Jump to content

December’s Night Sky Notes: A Flame in the Sky – the Orion Nebula


Recommended Posts

  • Publishers
Posted

3 min read

December’s Night Sky Notes: A Flame in the Sky – the Orion Nebula

The Orion constellation with light blue lines and dots representing stars. The star, Betelgeuse is reddish-orange, and other named stars are blueish white
Orion constellation
Stellarium Web

by Kat Troche of the Astronomical Society of the Pacific

It’s that time of year again: Winter! Here in the Northern Hemisphere, the clear, crisp sky offers spectacular views of various objects, the most famous of all being Orion the Hunter.

As we’ve previously mentioned, Orion is a great way to test your sky darkness. With the naked eye, you can easily spot this hourglass-shaped constellation. Known as an epic hunter in Greco-Roman antiqity, Orion and all its parts have many names and meanings across many cultures. In Egyptian mythology, this constellation represented the god Sah. The Babylonians referred to it as The Heavenly Shepard. In most cultures, it is Orion’s Belt that has many stories: Shen in Chinese folklore, or Tayamnicankhu in Lakota storytelling. But the Maya of Mesoamerica believed that part of Orion contained The Cosmic Hearth – the fire of creation.

1,500 light years away from Earth sits the star-forming region, and crown jewel of Orion – Messier 42 (M42), the Orion Nebula. Part of the “sword” of Orion, this 24 light year wide cloud of dust and gas sits below the first star in Orion’s Belt, Alnitak, and can easily be spotted with the naked eye under moderate dark skies. You can also use binoculars or a telescope to resolve more details, such as the Trapezium: four stars in the shape of a keystone (or baseball diamond). These young stars make up the core of this magnificent object.

Of course, it’s not just for looking at! M42 is easily one of the most photographed nebulae around, imaged by amateur astrophotographers, professional observatories and space telescopes alike. It has long been a place of interest for the Hubble, Spitzer, and Chandra X-ray Space Telescopes, with James Webb Space Telescope now joining the list in February 2023. Earlier this year, NASA and the European Space Agency released a new photo of the Orion Nebula taken from JWST’s NIRCam (Near-Infrared Camera), which allowed scientists to image this early star forming region in both short and long wavelengths.  

An image made of three panels. The largest on the left shows the NIRCam image of a nebula with two bright stars. Billowy, multi-hued clouds fill the field of view. The scene is divided by an undulating formation running from lower left to upper right. On the left side, the clouds are various shades of blue with some translucent orange wisps throughout. On the right side, the clouds vary from bright orange-red to brown as you go from left to right.
These Webb images show a part of the Orion Nebula known as the Orion Bar. It is a region where energetic ultraviolet light from the Trapezium Cluster — located off the upper-left corner — interacts with dense molecular clouds. The energy of the stellar radiation is slowly eroding the Orion Bar, and this has a profound effect on the molecules and chemistry in the protoplanetary disks that have formed around newborn stars here.

The largest image, on the left, is from Webb’s NIRCam (Near-Infrared Camera) instrument. At upper right, the telescope is focused on a smaller area using Webb’s MIRI (Mid-Infrared Instrument). A total of eighteen filters across both the MIRI and NIRCam instruments were used in these images, covering a range of wavelengths from 1.4 microns in the near-infrared to 25.5 microns in the mid-infrared.

At the very center of the MIRI area is a young star system with a planet-forming disk named d203-506. The pullout at the bottom right displays a combined NIRCam and MIRI image of this young system. Its extended shape is due to pressure from the harsh ultraviolet radiation striking it. An international team of astronomers detected a new carbon molecule known as methyl cation for the first time in d203-506.

ESA/Webb, NASA, CSA, M. Zamani (ESA/Webb), PDRs4ALL ERS Team

But stars aren’t the only items visible here. In June 2023, JWST’s NIRCam and MIRI (mid-infrared instrument) imaged a developing star system with a protoplanetary disk forming around it. That’s right – a solar system happening in real time – located within the edges of a section called the Orion Bar. Scientists have named this planet-forming disk d203-506, and you can learn more about the chemistry found here. By capturing these objects in multiple wavelengths of light, astronomers now have even greater insight into what other objects might be hiding within these hazy hydrogen regions of our night sky. This technique is called Multi-spectral Imaging, made possible by numerous new space based telescopes.

In addition to the Night Sky Network Dark Sky Wheel, a fun activity you can share with your astronomy club would be Universe Discovery Guide: Orion Nebula, Nursery of Newborn Stars. This will allow you to explain to audiences how infrared astronomy, like JWST, helps to reveal the secrets of nebulae. Or you can use public projects like the NASA-funded MicroObservatory to capture M42 and other objects.

Stay tuned to learn more about what to spy in the Winter sky with our upcoming mid-month article!

3 min read

December’s Night Sky Notes: A Flame in the Sky – the Orion Nebula

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By USH
      These images captured by the Curiosity rover in 2014 reveals yet another unexplained aerial phenomenon in the Martian atmosphere, a cigar-shaped object with a consistent width and rounded ends. 

      What makes this anomaly particularly compelling is the sharp clarity of the image. According to Jean Ward the stars in the background appear crisp and unblurred, indicating that the object is not the result of motion blur or a long exposure. Notably, the object appears in five separate frames over an 8-minute span, suggesting it is moving relatively slowly through space, uncharacteristic of a meteorite entering the atmosphere. It also lacks the fiery tail typically associated with atmospheric entry. 

      Rather than a meteor, the object more closely resembles a solid, elongated craft of unknown origin. When oriented horizontally, it even appears to feature a front-facing structure, possibly a porthole or raised dome, hinting at a cockpit or command module. 

      Whether this object is orbiting beyond the visible horizon or connected to the surface far in the distance, its sheer size is unmistakable. Its presence raises compelling questions, could this be further evidence of intelligently controlled craft, whether of extraterrestrial or covert human origin, navigating through Martian airspace?View the full article
    • By NASA
      7 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      In the summer 2025 issue of the NASA History Office’s News & Notes newsletter, examples of leadership and critical decision-making in NASA’s history form the unifying theme. Among the topics discussed are NASA’s Shuttle-Centaur program, assessing donations to the NASA Archives, how the discovery of the first exoplanet orbiting a sun-like star catalyzed NASA’s exoplanet program, and Chief of the Medical Operations Office Charles A. Berry’s decisions surrounding crew health when planning the Project Gemini missions.

      Volume 42, Number 2
      Summer 2025
      Featured Articles
      From the Chief Historian
      By Brian Odom
      NASA’s is a history marked by critical decisions. From George Mueller’s 1963 decision for “all up” testing of the Saturn V rocket to Michael Griffin’s 2006 decision to launch a final servicing mission to the Hubble Space Telescope, the agency has continually met key inflection points with bold decisions. These choices, such as the decision to send a crewed Apollo 8 mission around the Moon in December 1968, stand at the center of the agency’s national legacy and promote confidence in times of crisis.  Continue Reading
      Shuttle-Centaur: Loss of Launch Vehicle Redundancy Leads to Discord
      By Robert Arrighi
      “Although the Shuttle/Centaur decision was very difficult to make, it is the proper thing to do, and this is the time to do it.” With those words on June 19, 1986, NASA Administrator James Fletcher canceled the intensive effort to integrate the Centaur upper stage with the Space Shuttle to launch the Galileo and Ulysses spacecraft. The decision, which was tied to increased safety measures following the loss of Challenger several months earlier, brought to the forefront the 1970s decision to launch all U.S. payloads with the Space Shuttle. Continue Reading
      Lewis Director Andy Stofan speaks at the Shuttle-Centaur rollout ceremony on August 23, 1985 at General Dynamics’s San Diego headquarters. Galileo mission crew members Dave Walker, Rick Hauck, and John Fabian were among those on stage. NASA A View into NASA’s Response to the Apollo 1 Tragedy
      By Kate Mankowski
      On January 27, 1967, Mission AS-204 (later known as Apollo 1) was conducting a simulated countdown when a fire suddenly broke out in the spacecraft, claiming the lives of astronauts Virgil I. “Gus” Grissom, Edward H. White, and Roger B. Chaffee. The disaster highlighted the risks that come with spaceflight and the work that still needed to be accomplished to meet President Kennedy’s challenge of going to the Moon before the end of the decade. With the complexity of the Apollo spacecraft, discerning the cause of the fire proved to be incredibly difficult. Continue Reading
      The Fight to Fund AgRISTARS
      By Brad Massey
      Robert MacDonald, the manager of NASA’s Large Area Crop Inventory Experiment (LACIE), was not pleased in January 1978 after he read a draft copy of the U.S. General Accounting Office’s (GAO’s) “Crop Forecasting by Satellite: Progress and Problems” report. The draft’s authors argued that LACIE had not achieved its goals of accurately predicting harvest yields in the mid-1970s. Therefore, congressional leaders should “be aware of the disappointing performance of LACIE to date when considering the future direction of NASA’s Landsat program and the plans of the Department of Agriculture.” Continue Reading
      The Hubble Space Telescope: The Right Project at the Right Time
      By Jillian Rael
      This year, NASA commemorates 35 years of the Hubble Space Telescope’s study of the cosmos. From observations of never-before-seen phenomena within our solar system, to the discovery of distant galaxies, the confirmation of the existence of supermassive black holes, and precision measurements of the universe’s expansion, Hubble has made incredible contributions to science, technology, and even art. Yet, for all its contemporary popularity, the Hubble program initially struggled for congressional approval and consequential funding. For its part, NASA found new ways to compromise and cut costs, while Congress evaluated national priorities and NASA’s other space exploration endeavors against the long-range value of Hubble. Continue Reading
      Within the tempestuous Carina Nebula lies “Mystic Mountain.”NASA/ESA/M. Livio/Hubble 20th Anniversary Team Appraisal: The Science and Art of Assessing Donations to the NASA Archives
      By Alan Arellano
      The major functions of an archivist center include appraising, arranging, describing, preserving, and providing access to historical records and documents. While together these are pillars of archival science, they are more of an art than a science in their application, fundamentally necessitating skilled decision making. Throughout the NASA archives, staff members make these decisions day in and day out. Continue Reading
      Orbit Shift: How 50 Pegasi b Helped Pull NASA Toward the Stars in the 1990s
      By Lois Rosson
      On October 20, 1995, the New York Times reported the detection of a distant planet orbiting a Sun-like star. The star, catalogued as 51 Pegasi by John Flamsteed in the 18th century, was visible to the naked eye as part of the constellation Pegasus—and had wobbled on its axis just enough that two Swiss astronomers were able to deduce the presence of another object exerting its gravitational pull on the star’s rotation. The discovery was soon confirmed by other astronomers, and 51 Pegasi b was heralded as the first confirmed exoplanet orbiting a star similar to our own Sun. Continue Reading
      Detail from an infographic about 51 Pegasi b and the significance of its discovery.NASA Four, Eight, Fourteen Days: Charles A. Berry, Gemini, and the Critical Steps to Living and Working in Space
      By Jennifer Ross-Nazzal
      In 1963, critical decisions had to be made about NASA’s upcoming Gemini missions if the nation were to achieve President John F. Kennedy’s lunar goals. Known as the bridge to Apollo, Project Gemini was critical to landing a man on the Moon by the end of the decade and returning him safely to Earth. The project would demonstrate that astronauts could rendezvous and dock their spacecraft to another space vehicle and give flight crews the opportunity to test the planned extravehicular capabilities in preparation for walking on the lunar surface on future Apollo flights. Perhaps most importantly, Gemini had to show that humans could live and work in space for long periods of time, a fiercely debated topic within and outside of the agency.  Continue Reading
      Dr. Charles Berry prepares to check the blood pressure of James A. McDivitt, Command Pilot for the Gemini IV mission. McDivitt is on the tilt table at the Aero Medical Area, Merritt Island, FL, where he and Gemini IV pilot Edward H. White II underwent preflight physicals in preparation for their four-day spaceflight.NASA Imagining Space: The Life and Art of Robert McCall
      By Sandra Johnson
      As we walked into Bob McCall’s Arizona home, it quickly became obvious that two talented and creative people lived there. Tasked with interviewing one of the first artists to be invited to join the NASA Art Program, our oral history team quickly realized the session with McCall would include a unique perspective on NASA’s history. We traveled to Arizona in the spring of 2000 to capture interviews with some of the pioneers of spaceflight and had already talked to an eclectic group of subjects in their homes, including a flight controller for both Gemini and Apollo, an astronaut who had flown on both Skylab and Space Shuttle missions, a former NASA center director, and two former Women’s Airforce Service Pilots (WASPs) who ferried airplanes during WWII. However, unlike most interviews, the setting itself provided a rare glimpse into the man and his inspiration.  Continue Reading
      Inside the Archives: Biomedical Branch Files
      By Alejandra Lopez
      The Biomedical Branch Files (1966–2008) in the Johnson Space Center archives showcase the inner workings of a NASA office established to perform testing to provide a better understanding of the impacts of spaceflight on the human body. Ranging from memos and notes to documents and reports, this collection is an invaluable resource on the biomedical research done with NASA’s Apollo, Skylab, Space Shuttle, and Space Station projects. Files in the collection cover work done by groups within the branch such as the Toxicology, Microbiology, Clinical, and Biochemistry Laboratories. It also reveals the branch’s evolution and changes in its decision-making process over the years. Continue Reading
      Dr. Carolyn S. Huntoon, shown here in 1972, became the Biomedical Branch’s first chief in 1977.NASA Download the Summer 2025 Edition More Issues of NASA History News and Notes Share
      Details
      Last Updated Jun 20, 2025 EditorMichele Ostovar Related Terms
      NASA History Newsletters Explore More
      5 min read NASA History News and Notes–Spring 2025
      Article 3 months ago 6 min read NASA History News and Notes – Winter 2024
      Article 6 months ago 7 min read NASA History News and Notes – Fall 2024
      Article 9 months ago Keep Exploring Discover Related Topics
      NASA History
      History Publications and Resources
      NASA Archives
      NASA Oral Histories
      View the full article
    • By NASA
      Keith Barr was born only months before the historic Apollo 11 landing in 1969. While he was too young to witness that giant leap for mankind, the moment sparked a lifelong fascination that set him on a path to design technology that will carry astronauts farther into space than ever before. 
      Today, Barr serves as a chief engineer and Orion Docking Lidar Field Test lead at NASA’s Johnson Space Center in Houston. He spearheads the field testing of docking lidars for the Orion spacecraft, which will carry astronauts to the Moon on the Artemis III mission. These lidars are critical to enabling Orion to autonomously dock with the human landing system on Artemis III — the mission that will land astronauts near the Moon’s South Pole for the first time in history. 
      Keith Barr prepares for a wind lidar test flight in one of the U.S. Navy’s Twin Otter aircraft in support of the AC-130 Gunship lidar program. “The Mercury, Gemini, and Apollo missions are some of humanity’s greatest technical achievements,” he said. “To be part of the Artemis chapter is a profound honor.”  
      In recognition of his contributions, Barr was selected as a NASA Space Flight Awareness Honoree in 2025 for his exceptional dedication to astronaut safety and mission success. Established in 1963, NASA’s Space Flight Awareness Program celebrates individuals who play a vital role in supporting human spaceflight. The award is one of the highest honors presented to the agency’s workforce. 
      With a career spanning over 25 years at Lockheed Martin, Barr is now recognized as a renowned leader in lidar systems—technologies that use laser light to measure distances. He has led numerous lidar deployments and test programs across commercial aviation, wind energy, and military markets.  
      In 2019, Barr and his team began planning a multi-phase field campaign to validate Orion’s docking lidars under real-world conditions. They repurposed existing hardware, developed a drone-based simulation system, and conducted dynamic testing at Lockheed Martin facilities in Littleton, Colorado, and Santa Cruz, California. 
      In Littleton, the team conducted two phases of testing at the Space Operations Simulation Center, evaluating performance across distances ranging from 50 meters to docking. At the Santa Cruz facility, they began much farther out at 6,500 meters and tested down to 10 meters, just before the final docking phase. 
      Of all these efforts, Barr is especially proud of the ingenuity behind the Santa Cruz tests. To simulate a spacecraft docking scenario, he repurposed a lidar pointing gimbal and test trailer from previous projects and designed a drone-based test system with unprecedented accuracy.  
      “An often-overlooked portion of any field campaign is the measurement and understanding of truth,” he said. “The system I designed allowed us to record lidar and target positions with accuracy never before demonstrated in outdoor docking lidar testing.” 
      Testing at the Santa Cruz Facility in California often began before sunrise and continued past sunset to complete the full schedule. Here, a drone hovers at the 10-meter station-keeping waypoint as the sun sets in the background. The test stand at the Santa Cruz Facility had once been used for Agena upper stage rockets—a key piece of hardware used during the Gemini program in the 1960s. “We found a Gemini-era sticker on the door of the test bunker—likely from the time of Gemini VIII, the first space docking completed by Neil Armstrong and David Scott,” Barr said. “This really brought it home to me that we are simply part of the continuing story.” 
      Keith Barr operates a wind lidar during a live fire test in an AC-130 Gunship aircraft. He is seated next to an open door while flying at 18,000 feet over New Mexico in January 2017. Barr spent more than two decades working on WindTracer—a ground-based Doppler wind lidar system used to measure wind speed and turbulence at airports, wind farms, and in atmospheric research. 
      The transition from WindTracer to Orion presented new challenges. “Moving onto a space program has a steep learning curve, but I have found success in this new arena and I have learned that I can adapt and I shouldn’t be nervous about the unknown,” he said. “Learning new technologies, applications, and skills keeps my career fun and exciting and I look forward to the next giant leap—whatever it is.” 
      Keith Barr stands beside the Piper Cherokee 6 aircraft during his time as a captain for New England Airlines. Barr’s passion for flight moves in tandem with his pursuit of innovation. Over his career, he has flown over 1.6 million miles on commercial airlines. “I often joke that I’m on my fourth trip to the Moon and back—just in economy class,” he said.  
      Before specializing in lidar systems, Barr flew as a captain and assistant chief pilot at New England Airlines, operating small aircraft like the Piper Cherokee 6 and the Britten-Norman Islander.  
      He also worked at the National Center for Atmospheric Research, contributing to several NASA airborne missions aimed at unraveling the science behind global ozone depletion.  
      Keith Barr boards NASA’s DC-8 aircraft at Ames Research Center in California before heading to Salina, Kansas, to support a 1996 research mission studying how airplane emissions affect clouds and the atmosphere. As Barr reflects on his journey, he hopes to pass along a sense of legacy to the Artemis Generation. “We are in the process of writing the next chapter of human space exploration history, and our actions, successes, and troubles will be studied and analyzed well into the future,” he said. “We all need to consider how our actions will shape history.” 
      Explore More
      3 min read NASA, ISRO Research Aboard Fourth Private Astronaut Mission to Station
      Article 6 days ago 3 min read I Am Artemis: Lili Villarreal
      Lili Villarreal fell in love with space exploration from an early age when her and…
      Article 6 days ago 6 min read NASA Tests New Ways to Stick the Landing in Challenging Terrain
      Article 2 weeks ago View the full article
    • By European Space Agency
      The European Space Agency’s (ESA) newest planetary defender has opened its ‘eye’ to the cosmos for the first time. The Flyeye telescope’s ‘first light’ marks the beginning of a new chapter in how we scan the skies for new near-Earth asteroids and comets.
      View the full article
    • By NASA
      2 Min Read June’s Night Sky Notes: Seasons of the Solar System
      Two views of the planet Uranus appear side-by-side for comparison. At the top, left corner of the left image is a two-line label. The top line reads Uranus November 9, 2014. The bottoms line reads HST WFC3/UVIS. At the top, left corner of the right image is the label November 9, 2022. At the left, bottom corner of each image is a small, horizontal, white line. In both panels, over this line is the value 25,400 miles. Below the line is the value 40,800 kilometers. At the top, right corner of the right image are three, colored labels representing the color filters used to make these pictures. Located on three separate lines, these are F467M in blue, F547M in green, and F485M in red. On the bottom, right corner of the right image are compass arrows showing north toward the top and east toward the left. Credits:
      NASA by Kat Troche of the Astronomical Society of the Pacific
      Here on Earth, we undergo a changing of seasons every three months. But what about the rest of the Solar System? What does a sunny day on Mars look like? How long would a winter on Neptune be? Let’s take a tour of some other planets and ask ourselves what seasons might look like there.
      Martian Autumn
      Although Mars and Earth have nearly identical axial tilts, a year on Mars lasts 687 Earth days (nearly 2 Earth years) due to its average distance of 142 million miles from the Sun, making it late autumn on the red planet. This distance and a thin atmosphere make it less than perfect sweater weather. A recent weather report from Gale Crater boasted a high of -18 degrees Fahrenheit for the week of May 20, 2025.
      Credit: NASA/JPL-Caltech Seven Years of Summer
      Saturn has a 27-degree tilt, very similar to the 25-degree tilt of Mars and the 23-degree tilt of Earth. But that is where the similarities end. With a 29-year orbit, a single season on the ringed planet lasts seven years. While we can’t experience a Saturnian season, we can observe a ring plane crossing here on Earth instead. The most recent plane crossing took place in March 2025, allowing us to see Saturn’s rings ‘disappear’ from view.
      A Lifetime of Spring
      NASA Hubble Space Telescope observations in August 2002 show that Neptune’s brightness has increased significantly since 1996. The rise is due to an increase in the amount of clouds observed in the planet’s southern hemisphere. These increases may be due to seasonal changes caused by a variation in solar heating. Because Neptune’s rotation axis is inclined 29 degrees to its orbital plane, it is subject to seasonal solar heating during its 164.8-year orbit of the Sun. This seasonal variation is 900 times smaller than experienced by Earth because Neptune is much farther from the Sun. The rate of seasonal change also is much slower because Neptune takes 165 years to orbit the Sun. So, springtime in the southern hemisphere will last for several decades! Remarkably, this is evidence that Neptune is responding to the weak radiation from the Sun. These images were taken in visible and near-infrared light by Hubble’s Wide Field and Planetary Camera 2. Credit: NASA, L. Sromovsky, and P. Fry (University of Wisconsin-Madison) Even further away from the Sun, each season on Neptune lasts over 40 years. Although changes are slower and less dramatic than on Earth, scientists have observed seasonal activity in Neptune’s atmosphere. These images were taken between 1996 and 2002 with the Hubble Space Telescope, with brightness in the southern hemisphere indicating seasonal change.
      As we welcome summer here on Earth, you can build a Suntrack model that helps demonstrate the path the Sun takes through the sky during the seasons. You can find even more fun activities and resources like this model on NASA’s Wavelength and Energy activity. 
      View the full article
  • Check out these Videos

×
×
  • Create New...