers of gas and dust in in a very slow, dense stellar wind,” said David Jones, a senior scientist at the Institute of Astrophysics on the Canary Islands, who proved there is a binary star system at the center in 2017.
      Once the star’s outer layers were expelled, only its hot, compact core remained. As a white dwarf star, its winds both sped up and weakened, which might have swept up material into thin shells.
      Image A: Planetary Nebula NGC 1514 (MIRI Image)
      NASA’s James Webb Space Telescope has taken the most detailed image of planetary nebula NGC 1514 to date thanks to its unique mid-infrared observations. Webb shows its rings as intricate clumps of dust. It’s also easier to see holes punched through the bright pink central region. NASA, ESA, CSA, STScI, Michael Ressler (NASA-JPL), Dave Jones (IAC) Image B: Planetary Nebula NGC 1514 (WISE and Webb Images Side by Side)
      Two infrared views of NGC 1514. At left is an observation from NASA’s Wide-field Infrared Survey Explorer (WISE). At right is a more refined image from NASA’s James Webb Space Telescope. NASA, ESA, CSA, STScI, NASA-JPL, Caltech, UCLA, Michael Ressler (NASA-JPL), Dave Jones (IAC) Its Hourglass Shape
      Webb’s observations show the nebula is tilted at a 60-degree angle, which makes it look like a can is being poured, but it’s far more likely that NGC 1514 takes the shape of an hourglass with the ends lopped off. Look for hints of its pinched waist near top left and bottom right, where the dust is orange and drifts into shallow V-shapes.
      What might explain these contours? “When this star was at its peak of losing material, the companion could have gotten very, very close,” Jones said. “That interaction can lead to shapes that you wouldn’t expect. Instead of producing a sphere, this interaction might have formed these rings.”
      Though the outline of NGC 1514 is clearest, the hourglass also has “sides” that are part of its three-dimensional shape. Look for the dim, semi-transparent orange clouds between its rings that give the nebula body.
      A Network of Dappled Structures
      The nebula’s two rings are unevenly illuminated in Webb’s observations, appearing more diffuse at bottom left and top right. They also look fuzzy, or textured. “We think the rings are primarily made up of very small dust grains,” Ressler said. “When those grains are hit by ultraviolet light from the white dwarf star, they heat up ever so slightly, which we think makes them just warm enough to be detected by Webb in mid-infrared light.”
      In addition to dust, the telescope also revealed oxygen in its clumpy pink center, particularly at the edges of the bubbles or holes.
      NGC 1514 is also notable for what is absent. Carbon and more complex versions of it, smoke-like material known as polycyclic aromatic hydrocarbons, are common in planetary nebulae (expanding shells of glowing gas expelled by stars late in their lives). Neither were detected in NGC 1514. More complex molecules might not have had time to form due to the orbit of the two central stars, which mixed up the ejected material. A simpler composition also means that the light from both stars reaches much farther, which is why we see the faint, cloud-like rings.
      What about the bright blue star to the lower left with slightly smaller diffraction spikes than the central stars? It’s not part of this nebula. In fact, this star lies closer to us.
      This planetary nebula has been studied by astronomers since the late 1700s. Astronomer William Herschel noted in 1790 that NGC 1514 was the first deep sky object to appear genuinely cloudy — he could not resolve what he saw into individual stars within a cluster, like other objects he cataloged. With Webb, our view is considerably clearer.
      NGC 1514 lies in the Taurus constellation approximately 1,500 light-years from Earth.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.
      To learn more about Webb, visit: https://science.nasa.gov/webb
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Claire Blome – cblome@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Science Advisor
      Michael Ressler (NASA-JPL)
      Related Information
      Read more about other planetary nebulae
      Watch: ViewSpace video about planetary nebulae
      View images of other planetary nebulae on AstroPix
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars



      Stars Stories



      Universe


      Share








      Details
      Last Updated Apr 14, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Binary Stars Goddard Space Flight Center Nebulae Planetary Nebulae Science & Research Stars The Universe White Dwarfs View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      From left, Ramon Pedoto, Nathan Walkenhorst, and Tyrell Jemison review information at NASA’s Marshall Space Flight Center in Huntsville, Alabama. The three team members developed new automation tools at Marshall for flight controllers working with the International Space Station (Credit: NASA/Tyrell Jemison Two new automation tools developed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, are geared toward improving operations for flight controllers working with the International Space Station from the Huntsville Operations Support Center.
      The tools, called AutoDump and Permanently Missing Intervals Checker, will free the flight control team to focus on situational awareness, anomaly response, and real-time coordination.
      The space station experiences routine loss-of-signal periods based on communication coverage as the space station orbits the Earth. When signal is lost, an onboard buffer records data that could not be downlinked during that period. Following acquisition of signal, flight controllers previously had to send a command to downlink, or “dump,” the stored data.
      The AutoDump tool streamlines a repetitive data downlinking command from flight controllers by detecting a routine loss-of-signal, and then autonomously sending the command to downlink data stored in the onboard buffer when the signal is acquired again. Once the data has been downlinked, the tool will automatically make an entry in the console log to confirm the downlink took place.
      “Reliably and quickly sending these dump commands is important to ensure that space station payload developers can operate from the most current data,” said Michael Zekoff, manager of Space Systems Operations at Marshall.
      As a direct result of this tool, we have eliminated the need to manually perform routine data dump commands by as much as 40% for normal operations.
      Michael Zekoff
      Space Systems Operations Manager
      AutoDump was successfully deployed on Feb. 4 in support of the orbiting laboratory.
      The other tool, known as the Permanently Missing Intervals Checker, is another automated process coming online that will improve team efficiency.
      Permanently missing intervals are gaps in the data stream where data can be lost due to a variety of reasons, including network fluctuations. The missing intervals are generally short but are documented so the scientific community and other users have confirmation that the missing data is unable to be recovered.
      “The process of checking for and documenting permanently missing intervals is challenging and incredibly time-consuming to make sure we capture all the payload impacts,” said Nathan Walkenhorst, a NASA contractor with Bailey Collaborative Solutions who serves as a flight controller specialist.
      The checker will allow NASA to quickly gather and assess payload impacts, reduce disruptions to operations, and allow researchers to get better returns on their science investigations. It is expected to be deployed later this year.
      In addition to Walkenhorst, Zekoff also credited Ramon Pedoto, a software architect, and Tyrell Jemison, a NASA contractor and data management coordinator with Teledyne Brown Engineering Inc, for their work in developing the automation tools. The development of the tools also requires coordination between flight control and software teams at Marshall, followed by extensive testing in both simulated and flight environments, including spacecraft operations, communications coverage, onboard anomalies, and other unexpected conditions.
      “The team solicited broad review to ensure that the tool would integrate correctly with other station systems,” Zekoff said. “Automated tools are evaluated carefully to prevent unintended commanding or other consequences. Analysis of the tools included thorough characterization of the impacts, risk mitigation strategies, and approval by stakeholders across the International Space Station program.”
      The Huntsville Operations Support Center provides payload, engineering, and mission operations support to the space station, the Commercial Crew Program, and Artemis missions, as well as science and technology demonstration missions. The Payload Operations Integration Center within the Huntsville Operations Support Center operates, plans, and coordinates the science experiments onboard the space station 365 days a year, 24 hours a day.
      For more information on the International Space Station, visit:
      www.nasa.gov/international-space-station/
      Share
      Details
      Last Updated Apr 11, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center Explore More
      3 min read NASA’s IMAP Arrives at NASA Marshall For Testing in XRCF  
      Article 4 hours ago 7 min read NASA’s First Flight With Crew Important Step on Long-term Return to the Moon, Missions to Mars
      Article 3 days ago 3 min read NASA Selects Finalist Teams for Student Human Lander Challenge
      Article 1 week ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 Min Read NASA’s IMAP Arrives at NASA Marshall For Testing in XRCF  
      On March 18, NASA’s IMAP (Interstellar Mapping and Acceleration Probe) arrived at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for thermal vacuum testing at the X-ray and Cryogenic Facility, which simulates the harsh conditions of space.
      The IMAP mission is a modern-day celestial cartographer that will map the solar system by studying the heliosphere, a giant bubble created by the Sun’s solar wind that surrounds our solar system and protects it from harmful interstellar radiation. 
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      NASA’s IMAP mission being loaded into the thermal vacuum chamber of NASA Marshall Space Flight Center’s X-Ray and Cryogenic Facility (XRCF) in Huntsville, Alabama. IMAP arrived at Marshall March 18 and was loaded into the chamber March 19.Credit: NASA/Johns Hopkins APL/Princeton/Ed Whitman Testing performed in the X-ray and Cryogenic Facility will help to assess the spacecraft before its journey toward the Sun. The IMAP mission will orbit the Sun at a location called Lagrange Point 1 (L1), which is about one million miles from Earth towards the Sun. From this location, IMAP can measure the local solar wind and scan the distant heliosphere without background from planets and their magnetic fields. The mission will use its suite of ten instruments to map the boundary of the heliosphere, analyze the composition of interstellar particles that make it through, and investigate how particles change as they move through the solar system. 
      Furthermore, IMAP will maintain a continuous broadcast of near real-time space weather data from five instruments aboard IMAP that will be used to test new space weather prediction models and improve our understanding of effects impacting our human exploration of space. 
      Team members from Marshall Space Flight Center in Huntsville, Alabama, install IMAP into the XRCF’s chamber dome before the start of the thermal vacuum test. NASA/Johns Hopkins APL/Princeton/Ed Whitman While inside the Marshall facility, the spacecraft will undergo dramatic temperature changes to simulate the environment during launch, on the journey toward the Sun, and at its final orbiting point. The testing facility has multiple capabilities including a large thermal vacuum chamber which simulates the harsh conditions of space such as extreme temperatures and the near-total absence of an atmosphere. Simulating these conditions before launch allow scientists and engineers to identify successes and potential failures in the design of the spacecraft. 
      Team members from Marshall Space Flight Center in Huntsville, Alabama work to close the chamber door of the XRCF for IMAP testing. The chamber is 20 feet in diameter and 60 feet long making it one of the largest across NASA. NASA/Johns Hopkins APL/Princeton/Ed Whitman “The X-ray and Cryogenic Facility was an ideal testing location for IMAP given the chamber’s size, availability, and ability to meet or exceed the required test parameters including strict contamination control, shroud temperature, and vacuum level,” said Jeff Kegley, chief of Marshall’s Science Test Branch. 
      The facility’s main chamber is 20 feet in diameter and 60 feet long, making it the 5th largest thermal vacuum chamber at NASA. It’s the only chamber that is adjoined to an ISO 6 cleanroom — a controlled environment that limits the number and size of airborne particles to minimize contamination. 
      The IMAP mission will launch on a SpaceX Falcon 9 rocket from NASA’s Kennedy Space Center in Florida, no earlier than September. 
      NASA’s IMAP mission was loaded into NASA Marshall’s XRCF thermal vacuum chamber where the spacecraft will undergo testing such as dramatic temperature changes to simulate the harsh environment of space. NASA/Johns Hopkins APL/Princeton/Ed Whitman Learn More about IMAP Media Contact:
      Lane Figueroa
      Marshall Space Flight Center
      Huntsville, Alabama
      256.544.0034
      lane.e.figueroa@nasa.gov
      Share
      Details
      Last Updated Apr 11, 2025 Related Terms
      Marshall Space Flight Center Goddard Space Flight Center Heliophysics Marshall Heliophysics & Planetary Science Marshall Science Research & Projects Marshall X-Ray & Cryogenic Facility The Sun The Sun & Solar Physics Explore More
      2 min read Hubble Captures a Star’s Swan Song
      The swirling, paint-like clouds in the darkness of space in this stunning image seem surreal,…
      Article 4 hours ago 6 min read NASA Webb’s Autopsy of Planet Swallowed by Star Yields Surprise
      Observations from NASA’s James Webb Space Telescope have provided a surprising twist in the narrative…
      Article 1 day ago 3 min read Hubble Helps Determine Uranus’ Rotation Rate with Unprecedented Precision
      An international team of astronomers using the NASA/ESA Hubble Space Telescope has made new measurements…
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
      Hubble Captures a Star’s Swan Song
      This NASA/ESA Hubble Space Telescope image features the planetary nebula Kohoutek 4-55. ESA/Hubble & NASA, K. Noll The swirling, paint-like clouds in the darkness of space in this stunning image seem surreal, like a portal to another world opening up before us. In fact, the subject of this NASA/ESA Hubble Space Telescope image is very real. We are seeing vast clouds of ionized atoms and molecules, thrown into space by a dying star. This is a planetary nebula named Kohoutek 4-55, a member of the Milky Way galaxy situated just 4,600 light-years away in the constellation Cygnus (the Swan).
      Planetary nebulae are the spectacular final display at the end of a giant star’s life. Once a red giant star has exhausted its available fuel and shed its last layers of gas, its compact core will contract further, enabling a final burst of nuclear fusion. The exposed core reaches extremely hot temperatures, radiating ultraviolet light that energizes the enormous clouds of gas cast off by the star. The ultraviolet light ionizes atoms in the gas, making the clouds glow brightly. In this image, red and orange indicate nitrogen, green is hydrogen, and blue shows oxygen. Kohoutek 4-55 has an uncommon, multi-layered form: a faint layer of gas surrounds a bright inner ring, all wrapped in a broad halo of ionized nitrogen. The spectacle is bittersweet, as the brief phase of fusion in the core will end after only tens of thousands of years, leaving a white dwarf that will never illuminate the clouds around it again.
      This image itself was also the final work of one of Hubble’s instruments: the Wide Field and Planetary Camera 2 (WFPC2). Installed in 1993 to replace the original Wide Field and Planetary Camera, WFPC2 was responsible for some of Hubble’s most enduring images and fascinating discoveries. Hubble’s Wide Field Camera 3 replaced WFPC2 in 2009, during Hubble’s final servicing mission. A mere ten days before astronauts removed Hubble’s WFPC2 from the telescope, the instrument collected the data used in this image: a fitting send-off after 16 years of discoveries. Image processors used the latest and most advanced processing techniques to bring the data to life one more time, producing this breathtaking new view of Kohoutek 4-55.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Share








      Details
      Last Updated Apr 10, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Emission Nebulae Goddard Space Flight Center Nebulae Planetary Nebulae Stars The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      The Death Throes of Stars


      From colliding neutron stars to exploding supernovae, Hubble reveals new details of  some of the mysteries surrounding the deaths of…


      Exploring the Birth of Stars


      Seeing ultraviolet, visible, and near-infrared light helps Hubble uncover the mysteries of star formation.


      Hubble’s Nebulae


      View the full article
  • Check out these Videos

×
×
  • Create New...