Jump to content

Digging Deeper to Find Life on Ocean Worlds


NASA

Recommended Posts

  • Publishers
7 Min Read

Digging Deeper to Find Life on Ocean Worlds

A long, brown, cylindrical structure penetrates blue water; a beam of gold light projected from the side of the structure toward the surface.
Conceptual image of a cryobot breaching into the ocean of Europa and searching for signs of life.
Credits:
NASA/JPL-Caltech

SNAPSHOT

In February 2023, researchers from around the country gathered at a NASA-sponsored workshop to discuss the latest developments and a roadmap for a cryobot mission concept to drill through the icy crusts of Europa and Enceladus and search for life.

“Follow the water” has been the mantra of the astrobiology community in search of alien life in the universe. Water is a fundamental building block of all terrestrial life as we know it and—as discovered by various space missions—water is abundant throughout the solar system, and perhaps, the universe. Ancient eroded features on Mars show clear evidence of a wet history, and the ongoing quest of the Perseverance rover aims to uncover clues as to whether or not Mars once hosted a population of microbes. However, there is only so much we can learn from the fossil record. To truly understand the nature of possible alien life, we must directly investigate the source—the liquid water.

Enter “Ocean Worlds.” Over the past two decades, scientists have discovered that a vast number of icy moons orbit the outer giant planets in our solar system. Many of these moons show strong evidence for harboring global oceans beneath their icy crusts.  In fact, these moons likely have far more liquid water than all of Earth’s oceans combined, and some may even have the right conditions to foster life. Two moons, in particular, have captured the imaginations of astrobiologists due to their amenable conditions for life and their relative ease of interrogation: Jupiter’s moon, Europa and Saturn’s moon, Enceladus. Both show strong evidence of a global subsurface ocean beneath a kilometers-thick water-ice crust—but how can we access this liquid water?

Various concepts for ocean access have been investigated over the past decades, ranging from robots that descend through crevasses to drills of varying types. One concept that has emerged as a leading candidate is the cryobot. A cryobot is a self-contained cylindrical probe that uses heat to melt the ice beneath it. The melted water then flows around the probe before refreezing behind it. Thermal ice drilling is so simple and effective that it has become a common tool for studying terrestrial glaciers and ice sheets. But how can we translate this technology to a system that can penetrate planetary icy crusts, which are colder, thicker, and more uncertain?

This dilemma has been a core focus of researchers—many of whom are supported by NASA’s Scientific Exploration Subsurface Access Mechanism for Europa (SESAME) and Concepts for Ocean worlds Life Detection Technology (COLDTech) programs—for the past several years. In February 2023, NASA’s Planetary Exploration Science Technology Office (PESTO) convened a workshop at the California Institute of Technology, which brought together nearly 40 top researchers from diverse fields and institutions around the country to discuss progress in maturing this technology and to assess the challenges that remain.  Recent studies have made significant progress in refining our understanding of the ice shell environment, detailing a mission architecture, and maturing critical subsystems and technologies. In particular, workshop participants identified four key subsystems that drive the roadmap for developing a flight-ready architecture: the power, thermal, mobility, and communication subsystems.

a cross section depicting three regions: a dark bottom ocean region with a silver cylindrical probe, a middle icy section with blue swirls through which the probe’s tether travels, and a top image depicting the surface on which is perched a lander vehicle with multiple legs and an antenna. In the background behind the lander, a multicolored planet dominates the sky.
Conceptual image of the Cryobot mission profile. A lander deploys a nuclear-powered probe, which melts through the ice shell to access the ocean below. A tether and wireless transceivers are deployed behind the probe during its descent for communication.
Credit: NASA/JPL-Caltech

First, the heart of a cryobot is a nuclear power system that generates the sustained heat required to melt through kilometers of ice. Various nuclear power systems that could suit a cryobot system have been identified, including the familiar Radioisotope Power Systems (RPS) that have powered many deep-space missions, and fission reactors that may be developed in the coming years. Two key constraints that drive the power system design are: (1) sufficient total power and density to facilitate efficient melting (about 10 kW), and (2) integration within a structural vessel to protect the power system from the high pressures of the deep ocean. These challenges are both solvable and have some historical precedent: NASA’s Cassini mission had a 14 kW thermal power system, and several Radioisotope Thermoelectric Generators (RTGs) were deployed to the bottom of the ocean in the 1960s and 1970s as power sources for navigation beacons, which operated in comparable pressures to the Europan ocean. However, a cryobot power system will require a concerted effort and close collaboration with the Department of Energy throughout the maturation of the mission concept.

Second, a thermal management system is required to manage the heat produced by the onboard nuclear power system, maintain safe internal temperatures, and distribute heat to the environment for efficient performance. This system requires two independent pumped fluid circuits: one that circulates an internal working fluid through channels embedded in the skin and another that circulates melted ice water with the surounding environment. Some of these technologies have been demonstrated at reduced and full scale, but more work is needed to validate performance at the range of ice conditions expected in the outer solar system.

In addition, the icy shells of Europa and Enceladus will contain impurities such as dust and salt, which, when sufficiently concentrated, may require auxilliary systems to penetrate. A combination of “water jetting” and mechanical cutting has been demonstrated to be effective at clearing debris ranging from fine particulate to solid blocks of salt from beneath the probe. Some impurities such as larger rocks, voids, or water bodies may remain impenetrable, requiring the cryobot to incorporate a downward-looking mapping sensor and steering mechanism—both of which have been demonstrated in terrestrial prototypes, though not yet in an integrated system. High-priority future work includes a more rigorous and probabilistic definition of the icy environments to quantify the likelihood of potential mobility hazards, and an integrated demonstration of hazard mitigation systems on a flight-like cryobot system. Europa Clipper will also provide key observations to constrain the prevalence and characteristics of hazards for a cryobot.

Finally, a cryobot mission requires a robust and redundant communication link through the ice shell to enable the lander to relay data to an orbiting relay asset or directly to Earth. Fiber optic cables are the industry standard for communicating with terrestrial melt probes and deep-sea vehicles, but require careful validation for deployment through ice shells, which are active. The movement of ice in these shells could break the cable. A team led by Dr. Kate Craft at the Johns Hopkins Applied Physics Laboratory has been investigating the propensity of tethers embedded in ice to break during ice-shear events, as well as methods to mitigate such breakage. While preliminary results from this study are highly encouraging, other teams are exploring wireless techniques for communicating through the ice, including radio frequency, acoustic, and magnetic transceivers.  These communication systems must be integrated onto the aft end of the probe and depoyed during its descent. Current projects funded under the NASA COLDTech program are taking the first steps toward addressing key risks for the communications system. Future work must validate performance across a broader range of conditions and demonstrate integration on a cryobot.

While the power, thermal, mobility, and communication subsystems took center stage, workshop participants also discussed other key systems and technologies that will require maturation to enable a cryobot mission. These topics include an integrated instrument suite with accommodations for liquid sampling and outward-facing apertures, planetary protection and sterilization strategies, materials selection for corrosion mitigation, ice-anchoring mechanisms, and autonomy. However, none of these technologies were identified as major risks or challenges in the cryobot mission concept roadmap.

Overall, the consensus finding of workshop participants was that this mission concept remains feasible, scientifically compelling, and the most plausible near-term way to directly search for life in situ on an ocean world. Continued support would allow scientists and engineers to make even further progress toward readying cryobots for future mission opportunities. The potential for the direct detection of life on another world seems more possible than ever.

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004).

PROJECT LEAD

Dr. Benjamin Hockman, Jet Propulsion Laboratory, California Institute of Technology

SPONSORING ORGANIZATION

NASA’s Planetary Exploration Science Technology Office (PESTO)

Share

Details

Last Updated
Dec 05, 2023

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      A NASA-developed material made of carbon nanotubes will enable our search for exoplanets—some of which might be capable of supporting life. Originally developed in 2007 by a team of researchers led by Innovators of the Year John Hagopian and Stephanie Getty at NASA’s Goddard Space Flight Center, this carbon nanotube technology is being refined for potential use on NASA’s upcoming Habitable Worlds Observatory (HWO)—the first telescope designed specifically to search for signs of life on planets orbiting other stars.
      As shown in the figure below, carbon nanotubes look like graphene (a single layer of carbon atoms arranged in a hexagonal lattice) that is rolled into a tube. The super-dark material consists of multiwalled carbon nanotubes (i.e., nested nanotubes) that grow vertically into a “forest.” The carbon nanotubes are 99% empty space so the light entering the material doesn’t get reflected. Instead, the light enters the nanotube forest and jiggles electrons in the hexagonal lattice of carbon atoms, converting the light to heat. The ability of the carbon nanotubes to eliminate almost all light is enabling for NASA’s scientific instruments because stray light limits how sensitive the observations can be. When applied to instrument structures, this material can eliminate much of the stray light and enable new and better observations.
      Left: Artist’s conception of graphene, single and multiwalled carbon nanotube structures. Right: Scanning electron microscope image of vertically aligned multiwalled carbon nanotube forest with a section removed in the center. Credit: Delft University/Dr. Sten Vollebregt and NASA GSFC Viewing exoplanets is incredibly difficult; the exoplanets revolve around stars that are 10 billion times brighter than they are. It’s like looking at the Sun and trying to see a dim star next to it in the daytime. Specialized instruments called coronagraphs must be used to block the light from the star to enable these exoplanets to be viewed. The carbon nanotube material is employed in the coronagraph to block as much stray light as possible from entering the instrument’s detector.
      The image below depicts a notional telescope and coronagraph imaging an exoplanet. The telescope collects the light from the distant star and exoplanet. The light is then directed to a coronagraph that collimates the beam, making the light rays parallel, and then the beam is reflected off the apodizer mirror, which is used to precisely control the diffraction of light.  Carbon nanotubes on the apodizer mirror absorb the stray light that is diffracted off edges of the telescope structures, so it does not contaminate the observations.  The light is then focused on the focal plane mask, which blocks the light from the star but allows light from the exoplanet to pass.  The light gets collimated again and is then reflected off a deformable mirror to correct distortion in the image.  Finally, the light passes through the Lyot Stop, which is also coated with carbon nanotubes to remove the remaining stray light.  The beam is then focused onto the detector array, which forms the image. 
      Even with all these measures some stray light still reaches the detector, but the coronagraph creates a dark zone where only the light coming from the exoplanet can be seen. The final image on the right in the figure below shows the remaining light from the star in yellow and the light from the exoplanet in red in the dark zone.
      Schematic of a notional telescope and coronagraph imaging an exoplanet Credit: Advanced Nanophotonics/John Hagopian, LLC HWO will use a similar scheme to search for habitable exoplanets. Scientists will analyze the spectrum of light captured by HWO to determine the gases in the atmosphere of the exoplanet. The presence of water vapor, oxygen, and perhaps other gases can indicate if an exoplanet could potentially support life.
      But how do you make a carbon-nanotube-coated apodizer mirror that could be used on the HWO? Hagopian’s company Advanced Nanophotonics, LLC received Small Business Innovation Research (SBIR) funding to address this challenge.
      Carbon nanotubes are grown by depositing catalyst seeds onto a substrate and then placing the substrate into a tube-shaped furnace and heating it to 1382 degrees F, which is red hot! Gases containing carbon are then flowed into the heated tube, and at these temperatures the gases are absorbed by the metal catalyst and transform into a solution, similar to how carbon dioxide in soda water fizzes. The carbon nanotubes literally grow out of the substrate into vertically aligned tubes to form a “forest” wherever the catalyst is located.
      Since the growth of carbon nanotubes on the apodizer mirror must occur only in designated areas where stray light is predicted, the catalyst must be applied only to those areas. The four main challenges that had to be overcome to develop this process were: 1) how to pattern the catalyst precisely, 2) how to get a mirror to survive high temperatures without distorting, 3) how to get a coating to survive high temperatures and still be shiny, and 4) how to get the carbon nanotubes to grow on top of a shiny coating. The Advanced Nanophotonics team refined a multi-step process (see figure below) to address these challenges.
      Making an Apodizer Mirror for use in a coronagraph Credit: Advanced Nanophotonics/John Hagopian, LLC First a silicon mirror substrate is fabricated to serve as the base for the mirror. This material has properties that allow it to survive very high temperatures and remain flat. These 2-inch mirrors are so flat that if one was scaled to the diameter of Earth, the highest mountain would only be 2.5 inches tall!
      Next, the mirror is coated with multiple layers of dielectric and metal, which are deposited by knocking atoms off a target and onto the mirror in a process called sputtering. This coating must be reflective to direct the desired photons, but still be able to survive in the hot environment with corrosive gases that is required to grow carbon nanotubes.
      Then a material called resist that is sensitive to light is applied to the mirror and a pattern is created in the resist with a laser. The image on the mirror is chemically developed to remove the resist only in the areas illuminated by the laser, creating a pattern where the mirror’s reflecting surface is exposed only where nanotube growth is desired.
      The catalyst is then deposited over the entire mirror surface using sputtering to provide the seeds for carbon nanotube growth. A process called liftoff is used to remove the catalyst and the resist that are located where nanotubes growth is not needed. The mirror is then put in a tube furnace and heated to 1380 degrees Fahrenheit while argon, hydrogen, and ethylene gases are flowed through the tube, which allows the chemical vapor deposition of carbon nanotubes where the catalyst has been patterned. The apodizer mirror is cooled and removed from the tube furnace and characterized to make sure it is still flat, reflective where desired, and very black everywhere else.
      The Habitable Worlds Observatory will need a coronagraph with an optimized apodizer mirror to effectively view exoplanets and gather their light for evaluation. To make sure NASA has the best chance to succeed in this search for life, the mirror design and nanotube technology are being refined in test beds across the country.
      Under the SBIR program, Advanced Nanophotonics, LLC has delivered apodizers and other coronagraph components to researchers including Remi Soummer at the Space Telescope Science Institute, Eduardo Bendek and Rus Belikov at NASA Ames, Tyler Groff at NASA Goddard, and Arielle Bertrou-Cantou and Dmitri Mawet at the California Institute of Technology. These researchers are testing these components and the results of these studies will inform new designs to eventually enable the goal of a telescope with a contrast ratio of 10 billion to 1.
      Reflective Apodizers delivered to Scientists across the country Credit: Advanced Nanophotonics/John Hagopian, LLC In addition, although the desired contrast ratio cannot be achieved using telescopes on Earth, testing apodizer mirror designs on ground-based telescopes not only facilitates technology development, but helps determine the objects HWO might observe. Using funding from the SBIR program, Advanced Nanophotonics also developed transmissive apodizers for the University of Notre Dame to employ on another instrument—the Gemini Planet Imager (GPI) Upgrade. In this case the carbon nanotubes were patterned and grown on glass that transmits the light from the telescope into the coronagraph. The Gemini telescope is an 8.1-meter telescope located in Chile, high atop a mountain in thin air to allow for better viewing. Dr. Jeffrey Chilcote is leading the effort to upgrade the GPI and install the carbon nanotube patterned apodizers and Lyot Stops in the coronagraph to allow viewing of exoplanets starting next year. Discoveries enabled by GPI may also drive future apodizer designs.
      More recently, the company was awarded a Phase II SBIR contract to develop next-generation apodizers and other carbon nanotube-based components for the test beds of existing collaborators and new partners at the University of Arizona and the University of California Santa Clara.
      Tyler Groff (left) and John Hagopian (right) display a carbon nanotube patterned apodizer mirror used in the NASA Goddard Space Flight Center coronagraph test bed. Credit: Advanced Nanophotonics/John Hagopian, LLC As a result of this SBIR-funded technology effort, Advanced Nanophotonics has collaborated with NASA Scientists to develop a variety of other applications for this nanotube technology.
      A special carbon nanotube coating developed by Advanced Nanophotonics was used on the recently launched NASA Ocean Color Instrument onboard the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission that is observing both the atmosphere and phytoplankton in the ocean, which are key to the health of our planet. A carbon nanotube coating that is only a quarter of the thickness of a human hair was applied around the entrance slit of the instrument. This coating absorbs 99.5% of light in the visible to infrared and prevents stray light from reflecting into the instrument to enable more accurate measurements. Hagopian’s team is also collaborating with the Laser Interferometer Space Antenna (LISA) team to apply the technology to mitigate stray light in the European Space Agency’s space-based gravity wave mission.
      They are also working to develop carbon nanotubes for use as electron beam emitters for a project sponsored by the NASA Planetary Instrument Concepts for the Advancement of Solar System Observations (PICASSO) Program. Led by Lucy Lim at NASA Goddard, this project aims to develop an instrument to probe asteroid and comet constituents in space.
      In addition, Advanced Nanophotonics worked with researcher Larry Hess at NASA Goddard’s Detector Systems Branch and Jing Li at the NASA Ames Research Center to develop a breathalyzer to screen for Covid-19 using carbon nanotube technology. The electron mobility in a carbon nanotube network enables high sensitivity to gases in exhaled breath that are associated with disease.
      This carbon nanotube-based technology is paying dividends both in space, as we continue our search for life, and here on Earth.
      For additional details, see the entry for this project on NASA TechPort.
      PROJECT LEAD
      John Hagopian (Advanced Nanophotonics, LLC)
      SPONSORING ORGANIZATION
      SMD-funded SBIR project
      Share








      Details
      Last Updated Sep 03, 2024 Related Terms
      Astrophysics Science-enabling Technology Technology Highlights Explore More
      2 min read Hubble Zooms into the Rosy Tendrils of Andromeda


      Article


      4 days ago
      2 min read Hubble Observes An Oddly Organized Satellite


      Article


      5 days ago
      3 min read Eclipse Soundscapes AudioMoth Donations Will Study Nature at Night


      Article


      6 days ago
      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA astronaut Steve Swanson harvests a crop of red romaine lettuce plants aboard the International Space Station. Grown from seeds in the Veggie facility, this crop is part of the Veg-01 study to help researchers test and validate the Veggie hardware.NASA NASA Life Sciences Portal (NLSP)
      The NASA Life Sciences Portal (NLSP) is the gateway to discovering and accessing all archive data from investigations sponsored by NASA’s Human Research Program (HRP). The HRP conducts research and develops technologies that allow humans to travel safely and productively in space. The Program uses evidence from data collected from astronauts, animals, and plants over many decades, and stored in several repositories accessible via the NLSP, including the Life Sciences Data Archive (LSDA) and Lifetime Surveillance of Astronaut Health and Standard Measures repositories.
      Life Sciences Data Archive (LSDA)
      NASA’s Life Sciences Data Archive (LSDA) is an archive that provides information and data from 1961 (Mercury Project) through current flight and flight analog studies (International Space Station) involving human, plant and animal subjects. ​
      Much of the information and data are publicly available on this site. Some data are potentially attributable to individual human subjects, and thus restricted by the Privacy Act, but can be requested for research.
      Human Health and Performance Products Share
      Details
      Last Updated Aug 29, 2024 EditorRobert E. LewisLocationJohnson Space Center Related Terms
      Human Health and Performance Explore More
      1 min read Participate in the Mission – Be a Human Test Subject!
      Article 1 year ago 1 min read Lifetime Surveillance of Astronaut Health (LSAH)
      Article 1 year ago 1 min read Human Health and Performance Data Sharing
      Article 1 year ago Keep Exploring Discover More Topics From NASA
      Humans In Space
      Missions
      International Space Station
      Solar System
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Meet four employees from NASA’s Glenn Research Center who have a personal connection to aviation, at work and beyond.Credit: (Left to right): Waldo Acosta, Jared Berg, Lori Manthey, Lindsay Kaldon The first “A” in NASA stands for aeronautics. Glenn Research Center in Cleveland is just one of several NASA centers conducting revolutionary research to make flight cleaner, safer, and quieter.
      But an interest in flying goes beyond the professional for many at NASA. Meet a handful of NASA Glenn employees who have a personal connection to aviation, at work and beyond.

      Jared Berg
      “I think my flying and engineering work positively influence each other. Flying integrates a lot of technical disciplines and serves as a real-word application of things I know theoretically about aerodynamics or heat transfer.”
      jared berg
      Thermal Subsystem Manager for Gateway’s Power and Propulsion Element

      Left photo: Jared Berg flying above the clouds in the the NASAIRS Flying Club’s Cessna 172. Right photo: A view out the plane window.Credit: Jared Berg Planting the Seed: Berg grew up reading aviation books with his family and building model planes. Attending the EAA AirVenture airshow in Oshkosh, Wisconsin, throughout childhood inspired him to pursue flight training once he had a full-time NASA job.
      Joining the Club: Berg is currently a member of the NASAIRS Flying Club at NASA Glenn, which he says helps make flying more accessible and lets him constantly learn from other pilots.
      Flying High: Berg has now been flying recreationally for over a decade and considers it a part of his everyday life. “Flying allows an escape from the mundane and brings a sense of adventure to traveling,” Berg said. “You also get to experience nature, specifically weather but also the land you’re flying over, in a way that’s relatively raw and somehow personal.”

      Lindsay Kaldon
      "I love the feeling after takeoff and when you’ve reached cruising altitude. It’s as if all the stresses of life wash away when you’re up there in the sky. Being up in the clouds with all the beauty of the Earth below, it’s as if you’re in heaven.”
      Lindsay Kaldon
      Fission Surface Power Project Manager
      Left photo: Lindsay Kaldon after her first solo flight. Right photo: Kaldon celebrates passing her private pilot exam.Credit: Lindsay Kaldon Air Force and Astronauts: Kaldon’s father was an Air Force F-16 crew chief and a member of the Thunderbirds demonstration team, so Kaldon was no stranger to jets growing up. “Every day was an airshow living on the base that they trained out of,” Kaldon said. After earning a bachelor’s degree in electrical engineering, Kaldon joined the Air Force herself with hopes of one day becoming an astronaut.
      Going Solo: Kaldon later earned her private pilot’s license and says she’ll always remember her first solo cross-country flight. She chose Kitty Hawk, the site of the Wright brothers’ first flight, as her destination.
      Keeping the Energy: A monument that stands along the runway at Kitty Hawk is inscribed with words Kaldon remembers whenever solving difficult challenges through her work at NASA. “It says, ‘Achieved by Dauntless Resolution and Unconquerable Faith.’ The Wright brothers were faced with a lot of doubters who didn’t think flight was possible. Yet they proved them wrong and never gave up,” Kaldon said. “I love that. When things get tough, I just close my eyes and think about that phrase.”
      Lori Manthey
      “I encourage anyone who has an interest in flying to take a discovery flight at your local airport. If you get bitten by the flying bug, it just may become a life-long obsession. Ask me how I know!”
      Lori Manthey
      Chief of Administrative Services and Exchange Operations Manager
      Left photo: Lori Manthey with a Grumman Cheetah plane. Right photo: Lori Manthey at the Grumman Cheetah controls.Credit: Lori Manthey Head in the Clouds: After a discovery flight in a small Cessna 150 plane, Manthey was hooked on flying. On weekends and evenings after beginning a full-time NASA job, she hopped in a Piper Tomahawk single-engine trainer at Lorain County Regional Airport to earn her private pilot certificate. “I love the feeling of floating in the air and seeing the world below,” she said.
      Women in Aero: Manthey is passionate about advancing and supporting female pilots and currently serves as membership chair of the Lake Erie chapter of the Ninety-Nines, an organization started by Amelia Earhart in 1929. She is also a member of the Cleveland chapter of Women in Aviation.
      Looking to the Future: Every year, Manthey participates in Girls in Aviation Day at Cleveland’s Burke Lakefront Airport to introduce girls to the world of aviation. “I think it is so important to help encourage young women and girls to become part of the next generation of female pilots,” she said.
      Back in the Cockpit: Manthey is currently working to earn her instrument rating, which will let her fly “blind” in cloudy and foggy weather conditions.

      Waldo J. Acosta

      “Flying gives me a thrill. The perspective you’re able to see of the world from up in the sky is a special feeling. Aircraft have the ability to take us all over the world so we can experience different cultures and meet different people, and that has shaped me into who I am today.”
      Waldo J. Acosta
      Icing Research Tunnel Lead Facility Engineer
      Left photo: Waldo J. Acosta, right, stands beside his father before taking him for a ride in a DA20 aircraft. Top right photo: A young Acosta and his father at the EAA AirVenture airshow in Oshkosh, Wisconsin. Lower right photo: Acosta (center) works with colleagues Tadas Bartkus (left) and Emily Timko in the control room of NASA Glenn Research Center’s Icing Research Tunnel. Credit: Waldo J. Acosta, NASA/Jef Janis Family Ties: Throughout Acosta’s childhood, Acosta’s father, a former researcher at NASA Glenn, brought his family along on work trips to the EAA AirVenture airshow in Oshkosh, Wisconsin. “I fell in love with everything related to flying during those trips, and they set the tone early on my path to working in aviation,” Acosta said.
      Next Steps: Acosta started taking flying lessons while studying aerospace engineering at The Ohio State University, eventually receiving his private pilot’s license.
      Safety First: Overseeing testing and maintenance operations at NASA Glenn’s Icing Research Tunnel, Acosta is now directly involved in aviation safety research. The facility, the longest-running icing wind tunnel in the world, helps NASA and industry study how ice affects aircraft and test ice protection systems and tools.
      Flying Full Circle: Acosta still attends airshows every chance he can get and has taken both his father and wife soaring into the clouds.
      Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By Space Force
      Senior leaders gathered at the AFSA Summit to strategize, enhance innovation, and advance development for the Department of the Air Force.

      View the full article
    • By NASA
      Learn Home Astro Campers SCoPE Out New… Astrophysics Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Stories Science Activation Highlights Citizen Science   2 min read
      Astro Campers SCoPE Out New Worlds
      Teachers at Smokey Mountain Elementary School have collaborated with the NASA Science Activation (SciAct) program’s Smoky Mountains STEM (Science, Technology, Engineering, and Mathematics) Collaborative (SMSC) and project coordinator, Randi Neff, to create a summer camp for students who are passionate about STEM topics. What started as a small summer camp has since evolved into Astro Camp, a two-week community program from the NASA Astro Camp Community Partners (part of the NASA SciAct program infrastructure) with many engaging student activities.
      Many students have enjoyed this camp from the beginning, and those who have participated annually have become increasingly interested in more challenging and robust activities to continue their learning adventures. With the help of SciAct’s NASA SCoPE (the NASA Science Mission Directorate Community of Practice for Education) team, Neff was able to connect teachers with a NASA Subject Matter Expert, Dr. Alissa Bans, to help draft new, challenging activities for the students who were ready to take them on in June 2024. Of course, new attendees and learners continued to excitedly engage in the foundational Astro Camp activities, as appropriate for their learning levels.
      Thanks to Dr. Bans and the ongoing collaboration of these three SciAct teams, returning campers took on new challenges identifying and observing goldilocks exoplanets and zones (habitable planets outside our solar system and zones where conditions might be just right – neither too hot nor too cold – for life) and exploring the various conditions that might support life on a planet. Having the opportunity to seek out and tackle more advanced STEM topics, learners developed critical thinking skills and found satisfaction in expanding their science identities.
      The Smoky Mountains STEM Collaborative, NASA SCoPE, and NASA Astro Camp Community Partners projects are supported by NASA as part of the Science Activation program portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      Dr. Alissa Bans, a NASA Subject Matter Expert with NASA SCoPE, leads an activity with a group of students during Astro Camp. Share








      Details
      Last Updated Aug 09, 2024 Editor NASA Science Editorial Team Related Terms
      Astrophysics Community Partners Opportunities For Students to Get Involved Planetary Science Science Activation Explore More
      2 min read Hubble Spotlights a Supernova


      Article


      3 hours ago
      2 min read Celebrate Heliophysics Big Year: Free Monthly Webinars on the Sun Touches Everything


      Article


      3 days ago
      6 min read Quantum Scale Sensors used to Measure Planetary Scale Magnetic Fields


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
  • Check out these Videos

×
×
  • Create New...