Members Can Post Anonymously On This Site
HubbleSite Wins Top International Honor
-
Similar Topics
-
By NASA
Bioprinted patches could help wounds heal
Researchers successfully demonstrated the function of a handheld bioprinter that could provide a simple and effective way to treat wounds in space using human skin cells. Crews could use this technology to treat their own injuries and protect crew health and mission success in the future.
Spaceflight can affect how wounds heal. The Bioprint FirstAid device tested a process for bioprinting a patch to cover a wound and accelerate healing. In the future, a crew member’s own cells may be used to create personalized patches for treating an injury. The bioprinting device is easy to use, can be tailored to specific needs, has a low failure rate, and its mechanics are electronics- and maintenance-free. This ESA (European Space Agency) investigation was coordinated by the German Aerospace Center (DLR).
ESA (European Space Agency) astronaut Matthias Maurer demonstrates the Bioprint FirstAid prototype during preflight training. German Aerospace Center/European Space Agency Countering post-flight proficiency challenges
The day they return from spaceflight, astronauts demonstrate significant impairments in fine motor control and the ability to multitask in simulated flying and driving challenges. This finding could help develop countermeasures so crew members can safely land and conduct early operations on the Moon and Mars.
Manual Control used a battery of tests to examine how spaceflight affects cognitive, sensory, and motor function after landing. Researchers concluded that subtle physiological changes that occur during spaceflight degrade post-flight performance. Subsequent tests showed recovery of performance once exposed to the task, suggesting that simulation training immediately before a task could be an effective countermeasure. Researchers also suggest limiting dual or competing tasks during mission-critical phases.
A simulator used to test crew members’ ability to fly and drive after spaceflight. NASA Gamma-ray telescope resilient to space radiation
Researchers found that the station’s Glowbug gamma-ray telescope could perform in the space radiation environment for multi-year missions. Radiation can affect these types of instruments, but Glowbug regularly detected gamma ray bursts (GRBs) during its one-year operation. Studying GRBs can help scientists better understand the universe and its origins.
Glowbug demonstrated technology to detect and characterize cosmic GRBs, primarily short GRBs, which result from mergers of compact binary star systems containing either two neutron stars or a neutron star and a black hole. Short GRBs produce gravitational waves, ripples in space that travel at the speed of light. Studying these gravitational waves could provide insight into the star systems where they originate and the behavior of matter during the mergers.
Learn more about GRB research here.
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A SWOT data visualization shows water on the northern side of Greenland’s Dickson Fjord at higher levels than on the southern side on Sept. 17, 2023. A huge rockslide into the fjord the previous day led to a tsunami lasting nine days that caused seismic rumbling around the world. NASA Earth Observatory Data from space shows water tilting up toward the north side of the Dickson Fjord as it sloshed from south to north and back every 90 seconds for nine days after a 2023 rockslide.
The international Surface Water and Ocean Topography (SWOT) satellite mission, a collaboration between NASA and France’s CNES (Centre National d’Études Spatiales), detected the unique contours of a tsunami that sloshed within the steep walls of a fjord in Greenland in September 2023. Triggered by a massive rockslide, the tsunami generated a seismic rumble that reverberated around the world for nine days. An international research team that included seismologists, geophysicists, and oceanographers recently reported on the event after a year of analyzing data.
The SWOT satellite collected water elevation measurements in Dickson Fjord on Sept. 17, 2023, the day after the initial rockslide and tsunami. The data was compared with measurements made under normal conditions a few weeks prior, on Aug. 6, 2023.
In the data visualization (above), colors toward the red end of the scale indicate higher water levels, and blue colors indicate lower-than-normal levels. The data suggests that water levels at some points along the north side of the fjord were as much as 4 feet (1.2 meters) higher than on the south.
“SWOT happened to fly over at a time when the water had piled up pretty high against the north wall of the fjord,” said Josh Willis, a sea level researcher at NASA’s Jet Propulsion Laboratory in Southern California. “Seeing the shape of the wave — that’s something we could never do before SWOT.”
In a paper published recently in Science, researchers traced a seismic signal back to a tsunami that began when more than 880 million cubic feet of rock and ice (25 million cubic meters) fell into Dickson Fjord. Part of a network of channels on Greenland’s eastern coast, the fjord is about 1,772 feet (540 meters) deep and 1.7 miles (2.7 kilometers) wide, with walls taller than 6,000 feet (1,830 meters).
Far from the open ocean, in a confined space, the energy of the tsunami’s motion had limited opportunity to dissipate, so the wave moved back and forth about every 90 seconds for nine days. It caused tremors recorded on seismic instruments thousands of miles away.
From about 560 miles (900 kilometers) above, SWOT uses its sophisticated Ka-band Radar Interferometer (KaRIn) instrument to measure the height of nearly all water on Earth’s surface, including the ocean and freshwater lakes, reservoirs, and rivers.
“This observation also shows SWOT’s ability to monitor hazards, potentially helping in disaster preparedness and risk reduction,” said SWOT program scientist Nadya Vinogradova Shiffer at NASA Headquarters in Washington.
It can also see into fjords, as it turns out.
“The KaRIn radar’s resolution was fine enough to make observations between the relatively narrow walls of the fjord,” said Lee-Lueng Fu, the SWOT project scientist. “The footprint of the conventional altimeters used to measure ocean height is too large to resolve such a small body of water.”
More About SWOT
Launched in December 2022 from Vandenberg Space Force Base in California, SWOT is now in its operations phase, collecting data that will be used for research and other purposes.
The SWOT satellite was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. NASA’s Jet Propulsion Laboratory, managed for the agency by Caltech in Pasadena, California, leads the U.S. component of the project. For the flight system payload, NASA provided the KaRIn instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations. CNES provided the Doppler Orbitography and Radioposition Integrated by Satellite (DORIS) system, the dual frequency Poseidon altimeter (developed by Thales Alenia Space), the KaRIn radio-frequency subsystem (together with Thales Alenia Space and with support from the UK Space Agency), the satellite platform, and ground operations. CSA provided the KaRIn high-power transmitter assembly. NASA provided the launch vehicle and the agency’s Launch Services Program, based at Kennedy Space Center in Florida, managed the associated launch services.
To learn more about SWOT, visit:
https://swot.jpl.nasa.gov
News Media Contacts
Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
2024-153
Share
Details
Last Updated Oct 31, 2024 Related Terms
SWOT (Surface Water and Ocean Topography) Earth Earth Science Earth Science Division Jet Propulsion Laboratory Explore More
6 min read Why NASA’s SPHEREx Mission Will Make ‘Most Colorful’ Cosmic Map Ever
Article 7 hours ago 4 min read NASA’s Perseverance Captures ‘Googly Eye’ During Solar Eclipse
Article 1 day ago 2 min read NASA Brings Drone and Space Rover to Air Show
Article 1 day ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Although no ghouls or goblins or trick-or-treaters come knocking at the International Space Station’s front hatch, crew members aboard the orbiting facility still like to get in the Halloween spirit. Whether individually or as an entire crew, they dress up in sometimes spooky, sometimes scary, but always creative costumes, often designed from materials available aboard the space station. Please enjoy the following scenes from Halloweens past even as we anticipate the costumes of the future.
Left: Wearing a black cape, Expedition 16 NASA astronaut Clayton C. Anderson channels his inner vampire for Halloween 2007. Image credit: courtesy Clayton C. Anderson. Middle: For Halloween 2009, the Expedition 21 crew shows off its costumes. Right: Expedition 21 NASA astronaut Nicole P. Stott shows off her Halloween costume.
Left: An orange dressed as a pumpkin for Halloween, courtesy of Expedition 21 NASA astronaut Nicole P. Stott. Middle: Italian Space Agency astronaut Luca S. Parmitano finally gets his wish to fly like Superman during Expedition 37. Right: Who’s that behind the scary mask? None other than NASA astronaut Scott J. Kelly celebrating Halloween in 2015 during his one-year mission.
Left: Expedition 53 Commander NASA astronaut Randolph J. “Randy” Bresnik showing off his costume. Middle: Expedition 53 NASA astronaut Joseph M. Acaba wearing Halloween colors. Right: Expedition 53 European Space Agency astronaut Paolo A. Nespoli showing off his Spiderman skills.
Left: Expedition 57 crewmembers in their Halloween best – European Space Agency astronaut and Commander Alexander Gerst, left, and NASA astronaut Serena M. Auñón-Chancellor. Right: Members of Expedition 61, NASA astronaut Christina H. Koch, top left, European Space Agency astronaut Luca S. Parmitano, NASA astronaut Andrew R. “Drew” Morgan, and NASA astronaut Jessica U. Meir, show off their Halloween spirit in 2019.
Left: Expedition 66 crewmembers NASA astronaut R. Shane Kimbrough, left, Thomas G. Pesquet of the European Space Agency, Akihiko Hoshide of the Japan Aerospace Exploration Agency, and NASA astronaut Mark T. Vande Hei showing off their Halloween cards. Right: A hand rising from the grave?
In October 2021, Crew-3 NASA astronauts Raja J. Chari, Thomas H. Marshburn, Kayla S. Barron, and Matthias J. Maurer of the European Space Agency (ESA), had some undisclosed plans for when they reached the space station just before Halloween. However, bad weather at NASA’s Kennedy Space Center in Florida thwarted those super-secret spooky Halloween plans, delaying their launch until Nov. 11. Undeterred, Expedition 66 crewmembers who awaited them aboard the station held their own Halloween shenanigans. ESA astronaut Thomas G. Pesquet posted on social media that “Strange things were happening on ISS for Halloween. Aki rising from the dead (or is it from our observation window?),” referring to fellow crew member Akihiko Hoshide of the Japan Aerospace Exploration Agency.
Left: In 2022, Expedition 68 astronauts Koichi Wakata of the Japan Aerospace Exploration Agency, left, and NASA astronauts Francisco “Frank” C. Rubio, Nicole A. Mann, and Josh A. Cassada dressed as popular video game and cartoon characters, using stowage containers in their Halloween costumes and holding improvised trick-or-treat bags. Middle: Expedition 70 astronauts Jasmin Moghbeli of NASA, left, Satoshi Furakawa of the Japan Aerospace Exploration Agency, NASA astronaut Loral A. O’Hara, and European Space Agency astronaut Andreas E. Mogensen celebrate Halloween 2023. Right: The Expedition 72 crew has decorated the Node 1 galley with a pumpkin in preparation for Halloween 2024.
The spookiness will continue …
Explore More
9 min read 60 Years Ago: The First Flight of the Lunar Landing Research Vehicle
Article 1 day ago 11 min read 35 Years Ago: STS-34 Sends Galileo on its Way to Jupiter
Article 1 week ago 12 min read Five Years Ago: First All Woman Spacewalk
Article 2 weeks ago View the full article
-
By NASA
Better Monitoring of the Air Astronauts Breathe
Ten weeks of operations showed that a second version of the Spacecraft Atmosphere Monitor is sensitive enough to determine variations in the composition of cabin air inside the International Space Station. Volatile organic compounds and particulates in cabin air could pose a health risk for crew members, and this device increases the speed and accuracy of assessing such risk.
Spacecraft Atmosphere Monitor is a miniaturized gas chromatograph mass spectrometer used to analyze the air inside the space station and ensure that it is safe for the crew and equipment. The device automatically reports results to the ground, eliminating the need to return samples to Earth. This version has several other technological advances, including that it can be relocated, is smaller, and uses less power.
The first Spacecraft Atmosphere Monitor device on the International Space Station. NASA/Chris Cassidy Digging Deeper into Microgravity Effects on Muscle
Prolonged exposure to microgravity affects human muscle precursor cells known as satellite cells and causes changes in the expression of specific genes involved in muscle structure and nerves. Exercise regimens on the space station do not adequately prevent or counteract muscle loss in astronauts, which can affect their motor function during missions and after return to Earth. Results could inform design of nutritional and pharmacological countermeasures to muscle changes during spaceflight.
Muscle loss represents a major obstacle to human long-term spaceflight. Myogravity, an investigation developed with the Italian space agency ASI, looked at microgravity-induced changes in adult stem cells involved in the growth, maintenance, and repair of skeletal muscle tissue, known as satellite cells. These cells may play a major role in muscle loss during spaceflight.
European Space Agency astronaut Paolo Nespoli sets up the Myogravity experiment. NASA Validating Next-Generation Earth Measurements
Researchers completed a preliminary evaluation of the station’s Hyperspectral Imager Suite (HISUI) and report that the difference between model-corrected and actual measurements is small. Validation of spaceborne optical sensors like HISUI is important to demonstrate they provide the accuracy needed for scientific research.
The JAXA (Japan Aerospace Exploration Agency) HISUI investigation tests a next-generation spaceborne hyperspectral Earth imaging system for gathering data on reflection of light from Earth’s surface, which reveals characteristics and physical properties of a target area. This technology has potential applications such as monitoring vegetation and identifying natural resources.
The Hyperspectral Imager Suite is visible on the far left in this image outside the space station. NASAView the full article
-
By Space Force
Six pioneers in American space and missile development were honored in a ceremony hosted by Space Systems Command recognizing achievements in astronautics that resonate in today’s contested space environment.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.