Jump to content

Six Finalists Named in NASA’s $3.5 Million Break the Ice Challenge


NASA

Recommended Posts

  • Publishers

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A Graphic of the Break the Ice Lunar Challenge Logo placed on a photo of the Moon.

By Savannah Bullard

The stage is set for the finale of NASA’s Break the Ice Lunar Challenge.

Conceived in 2020, Break the Ice tasked innovators with creating robotic systems that can traverse the volatile terrain of the Lunar South Pole. These robots must be able to dig into the Moon’s regolith – the dusty, icy “dirt” that makes up the lunar surface – and transport it to a secondary location for in-situ resource utilization (ISRU) processing.

If deployed on a NASA mission, these systems would operate in the permanently shadowed regions of the Moon, an area that receives no sunlight. These technologies must survive bitterly cold conditions and cannot rely on solar power regeneration. If successful, NASA can excavate the regolith from this area and use the resources derived from the materials, like frozen water, to aid astronauts living on the Moon.

“Our goal is to provide solutions to make living on the Moon a reality, and Break the Ice directly contributes to that mission,” said Denise Morris, program manager for NASA’s Centennial Challenges. “Excavating lunar regolith before humans arrive on the Moon will allow us to find uses for that material before they get there – if we could build a lunar habitat out of the regolith or extract the water for our astronauts to drink, that means less mass on our vehicles and less work for our crews.”

Phase 1 of the competition focused on designing systems that could achieve three components: excavation, travel, and delivery. Of the 31 teams who submitted eligible proposals, 13 won cash prizes ranging from $25,000 to $125,000.

Phase 2: Level 1 opened in June 2022. Consisting of Phase 1 winners and newcomers, 25 teams developed their initial designs into prototypes with technical reports, engineering designs, and test plans. Six months later, 13 U.S. semifinalists were named, each earning an equal share of $500,000. Two international teams were also recognized as semifinalists, though they were not eligible to receive monetary prizes from NASA.

In Phase 2: Level 2, the finalist pool comprised of garage inventors, academics, industry professionals, and hobbyists from 11 U.S. states, the Netherlands, and India. Nine of these teams attempted a 15-day demonstration trial at their own testing sites to prove the capabilities of their prototypes. The teams live-streamed the tests and took turns hosting representatives from Centennial Challenges for in-person observations.

“What impresses me the most with this batch of competitors is their innate ability to each find unique ways to approach the solution,” said Break the Ice Challenge Manager Naveen Vetcha, who supports Centennial Challenges through Jacobs Space Exploration Group. “Each site visit provided our subject matter experts with new ways to think about this technology and operations, and some of these teams expanded our expectations for how to bridge this technology gap.”

The Phase 2: Level 2 winning teams are:

1st Place ($300,000): Starpath Robotics (San Francisco, CA)

2nd Place ($200,000): Terra Engineering (Gardena, CA)

3rd Place ($125,000): The Ice Diggers (Golden, CO)

Runners Up ($75,000 each):

  • Cislune Excavators (Los Angeles, CA)
  • Space Trajectory (Brookings, SD)
  • MTU Planetary Surface Technology Development Lab (Houghton, MI)

In this last round of competitions, scheduled to take place in the spring of 2024, the above winners will bring their prototypes to a NASA-designated test facility for a series of head-to-head matchups. Expected testing includes excavation under reduced gravity – using gravity off-loading – and transportation over complex terrain, including rocks, craters, slopes, turns, and loose granular soil.

“Bringing the competitors to one central location is the best way to end a challenge like Break the Ice because it provides us with an opportunity to observe and test their designs in a common relevant environment,” said Mark Hilburger, a senior research engineer in the Space Technology Exploration Directorate at NASA’s Langley Research Center in Hampton, Virginia, and principal technologist for Break the Ice. “These technologies must be thoroughly tested to survive on the Moon, so a test opportunity like this helps the teams prove if their prototypes are up to the task.”

This final round of competition will offer up to $1.5 million in cash prizes, split between first place ($1 million) and second place ($500,000). NASA will also award opportunities for teams to test their concepts at one of the agency’s Thermal Vacuum Chambers, which can simulate the temperature and atmospheric pressure conditions at the Lunar South Pole.

The Break the Ice Lunar Challenge is a NASA Centennial Challenge led by the agency’s Marshall Space Flight Center  in Huntsville, Alabama, with support from NASA’s Kennedy Space Center in Florida. Centennial Challenges are part of the Prizes, Challenges, and Crowdsourcing program led by NASA’s Space Technology Mission Directorate and managed at NASA Marshall. Ensemble Consultancy supports the management of competitors for this challenge.

Jonathan Deal
NASA’s Marshall Space Flight Center
256-544-0034
jonathan.e.deal@nasa.gov

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA SkillBridge Veterans touring Johnson Space Center’s Neutral Buoyancy Laboratory.Credit: NASA NASA is one of America’s Best Employers for Veterans, according to Forbes and Statista. Statista surveyed more than 24,000 military veterans – having served in the United States Armed Forces – working for companies with a minimum of 1,000 employees. Veterans were asked to share opinions about their employer on factors such as working conditions, salary and pay, and topics of interest to the veteran community. 
      This is the fourth consecutive year NASA has earned this recognition.  
      “NASA has a long history of collaboration and commitment to the military community,” said Deborah Sweet, NASA Veterans Employment Program Manager. “In addition to the many military members who have been part of our Astronaut program, many of our civil servants are Veterans who chose to continue serving by supporting NASA’s mission after they hung up the uniform.” 
      Across the agency, veterans deliver subject matter expertise, years of on-the-job training, and advanced skills in everything from information technology to transportation logistics and from supply-chain management to public relations. 
      NASA continues to increase efforts to bring veterans into its ranks. The agency recently expanded its SkillBridge Fellowship Program which provides transitioning members a chance to gain valuable work experience while learning about NASA. 
      Veterans who served on active duty and separated under honorable conditions may also be eligible for special hiring authorities such as veterans’ preference, as well as other veteran specific hiring options when applying for full time roles at NASA. 
      For more information about the NASA SkillBridge Program, visit : https://www.nasa.gov/careers/skillbridge/ 
      For more information about NASA hiring paths for Veterans and Military Spouses, visit: https://www.nasa.gov/careers/veterans-and-military-spouses/
      View the full article
    • By NASA
      In August, the Association for Advancing Participatory Sciences (AAPS) announced a fellowship opportunity in partnership with the NASA Citizen Science Leaders Series. Fifty-five people applied! The applications came from graduate students and early career professionals in diverse disciplines, including astronomy, ecology, engineering, nursing, policy, and zoology, to name a few.

      Sadie Coffin, AAPS-NASA Cit Sci Leaders Fellow. (Credit: Olivia Schlichtkrull)
      We are delighted to announce that Sadie Coffin, PhD student and co-lead (alongside her advisor, Dr. Jeyhan Kartaltepe) of the Redshift Wrangler project, will serve as the AAPS-NASA Cit Sci Leaders Fellow. Sadie’s task is to curate resources, advice, and best practices on topics of common interest from four years of NASA Cit Sci Leaders events. Sadie will dig into our recordings to find the moments, speakers, advice, and resources that offer the best guidance for project leaders starting or managing projects. She’ll help package the best elements of the recordings into usable formats for busy scientists and project leaders interested in creating, managing, and improving participatory science projects. 
      “This fellowship offers a unique opportunity to gain the mentorship and expertise I need to build a career that not only advances research but also fosters public engagement and inclusivity in science,” said Sadie.
      The enthusiasm, talent, and passion in the applications we received revealed the broad appeal, utility, and growing acceptance of participatory research. One applicant commented, “Working in the participatory sciences is how I find meaning in my career as a researcher.”  Many others commented that they were eager to connect with mentors and colleagues who were as invested in this work as they were. 
      Thank you to everyone who applied for this fellowship and to all of the early career professionals working in this field. You are inspiring, and we can’t wait to see what big ideas you contribute to the growth of this field! AAPS will announce additional fellowships focused on different projects in the coming months. Please watch for upcoming calls, consider applying yourself, and share them with the inspiring early career individuals in your networks!
      Facebook logo @DoNASAScience @DoNASAScience Share








      Details
      Last Updated Nov 04, 2024 Related Terms
      Astrophysics Biological & Physical Sciences Citizen Science Earth Science Heliophysics Planetary Science Explore More
      4 min read Final Venus Flyby for NASA’s Parker Solar Probe Queues Closest Sun Pass


      Article


      5 mins ago
      2 min read NASA’s New Edition of Graphic Novel Features Europa Clipper
      NASA has released a new edition of Issue 4 of the Astrobiology Graphic History series.…


      Article


      3 days ago
      5 min read 30 Years On, NASA’s Wind Is a Windfall for Studying our Neighborhood in Space


      Article


      3 days ago
      View the full article
    • By European Space Agency
      The Space Resources Challenge was launched last week, an opportunity for innovators to pioneer the technologies that will help humankind live and work sustainably on the Moon.
      View the full article
    • By NASA
      As NASA continues to innovate for the benefit of humanity, agency inventions that use new structures to harness sunlight for space travel, enable communications with spacecraft at record-breaking distances, and determine the habitability of a moon of Jupiter, were named Wednesday among TIME’s Inventions of 2024.
      “The NASA workforce — wizards, as I call them — have been at the forefront of invention and technology for more than 65 years,” said NASA Administrator Bill Nelson. “From developing Europa Clipper, the largest satellite for a planetary mission that NASA has ever launched, to the Advanced Composite Solar Sail System, and communicating with lasers from deep space, NASA is improving our understanding of life on Earth — and the cosmos — for the benefit of all.”
      Solar Sailing with Composite Booms
      Mario Perez, back, holds a deployable solar panel as Craig Turczynski, left, secures it to the Advanced Composite Solar Sail System (ACS3) spacecraft in the Integration Facility of NASA Ames Research Center.Credit: NASA/Don Richey NASA’s Advanced Composite Solar Sail System is testing technologies that could allow spacecraft to “sail on sunlight,” using the Sun’s rays for propulsion. Like a sailboat turning to catch the wind, a solar sail adjusts its trajectory by angling its sail supported by booms deployed from the spacecraft. This demonstration uses a composite boom technology that is stiffer, lighter, and more stable in challenging thermal environments than previous designs. After launching on April 23, aboard Rocket Lab’s Electron rocket, the mission team met its primary objective by deploying the boom and sail system in space in August. Next, they will work to prove performance by using the sail to maneuver in orbit.  
      Results from this mission could provide an alternative to chemical and electric propulsion systems and inform the design of future larger-scale missions that require unique vantage points, such as space weather early warning satellites.
      Communicating with Lasers from Deep Space
      The Deep Space Optical Communications (DSOC) technology demonstration’s flight laser transceiver is seen attached to NASA’s Psyche spacecraft inside a clean room at the agency’s Jet Propulsion Laboratory in Southern California. DSOC’s tube-like gray/silver sunshade can be seen protruding from the side of the spacecraft. The bulge to which the sunshade is attached is DSOC’s transceiver, which consists of a near-infrared laser transmitter to send high-rate data to Earth and a sensitive photon-counting camera to receive ground-transmitted low-rate data.Credits: NASA/JPL-Caltech Since launching aboard NASA’s Psyche spacecraft on Oct. 13, 2023, a Deep Space Optical Communications technology demonstration has delivered record-breaking downlink data rates to ground stations as the Psyche spacecraft travels through deep space. To demonstrate the high data rates that are possible with laser communications, photos, telemetry data from the spacecraft, and ultra-high-definition video, including a streamed video of Taters the cat chasing a laser pointer, have been downlinked over hundreds of millions of miles. The mission, which is managed by NASA’s Jet Propulsion Laboratory in Southern California, has also sent and received optical communications out to Mars’ farthest distance from Earth, fulfilling one of the project’s primary goals.
      Searching for Life’s Ingredients at Jupiter’s Icy Moon Europa
      Technicians prepare to encapsulate NASA’s Europa Clipper spacecraft inside SpaceX’s Falcon Heavy payload fairing in the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida on Oct. 2, 2024. Credit: SpaceX The largest NASA spacecraft ever built for a mission headed to another planet, Europa Clipper also is the agency’s first mission dedicated to studying an ocean world beyond Earth. Using a suite of nine science instruments and a gravity experiment, the mission seeks to determine whether Jupiter’s moon, Europa, has conditions that could support life. There’s strong evidence that under Europa’s ice lies an enormous, salty ocean. Scientists also have found evidence that Europa may host organic compounds and energy sources under its surface. Managed by NASA’s Jet Propulsion Laboratory, the spacecraft launched on Oct. 14, and will begin orbiting Jupiter in 2030, flying by the icy moon 49 times to learn more about it.
      Europa Clipper’s main science objectives are to determine the thickness of the moon’s icy shell and its interactions with the ocean below, to investigate its composition, and to characterize its geology. The detailed exploration will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.
      NASA’s Ames Research Center in California’s Silicon Valley manages the Advanced Composite Solar Sail System, and NASA’s Langley Research Center in Hampton, Virginia, designed and built the deployable composite booms and solar sail system. Within NASA’s Space Technology Mission Directorate (STMD), the Small Spacecraft Technology program funds and manages the mission and the Game Changing Development program developed the deployable composite boom technology.
      The Deep Space Optical Communications experiment is funded by STMD’s Technology Demonstration Missions Program managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, and the agency’s Space Communications and Navigation program within the Space Operations Mission Directorate. Some of the technology was developed through NASA’s Small Business Innovation Research program.
      Managed by Caltech in Pasadena, California, NASA’s Jet Propulsion Laboratory leads the development of the Europa Clipper mission in partnership with Johns Hopkins Applied Physics Laboratory in Laurel, Maryland for NASA’s Science Mission Directorate. The Applied Physics Laboratory designed the main spacecraft body in collaboration with the Jet Propulsion Laboratory as well as NASA’s Goddard Space Flight Center in Greenbelt, Maryland, NASA Marshall, and NASA Langley.
      For more information about the agency’s missions, visit:
      https://www.nasa.gov
      Share
      Details
      Last Updated Oct 30, 2024 LocationNASA Headquarters Related Terms
      General Ames Research Center Deep Space Optical Communications (DSOC) Europa Clipper Game Changing Development Program Goddard Space Flight Center Jet Propulsion Laboratory Langley Research Center Marshall Space Flight Center Science & Research Small Business Innovation Research / Small Business Small Spacecraft Technology Program Space Communications & Navigation Program Space Operations Mission Directorate Space Technology Mission Directorate Technology Technology Demonstration Technology Demonstration Missions Program View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Researchers think meltwater beneath Martian ice could support microbial life.
      The white material seen within this Martian gully is believed to be dusty water ice. Scientists believe this kind of ice could be an excellent place to look for microbial life on Mars today. This image, showing part of a region called Dao Vallis, was captured by NASA’s Mars Reconnaissance Orbiter in 2009.NASA/JPL-Caltech/University of Arizona These holes, captured on Alaska’s Matanuska Glacier in 2012, are formed by cryoconite — dust particles that melt into the ice over time, eventually forming small pockets of water below the glacier’s surface. Scientists believe similar pockets of water could form within dusty water ice on Mars.Kimberly Casey CC BY-NC-SA 4.0 While actual evidence for life on Mars has never been found, a new NASA study proposes microbes could find a potential home beneath frozen water on the planet’s surface.
      Through computer modeling, the study’s authors have shown that the amount of sunlight that can shine through water ice would be enough for photosynthesis to occur in shallow pools of meltwater below the surface of that ice. Similar pools of water that form within ice on Earth have been found to teem with life, including algae, fungi, and microscopic cyanobacteria, all of which derive energy from photosynthesis.
      “If we’re trying to find life anywhere in the universe today, Martian ice exposures are probably one of the most accessible places we should be looking,” said the paper’s lead author, Aditya Khuller of NASA’s Jet Propulsion Laboratory in Southern California.
      Mars has two kinds of ice: frozen water and frozen carbon dioxide. For their paper, published in Nature Communications Earth & Environment, Khuller and colleagues looked at water ice, large amounts of which formed from snow mixed with dust that fell on the surface during a series of Martian ice ages in the past million years. That ancient snow has since solidified into ice, still peppered with specks of dust.  
      Although dust particles may obscure light in deeper layers of the ice, they are key to explaining how subsurface pools of water could form within ice when exposed to the Sun: Dark dust absorbs more sunlight than the surrounding ice, potentially causing the ice to warm up and melt up to a few feet below the surface.
      The white edges along these gullies in Mars’ Terra Sirenum are believed to be dusty water ice. Scientists think meltwater could form beneath the surface of this kind of ice, providing a place for possible photosynthesis. This is an enhanced-color image; the blue color would not actually be perceptible to the human eye.NASA/JPL-Caltech/University of Arizona Mars scientists are divided about whether ice can actually melt when exposed to the Martian surface. That’s due to the planet’s thin, dry atmosphere, where water ice is believed to sublimate — turn directly into gas — the way dry ice does on Earth. But the atmospheric effects that make melting difficult on the Martian surface wouldn’t apply below the surface of a dusty snowpack or glacier.
      Thriving Microcosms
      On Earth, dust within ice can create what are called cryoconite holes — small cavities that form in ice when particles of windblown dust (called cryoconite) land there, absorb sunlight, and melt farther into the ice each summer. Eventually, as these dust particles travel farther from the Sun’s rays, they stop sinking, but they still generate enough warmth to create a pocket of meltwater around them. The pockets can nourish a thriving ecosystem for simple lifeforms..
      “This is a common phenomenon on Earth,” said co-author Phil Christensen of Arizona State University in Tempe, referring to ice melting from within. “Dense snow and ice can melt from the inside out, letting in sunlight that warms it like a greenhouse, rather than melting from the top down.”
      Christensen has studied ice on Mars for decades. He leads operations for a heat-sensitive camera called THEMIS (Thermal Emission Imaging System) aboard NASA’s 2001 Mars Odyssey orbiter. In past research, Christensen and Gary Clow of the University of Colorado Boulder used modeling to demonstrate how liquid water could form within dusty snowpack on the Red Planet. That work, in turn, provided a foundation for the new paper focused on whether photosynthesis could be possible on Mars.
      In 2021, Christensen and Khuller co-authored a paper on the discovery of dusty water ice exposed within gullies on Mars, proposing that many Martian gullies form by erosion caused by the ice melting to form liquid water.
      This new paper suggests that dusty ice lets in enough light for photosynthesis to occur as deep as 9 feet (3 meters) below the surface. In this scenario, the upper layers of ice prevent the shallow subsurface pools of water from evaporating while also providing protection from harmful radiation. That’s important, because unlike Earth, Mars lacks a protective magnetic field to shield it from both the Sun and radioactive cosmic ray particles zipping around space.
      The study authors say the water ice that would be most likely to form subsurface pools would exist in Mars’ tropics, between 30 degrees and 60 degrees latitude, in both the northern and southern hemispheres.
      Khuller next hopes to re-create some of Mars’ dusty ice in a lab to study it up close. Meanwhile, he and other scientists are beginning to map out the most likely spots on Mars to look for shallow meltwater — locations that could be scientific targets for possible human and robotic missions in the future.
      News Media Contacts
      Andrew Good
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2024-142
      Share
      Details
      Last Updated Oct 17, 2024 Related Terms
      Mars Astrobiology Jet Propulsion Laboratory Explore More
      4 min read New Team to Assess NASA’s Mars Sample Return Architecture Proposals
      NASA announced Wednesday a new strategy review team will assess potential architecture adjustments for the…
      Article 20 hours ago 6 min read Christine Knudson Uses Earthly Experience to Study Martian Geology
      Geologist Christine Knudson works with the Curiosity rover to explore Mars — from about 250…
      Article 1 day ago 5 min read Snippet of Euclid Mission’s Cosmic Atlas Released by ESA
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...