Jump to content

30 Years Ago: STS-61, the First Hubble Servicing Mission


Recommended Posts

  • Publishers
Posted

“Trying to do stellar observations from Earth is like trying to do birdwatching from the bottom of a lake.”  James B. Odom, Hubble Program Manager 1983-1990.

The discovery after its launch that the Hubble Space Telescope’s primary mirror suffered from a flaw disappointed scientists who could not obtain the sharp images they had expected. But thanks to the Hubble’s built-in feature of on-orbit servicing, NASA devised a plan to correct the telescope’s optics during the first planned repair mission. The agency assigned one of its most experienced crews to undertake the complex tasks, naming Richard O. Covey, Kenneth D. Bowersox, Kathryn C. Thornton, Claude Nicollier of the European Space Agency, Jeffrey A. Hoffman, F. Story Musgrave, and Thomas D. Akers to the STS-61 first Hubble Servicing Mission. The first all veteran crew since the STS-26 return to flight mission in 1988 had a cumulative 16 previous missions among them and all had previous spacewalking experience. During their 11-day flight in December 1993, they repaired the telescope during an unprecedented five spacewalks in a single space shuttle mission, rendering it more capable than originally designed.

The STS-61 crew of Kenneth D. Bowersox, sitting left, Kathryn C. Thornton, F. Story Musgrave, and Claude Nicollier of the European Space Agency; Richard O. Covey, standing left, Jeffrey A. Hoffman, and Thomas D. Akers The STS-61 crew patch Endeavour rolls over from Launch Pad 39A to 39B at NASA’s Kennedy Space Center in Florida
Left: The STS-61 crew of Kenneth D. Bowersox, sitting left, Kathryn C. Thornton, F. Story Musgrave, and Claude Nicollier of the European Space Agency; Richard O. Covey, standing left, Jeffrey A. Hoffman, and Thomas D. Akers. Middle: The STS-61 crew patch. Right: Endeavour rolls over from Launch Pad 39A to 39B at NASA’s Kennedy Space Center in Florida.

The first Hubble servicing mission proved to be one of the most complex up to that time. With that in mind, on March 16, 1992, NASA named Musgrave, an astronaut since 1967 and a veteran of four previous missions including conducting the first spacewalk of the shuttle era, as the payload commander and one of the four spacewalkers for STS-61. On Aug. 28, NASA named Hoffman, Akers, and Thornton as the other three spacewalkers who in teams of two would carry out the five spacewalks on alternating days. Finally, on Dec. 3, NASA named Covey, Bowersox, and Nicollier as the commander, pilot, and flight engineer, respectively, for the mission. Nicollier also served as the prime operator of the Remote Manipulator System (RMS), or robotic arm, with Bowersox as his backup. The seven-person crew trained intensely for the next year preparing for the complex tasks ahead, including simulating the spacewalks at the Neutral Buoyancy Simulator at NASA’s Marshall Space Flight Center in Huntsville, Alabama, and the Weightless Environment Training Facility at NASA’s Johnson Space Center in Houston. Meanwhile, at NASA’s Kennedy Space Center in Florida, workers prepared space shuttle Endeavour for its fifth journey into space. They rolled the shuttle, assembled with its external tank and solid rocket booster, to Launch Pad 39A on Oct. 28. However, following a wind storm on Oct. 30 that contaminated the payload changeout room with sandy grit, managers decided to move Endeavour to neighboring Pad B on Nov. 15, in only the second roll around in shuttle history.

Schematic of the Hubble Space Telescope’s major components Workers inspect the Hubble Space Telescope’s 94-inch diameter primary mirror prior to assembly Astronauts release the Hubble Space Telescope in April 1990 during the STS-31 mission
Left: Schematic of the Hubble Space Telescope’s major components. Middle: Workers inspect the Hubble Space Telescope’s 94-inch diameter primary mirror prior to assembly. Right: Astronauts release the Hubble Space Telescope in April 1990 during the STS-31 mission.

The first concrete plan for placing an optical telescope in space, above the obscuring and distorting effects of the Earth’s atmosphere, originated with Princeton University astronomer Lyman S. Spitzer in 1946. In 1972, NASA first proposed a plan to launch a Large Space Telescope (LST) and five years later Congress approved the funding. As envisioned, the LST would contain a 94-inch diameter primary mirror and launch on the space shuttle, then still under development, in 1983. With an expected on-orbit lifetime of 15 years, the LST’s instruments would make observations primarily in the visible and ultraviolet parts of the electromagnetic spectrum. In 1983, managers abandoned the original plan to use the space shuttle to return the telescope to Earth for refurbishment and relaunch in favor of in-orbit maintenance and upgrades by astronauts during spacewalks in the shuttle’s payload bay. The same year, NASA renamed the LST after astronomer Edwin P. Hubble and set the launch for October 1986. The Challenger accident in January 1986 delayed the launch of the Hubble Space Telescope until April 24, 1990, during Discovery’s STS-31 mission. The shuttle flew to an unusually high 380-mile orbit to ensure that Hubble would operate above as much of the Earth’s atmosphere as possible. After initial on-orbit activation and checkout of the telescope’s systems, it was time for the much-anticipated “first light” images. The initial images, however, puzzled scientists as they showed stars not as single well-focused points of light but as blurred and fuzzy. Investigators learned that the telescope’s primary mirror suffered from a production error, its edges too flat by 0.003 mm, resulting in an optical problem called spherical aberration. While this significantly degraded the capability of several of Hubble’s instruments to return exceptionally detailed photographs, the telescope still produced some good images. NASA put in place a plan to fix the Hubble’s optical problems without resorting to repairing the mirror. With the spherical aberration well-defined, engineers designed a set of mirrors that astronauts could place aboard Hubble during the previously planned first servicing mission.

Liftoff of space shuttle Endeavour on the STS-61 mission to repair the Hubble Space Telescope The Hubble Space Telescope as seen from Endeavour during the rendezvous, with the end of the Remote Manipulator System (RMS), or robotic arm, visible at lower right On the shuttle’s flight deck, European Space Agency astronaut Claude Nicollier operates the RMS to grapple Hubble
Left: Liftoff of space shuttle Endeavour on the STS-61 mission to repair the Hubble Space Telescope. Middle: The Hubble Space Telescope as seen from Endeavour during the rendezvous, with the end of the Remote Manipulator System (RMS), or robotic arm, visible at lower right. Right: On the shuttle’s flight deck, European Space Agency astronaut Claude Nicollier operates the RMS to grapple Hubble.

Planning for the first servicing mission to Hubble began in 1988, two years before the launch of the telescope. With the post-launch discovery of spherical aberration, the scope of the first servicing mission changed dramatically. The primary goal now focused on correcting the telescope’s optics to ensure that its onboard instruments could function as planned. Engineers developed the Corrective Optics Space telescope Axial Replacement (COSTAR), a tool to correct Hubble’s blurry vision, consisting of five pairs of corrective mirrors placed in front of the Faint Object Camera, the Faint Object Spectrograph, and the Goddard High Resolution Spectrograph (GHRS) instruments. Installing COSTAR required the removal of the High-Speed Photometer, the sacrifice of one instrument outweighed by the saving of the other three. The astronauts also replaced the original Wide Field Planetary Camera (WFPC) with the more advanced WFPC2 to improve the telescope’s ultraviolet performance. The WFPC2 carried its own corrective optics. The astronauts also replaced fuses and the telescope’s two solar arrays, one of which imparted vibrations that prevented precise pointing. On Dec. 2, 1993, space shuttle Endeavour lifted off from Pad 39B at 4:27 a.m. EST, after a one-day weather delay. Following insertion into an unusually high 360-mile orbit to reach Hubble, the astronauts began their initial on-orbit operations by opening the payload bay doors. The next day, Covey and Bowersox performed several engine burns as part of the rendezvous maneuvers. The astronauts checked out the rendezvous radar, the Ku-band antenna, the Canadian-built Remote Manipulator System (RMS) or robotic arm, and the spacesuits, and reduced the pressure inside the shuttle from 14.7 pounds per square inch (psi) to 10.2 psi in preparation for the upcoming spacewalks to reduce the pre-breathe time required to prevent decompression sickness or the bends.

Endeavour approach to the Hubble Space Telescope Hubble secured onto its flight support structure in Endeavour’s payload bay The STS-61 crew poses on Endeavour’s flight deck, with Hubble visible through the windows
Left: Endeavour continues its approach to the Hubble Space Telescope. Middle: Hubble secured onto its flight support structure in Endeavour’s payload bay. Right: The STS-61 crew poses on Endeavour’s flight deck, with Hubble visible through the windows.

On the third day, Covey brought Endeavour to within 30 feet of Hubble so Nicollier could grapple it with the RMS. Covey radioed Houston, “Endeavour has a firm handshake with Mr. Hubble’s telescope.” Nicollier berthed the giant telescope onto its turntable-like Flight Support System (FSS) in the shuttle’s payload bay. Nicollier then used the RMS cameras to perform an inspection of Hubble.

European Space Agency astronaut Claude Nicollier operates the shuttle’s Remote Manipulator System (RMS) or robotic arm in support of the spacewalks Astronaut F. Story Musgrave works on the Hubble Musgrave releases bolts on the replacement solar arrays
First spacewalk. Left: European Space Agency astronaut Claude Nicollier operates the shuttle’s Remote Manipulator System (RMS) or robotic arm in support of the spacewalks. Middle: Astronaut F. Story Musgrave works on the Hubble. Right: Near the end of the first spacewalk, Musgrave releases bolts on the replacement solar arrays.

With Nicollier operating the RMS as he did for all five spacewalks, Hoffman and Musgrave conducted the mission’s first excursion on flight day four. They replaced two sets of Rate Sensing Units that contain gyroscopes to orient the telescope and replaced electrical control units and fuse plugs, providing the telescope with six healthy gyroscopes. Musgrave and Hoffman prepared for the next day’s spacewalk by loosening bolts on the replacement solar arrays, stored in the forward part of the payload bay. The pair spent 7 hours and 54 minutes outside on this first spacewalk. The ground commanded the two existing solar arrays on the telescope to retract, and while one did so the second one did not due to a bent support rod.

Astronaut Kathryn C. Thornton, on the end of the Remote Manipulator System, releases Hubble’s old solar array that failed to retract properly The solar array drifting away from space shuttle Endeavour Thornton disconnects Hubble’s retracted solar array
Second spacewalk. Left: Astronaut Kathryn C. Thornton, on the end of the Remote Manipulator System, releases Hubble’s old solar array that failed to retract properly. Middle: The solar array drifting away from space shuttle Endeavour. Right: Thornton disconnects Hubble’s retracted solar array.

On flight day five, Thornton and Akers stepped outside for the mission’s second spacewalk, lasting 6 hours 36 minutes. The primary tasks revolved around replacing the telescope’s two solar arrays. First, they disconnected the array that would not retract as planned, working only at night since the array generated electricity when exposed to sunlight. With Thornton on the end of the RMS, she released the partially open array as Nicollier pulled her away. Bowersox fired thrusters to separate from the array, the plumes impinging on it causing it to flap like a giant bird. Thornton and Akers then connected one of the new arrays, rotated the telescope on its FSS, disconnected the other array, stowing it in the payload bay for return to Earth, and replaced it with a new one.

Astronauts Jeffrey A. Hoffman, left, and F. Story Musgrave have removed the old Wide Field Planetary Camera (WFPC) from Hubble, the black rectangle at upper left shows its former location With European Space Agency astronaut Claude Nicollier operating the Remote Manipulator System from inside the shuttle, Hoffman guides the new WFPC2 into position, with Musgrave ready to assist Musgrave, left, and Hoffman have installed WFPC2, the white triangle in the middle of the telescope, with Hoffman about to pick up WFPC1 temporarily stowed on the side of the payload bay and place it in its permanent location for return to Earth
Third spacewalk. Left: Astronauts Jeffrey A. Hoffman, left, and F. Story Musgrave have removed the old Wide Field Planetary Camera (WFPC) from Hubble, the black rectangle at upper left shows its former location. Middle: With European Space Agency astronaut Claude Nicollier operating the Remote Manipulator System from inside the shuttle, Hoffman guides the new WFPC2 into position, with Musgrave ready to assist. Right: Musgrave, left, and Hoffman have installed WFPC2, the white triangle in the middle of the telescope, with Hoffman about to pick up WFPC1 temporarily stowed on the side of the payload bay and place it in its permanent location for return to Earth.

On the sixth day, Hoffman and Musgrave took their turn outside for the mission’s third spacewalk. Their primary task involved the replacement of the original WFPC with the more advance WFPC2 instrument. With Nicollier controlling the RMS, Hoffman removed the WFPC1 from the telescope and temporarily stowed it on the side of the payload bay. He then removed WFPC2 from its stowage location and he and Musgrave installed it into the telescope. After stowing WFPC1 in the payload bay for return to Earth, Hoffman replaced two magnetometers, essentially compasses the telescope uses to determine its orientation in space. This third spacewalk lasted 6 hours 47 minutes.

Astronaut Kathryn C. Thornton works in shuttle Endeavour’s payload bay European Space Agency astronaut Claude Nicollier controlling the Remote Manipulator System, Thornton, top, removes the Corrective Optics Space telescope Axial Replacement (COSTAR) from its storage location Astronaut Thomas D. Akers, inside the Hubble Space Telescope prepares to install the COSTAR
Fourth spacewalk. Left: Astronaut Kathryn C. Thornton works in shuttle Endeavour’s payload bay. Middle: With European Space Agency astronaut Claude Nicollier controlling the Remote Manipulator System, Thornton, top, removes the Corrective Optics Space telescope Axial Replacement (COSTAR) from its storage location. Right: Astronaut Thomas D. Akers, inside the Hubble Space Telescope prepares to install the COSTAR.

For Akers and Thornton, the primary tasks of the fourth spacewalk on the mission’s seventh day focused on the removal of the HSP instrument and replacing it with the COSTAR system to correct the telescope’s optics. Akers opened the telescope’s shroud doors and with Thornton removed the HSP, temporarily stowing it on the side of the payload bay. Nicollier then maneuvered the RMS with Thornton to pick up COSTAR from its storage location and translate them to Hubble where Akers awaited to help with the installation. After closing the door and stowing the HSP, and installing an electronics package with additional computer memory, Akers and Thornton finished the 6-hour 50-minut spacewalk.

Remote Manipulator System operator European Space Agency astronaut Claude Nicollier translates Jeffrey A. Hoffman and F. Story Musgrave to the top of the Hubble Space Telescope The second of two solar arrays unfurls as Hoffman and Musgrave continue working Hoffman celebrates the first Hannukah in space, with a spinning dreidel floating nearby
Fifth spacewalk. Left: Remote Manipulator System operator European Space Agency astronaut Claude Nicollier translates Jeffrey A. Hoffman and F. Story Musgrave to the top of the Hubble Space Telescope. Middle: The second of two solar arrays unfurls as Hoffman and Musgrave continue working. Right: Hoffman celebrates the first Hannukah in space, with a spinning dreidel floating nearby.

On the morning of the eighth day, Bowersox used Endeavour’s thrusters to slightly raise and circularize Hubble’s orbit. Hoffman and Musgrave stepped outside for the mission’s fifth and final spacewalk. When the two newly installed solar arrays failed to deploy after ground commanding, they manually deployed them, and the arrays unfurled without incident. They next replaced the solar array drive electronics and fitted an electronic connection box on the GHRS instrument. Hoffman and Musgrave’s final task involved installing covers, manufactured by Bowersox and Nicollier on board the shuttle, on the telescope’s magnetometers. The final spacewalk lasted 7 hours 21 minutes, bringing the mission’s total spacewalk time to 35 hours 28 minutes. Once back inside Endeavour, Hoffman celebrated the first Hanukkah in space during a televised broadcast, displaying a traveling menorah, unlit of course, and a spinning dreidel.

European Space Agency astronaut Claude Nicollier grapples the Hubble Space Telescope, with its high-gain antenna deployed, just prior to release Hubble slowly drifts away from Endeavour A distant view of Hubble, right, with a crescent Moon
Left: European Space Agency astronaut Claude Nicollier grapples the Hubble Space Telescope, with its high-gain antenna deployed, just prior to release. Middle: After its release, Hubble slowly drifts away from Endeavour. Right: A distant view of Hubble, right, with a crescent Moon.

On flight day nine, Nicollier grappled Hubble with the RMS for the final time and lifted it above the payload bay. Ground controllers commanded its aperture door to open, and Nicollier released the telescope. Bowersox fired Endeavour’s thrusters to slowly back away from the telescope. The next day, the astronauts enjoyed a well-deserved day of rest. They returned the shuttle’s cabin pressure to 14.7 psi and tidied up the spacecraft. On the mission’s 11th day, Covey and Bowersox tested Endeavour’s flight control surfaces and practiced touchdowns using a laptop computer, all in preparation for deorbit, entry, and landing the following day.

Astronaut Richard O. Covey guides Endeavour to a landing at NASA’s Kennedy Space Center (KSC) in Florida Workers at KSC continue to safe Endeavour following its landing Images of M100 galactic nucleus before, left, and after the first servicing mission showing the improved optical qualities
Left: Astronaut Richard O. Covey guides Endeavour to a landing at NASA’s Kennedy Space Center (KSC) in Florida. Middle: Workers at KSC continue to safe Endeavour following its landing. Right: Images of M100 galactic nucleus before, left, and after the first servicing mission showing the improved optical qualities.

On Dec. 13, 1993, their 12th and final day in space, the astronauts donned their pressure suits and prepared for the return to Earth. Due to predicted worsening weather conditions at KSC, Mission Control elected to bring them home one orbit earlier than planned. Covey guided Endeavour to a smooth landing at night at KSC, concluding a flight of 10 days, 19 hours, 59 minutes. They circled the Earth 163 times. Within a month, new images from Hubble indicated the repairs returned the telescope to its expected capabilities, providing astronomers with a unique observation platform. The lessons learned from planning and executing the complex series of spacewalks, with extensive coordination with teams on the ground, proved highly useful not only for future Hubble servicing mission but also for the difficult spacewalks required to assemble and maintain the International Space Station.

Timeline of the Hubble Space Telescope’s instruments and their replacements during servicing missions Hubble as it appeared after its release during the final servicing mission in 2009
Left: Timeline of the Hubble Space Telescope’s instruments and their replacements during servicing missions. Right: Hubble as it appeared after its release during the final servicing mission in 2009.

Although the STS-61 crew’s work left the Hubble Space Telescope in better condition than originally designed, over the years it required additional servicing to ensure it met its expected 15-year on-orbit life. Four additional shuttle crews serviced the telescope between 1997 and 2009, and today it carries a suite of instruments far more advanced than its original complement. During the five servicing missions, 16 space walking astronauts conducted 23 spacewalks totaling more than 165 hours, or just under 7 days, to make repairs or improvements to the telescope’s capabilities. To summarize the discoveries made by scientists using data from the Hubble Space Telescope is well beyond the scope of this article. Suffice it to say that during its more than 30 years of operation, information and images returned by Hubble continue to revolutionize astronomy, literally causing scientists to rewrite textbooks, and have dramatically altered how the public views the wonders of the universe. On the technical side, the launch of Hubble and the servicing missions to maintain and upgrade its capabilities have proven conclusively the value of maintainability of space-based scientific platforms. 

Watch the STS-61 crew narrate a video of their Hubble servicing mission.

Share

Details

Last Updated
Dec 04, 2023

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s SPHEREx, which will map millions of galaxies across the entire sky, captured one of its first exposures March 27. The observatory’s six detectors each captured one of these uncalibrated images, to which visible-light colors have been added to represent infrared wavelengths. SPHEREx’s complete field of view spans the top three images; the same area of the sky is also captured in the bottom three images. NASA/JPL-Caltech Processed with rainbow hues to represent a range of infrared wavelengths, the new pictures indicate the astrophysics space observatory is working as expected.
      NASA’s SPHEREx (short for Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) has turned on its detectors for the first time in space. Initial images from the observatory, which launched March 11, confirm that all systems are working as expected.
      Although the new images are uncalibrated and not yet ready to use for science, they give a tantalizing look at SPHEREx’s wide view of the sky. Each bright spot is a source of light, like a star or galaxy, and each image is expected to contain more than 100,000 detected sources.
      There are six images in every SPHEREx exposure — one for each detector. The top three images show the same area of sky as the bottom three images. This is the observatory’s full field of view, a rectangular area about 20 times wider than the full Moon. When SPHEREx begins routine science operations in late April, it will take approximately 600 exposures every day.
      Each image in this uncalibrated SPHEREx exposure contains about 100,000 light sources, including stars and galaxies. The two insets at right zoom in on sections of one image, showcasing the telescope’s ability to capture faint, distant galaxies. These sections are processed in grayscale rather than visible-light color for ease of viewing.NASA/JPL-Caltech “Our spacecraft has opened its eyes on the universe,” said Olivier Doré, SPHEREx project scientist at Caltech and NASA’s Jet Propulsion Laboratory, both in Southern California. “It’s performing just as it was designed to.”
      The SPHEREx observatory detects infrared light, which is invisible to the human eye. To make these first images, science team members assigned a visible color to every infrared wavelength captured by the observatory. Each of the six SPHEREx detectors has 17 unique wavelength bands, for a total of 102 hues in every six-image exposure.
      Breaking down color this way can reveal the composition of an object or the distance to a galaxy. With that data, scientists can study topics ranging from the physics that governed the universe less than a second after its birth to the origins of water in our galaxy.
      “This is the high point of spacecraft checkout; it’s the thing we wait for,” said Beth Fabinsky, SPHEREx deputy project manager at JPL. “There’s still work to do, but this is the big payoff. And wow! Just wow!”
      During the past two weeks, scientists and engineers at JPL, which manages the mission for NASA, have executed a series of spacecraft checks that show all is well so far. In addition, SPHEREx’s detectors and other hardware have been cooling down to their final temperature of around minus 350 degrees Fahrenheit (about minus 210 degrees Celsius). This is necessary because heat can overwhelm the telescope’s ability to detect infrared light, which is sometimes called heat radiation. The new images also show that the telescope is focused correctly. Focusing is done entirely before launch and cannot be adjusted in space.
      “Based on the images we are seeing, we can now say that the instrument team nailed it,” said Jamie Bock, SPHEREx’s principal investigator at Caltech and JPL.
      How It Works
      Where telescopes like NASA’s Hubble and James Webb space telescopes were designed to target small areas of space in detail, SPHEREx is a survey telescope and takes a broad view. Combining its results with those of targeted telescopes will give scientists a more robust understanding of our universe.
      The observatory will map the entire celestial sky four times during its two-year prime mission. Using a technique called spectroscopy, SPHEREx will collect the light from hundreds of millions of stars and galaxies in more wavelengths any other all-sky survey telescope.
      Track the real-time location of NASA’s SPHEREx space observatory using the agency’s 3D visualization tool, Eyes on the Solar System. When light enters SPHEREx’s telescope, it’s directed down two paths that each lead to a row of three detectors. The observatory’s detectors are like eyes, and set on top of them are color filters, which are like color-tinted glasses. While a standard color filter blocks all wavelengths but one, like yellow- or rose-tinted glasses, the SPHEREx filters are more like rainbow-tinted glasses: The wavelengths they block change gradually from the top of the filter to the bottom.
      “I’m rendered speechless,” said Jim Fanson, SPHEREx project manager at JPL. “There was an incredible human effort to make this possible, and our engineering team did an amazing job getting us to this point.”
      More About SPHEREx
      The SPHEREx mission is managed by JPL for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters. BAE Systems (formerly Ball Aerospace) built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Caltech managed and integrated the instrument. Data will be processed and archived at IPAC at Caltech. The mission’s principal investigator is based at Caltech with a joint JPL appointment. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive. Caltech manages JPL for NASA.
      For more about SPHEREx, visit:
      https://science.nasa.gov/mission/spherex/
      News Media Contact
      Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      2025-045
      Share
      Details
      Last Updated Apr 01, 2025 Related Terms
      SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) Astrophysics Galaxies Origin & Evolution of the Universe The Search for Life The Universe Explore More
      3 min read Discovery Alert: Four Little Planets, One Big Step
      The Discovery Four rocky planets much smaller than Earth orbit Barnard’s Star, the next closest…
      Article 13 hours ago 5 min read NASA Awards Astrophysics Postdoctoral Fellowships for 2025
      The highly competitive NASA Hubble Fellowship Program (NHFP) recently named 24 new fellows to its…
      Article 1 day ago 2 min read Hubble Spots a Chance Alignment
      The subject of today’s NASA/ESA Hubble Space Telescope image is the stunning spiral galaxy NGC…
      Article 4 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 5 Min Read 20-Year Hubble Study of Uranus Yields New Atmospheric Insights
      The image columns show the change of Uranus for the four years that STIS observed Uranus across a 20-year period. Over that span of time, the researchers watched the seasons of Uranus as the south polar region darkened going into winter shadow while the north polar region brightened as northern summer approaches. Credits:
      NASA, ESA, Erich Karkoschka (LPL) The ice-giant planet Uranus, which travels around the Sun tipped on its side, is a weird and mysterious world. Now, in an unprecedented study spanning two decades, researchers using NASA’s Hubble Space Telescope have uncovered new insights into the planet’s atmospheric composition and dynamics. This was possible only because of Hubble’s sharp resolution, spectral capabilities, and longevity. 
      The team’s results will help astronomers to better understand how the atmosphere of Uranus works and responds to changing sunlight. These long-term observations provide valuable data for understanding the atmospheric dynamics of this distant ice giant, which can serve as a proxy for studying exoplanets of similar size and composition.
      When Voyager 2 flew past Uranus in 1986, it provided a close-up snapshot of the sideways planet. What it saw resembled a bland, blue-green billiard ball. By comparison, Hubble chronicled a 20-year story of seasonal changes from 2002 to 2022. Over that period, a team led by Erich Karkoschka of the University of Arizona, and Larry Sromovsky and Pat Fry from the University of Wisconsin used the same Hubble instrument, STIS (the Space Telescope Imaging Spectrograph), to paint an accurate picture of the atmospheric structure of Uranus. 
      Uranus’ atmosphere is mostly hydrogen and helium, with a small amount of methane and traces of water and ammonia. The methane gives Uranus its cyan color by absorbing the red wavelengths of sunlight.
      The Hubble team observed Uranus four times in the 20-year period: in 2002, 2012, 2015, and 2022. They found that, unlike conditions on the gas giants Saturn and Jupiter, methane is not uniformly distributed across Uranus. Instead, it is strongly depleted near the poles. This depletion remained relatively constant over the two decades. However, the aerosol and haze structure changed dramatically, brightening significantly in the northern polar region as the planet approaches its northern summer solstice in 2030.
      The image columns show the change of Uranus for the four years that STIS observed Uranus across a 20-year period. Over that span of time, the researchers watched the seasons of Uranus as the south polar region darkened going into winter shadow while the north polar region brightened as northern summer approaches. NASA, ESA, Erich Karkoschka (LPL) Uranus takes a little over 84 Earth years to complete a single orbit of the Sun. So, over two decades, the Hubble team has only seen mostly northern spring as the Sun moves from shining directly over Uranus’ equator toward shining almost directly over its north pole in 2030. Hubble observations suggest complex atmospheric circulation patterns on Uranus during this period. The data that are most sensitive to the methane distribution indicate a downwelling in the polar regions and upwelling in other regions. 
      The team analyzed their results in several ways. The image columns show the change of Uranus for the four years that STIS observed Uranus across a 20-year period. Over that span of time, the researchers watched the seasons of Uranus as the south polar region (left) darkened going into winter shadow while the north polar region (right) brightened as it began to come into a more direct view as northern summer approaches.
      The top row, in visible light, shows how the color of Uranus appears to the human eye as seen through even an amateur telescope. 
      In the second row, the false-color image of the planet is assembled from visible and near-infrared light observations. The color and brightness correspond to the amounts of methane and aerosols. Both of these quantities could not be distinguished before Hubble’s STIS was first aimed at Uranus in 2002. Generally, green areas indicate less methane than blue areas, and red areas show no methane. The red areas are at the limb, where the stratosphere of Uranus is almost completely devoid of methane. 
      The two bottom rows show the latitude structure of aerosols and methane inferred from 1,000 different wavelengths (colors) from visible to near infrared. In the third row, bright areas indicate cloudier conditions, while the dark areas represent clearer conditions. In the fourth row, bright areas indicate depleted methane, while dark areas show the full amount of methane. 
      At middle and low latitudes, aerosols and methane depletion have their own latitudinal structure that mostly did not change much over the two decades of observation.  However, in the polar regions, aerosols and methane depletion behave very differently. 
      In the third row, the aerosols near the north pole display a dramatic increase, showing up as very dark during early northern spring, turning very bright in recent years. Aerosols also seem to disappear at the left limb as the solar radiation disappeared. This is evidence that solar radiation changes the aerosol haze in the atmosphere of Uranus. On the other hand, methane depletion seems to stay quite high in both polar regions throughout the observing period. 
      Astronomers will continue to observe Uranus as the planet approaches northern summer.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Related Images & Videos
      20 Years of Uranus Observations





      Share








      Details
      Last Updated Mar 31, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center
      Contact Media Claire Andreoli
      NASA’s Goddard Space Flight Center
      Greenbelt, Maryland
      claire.andreoli@nasa.gov
      Ann Jenkins
      Space Telescope Science Institute, Baltimore, Maryland
      Ray Villard
      Space Telescope Science Institute, Baltimore, Maryland

      Related Terms
      Hubble Space Telescope Astrophysics Division Goddard Space Flight Center Planetary Environments & Atmospheres Planetary Science Planets The Solar System Uranus
      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
      Hubble Spots a Chance Alignment
      This NASA/ESA Hubble image features the spiral galaxy NGC 5530. ESA/Hubble & NASA, D. Thilker The subject of today’s NASA/ESA Hubble Space Telescope image is the stunning spiral galaxy NGC 5530. This galaxy is situated 40 million light-years away in the constellation Lupus, the Wolf, and classified as a ‘flocculent’ spiral, meaning its spiral arms are patchy and indistinct.
      While some galaxies have extraordinarily bright centers that host a feasting supermassive black hole, the bright source near the center of NGC 5530 is not an active black hole but a star within our own galaxy, only 10,000 light-years from Earth. This chance alignment gives the appearance that the star is at the dense heart of NGC 5530.
      If you pointed a backyard telescope at NGC 5530 on the evening of September 13, 2007, you would have seen another bright point of light adorning the galaxy. That night, Australian amateur astronomer Robert Evans discovered a supernova, named SN 2007IT, by comparing NGC 5530’s appearance through the telescope to a reference photo of the galaxy. While it’s remarkable to discover even one supernova using this painstaking method, Evans has in fact discovered more than 40 supernovae this way! This particular discovery was truly serendipitous: it’s likely that the light from the supernova completed its 40-million-year journey to Earth just days before Evans spotted the explosion.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Share








      Details
      Last Updated Mar 28, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Spiral Galaxies The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Galaxies



      Hubble’s 35th Anniversary



      Hubble’s Night Sky Challenge


      View the full article
    • By European Space Agency
      The first image from a new Italian Earth observation satellite mission was published today: a high-resolution image of a strip of the Italian peninsular showing the city of Rome at a resolution of 2.66 metres. This is three times higher than the resolution currently available for systematic acquisition over Italy.
      View the full article
    • By European Space Agency
      Two spacecraft flying as one – that is the goal of European Space Agency’s Proba-3 mission. Earlier this week, the eclipse-maker moved a step closer to achieving that goal, as both spacecraft aligned with the Sun, maintaining their relative position for several hours without any control from the ground.
      View the full article
  • Check out these Videos

×
×
  • Create New...