Members Can Post Anonymously On This Site
NASA’s Educational CubeSats: Small Satellites, Big Impact
-
Similar Topics
-
By European Space Agency
Don’t miss the final ESA Impact of the year!
Your interactive gateway to the most captivating stories and stunning visuals from ESA.
View the full article
-
By European Space Agency
A multi-orbit constellation of about 300 satellites that will deliver resilient, secure and fast communications for EU governments, European companies and citizens will be put in orbit after two contracts were confirmed today in Brussels.
View the full article
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
This animation shows data taken by NASA’s PACE and the international SWOT satellites over a region of the North Atlantic Ocean. PACE captured phytoplankton data on Aug. 8, 2024; layered on top is SWOT sea level data taken on Aug. 7 and 8, 2024. NASA’s Scientific Visualization Studio One Earth satellite can see plankton that photosynthesize. The other measures water surface height. Together, their data reveals how sea life and the ocean are intertwined.
The ocean is an engine that drives Earth’s weather patterns and climate and sustains a substantial portion of life on the planet. A new animation based on data from two recently launched missions — NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) and the international Surface Water and Ocean Topography (SWOT) satellites — gives a peek into the heart of that engine.
Physical processes, including localized swirling water masses called eddies and the vertical movement of water, can drive nutrient availability in the ocean. In turn, those nutrients determine the location and concentration of tiny floating organisms known as phytoplankton that photosynthesize, converting sunlight into food. These organisms have not only contributed roughly half of Earth’s oxygen since the planet formed, but also support economically important fisheries and help draw carbon out of the atmosphere, locking it away in the deep sea.
“We see great opportunity to dramatically accelerate our scientific understanding of our oceans and the significant role they play in our Earth system,” said Karen St. Germain, director of the Earth Science Division at NASA Headquarters in Washington. “This visualization illustrates the potential we have when we begin to integrate measurements from our separate SWOT and PACE ocean missions. Each of those missions is significant on its own. But bringing their data together — the physics from SWOT and the biology from PACE — gives us an even better view of what’s happening in our oceans, how they are changing, and why.”
A collaboration between NASA and the French space agency CNES (Centre National d’Études Spatiales), the SWOT’ satellite launched in December 2022 to measure the height of nearly all water on Earth’s surface. It is providing one of the most detailed, comprehensive views yet of the planet’s ocean and its freshwater lakes, reservoirs, and rivers.
Launched in February 2024, NASA’s PACE satellite detects and measures the distribution of phytoplankton communities in the ocean. It also provides data on the size, amount, and type of tiny particles called aerosols in Earth’s atmosphere, as well as the height, thickness, and opacity of clouds.
“Integrating information across NASA’s Earth System Observatory and its pathfinder missions SWOT and PACE is an exciting new frontier in Earth science,” said Nadya Vinogradova Shiffer, program scientist for SWOT and the Integrated Earth System Observatory at NASA Headquarters.
Where Physics and Biology Meet
The animation above starts by depicting the orbits of SWOT (orange) and PACE (light blue), then zooms into the North Atlantic Ocean. The first data to appear was acquired by PACE on Aug. 8. It reveals concentrations of chlorophyll-a, a vital pigment for photosynthesis in plants and phytoplankton. Light green and yellow indicate higher concentrations of chlorophyll-a, while blue signals lower concentrations.
Next is sea surface height data from SWOT, taken during several passes over the same region between Aug. 7 and 8. Dark blue represents heights that are lower than the mean sea surface height, while dark orange and red represent heights higher than the mean. The contour lines that remain once the color fades from the SWOT data indicate areas of the ocean with the same height, much like the lines on a topographic map indicate areas with the same elevation.
The underlying PACE data then cycles through several groups of phytoplankton, starting with picoeukaryotes. Lighter green indicates greater concentrations of this group. The final two groups are cyanobacteria — some of the smallest and most abundant phytoplankton in the ocean — called Prochlorococcus and Synechococcus. For Prochlorococcus, lighter raspberry colors represent higher concentrations. Lighter teal colors for Synechococcus signal greater amounts of the cyanobacteria.
The animation shows that higher phytoplankton concentrations on Aug. 8 tended to coincide with areas of lower water height. Eddies that spin counterclockwise in the Northern Hemisphere tend to draw water away from their center. This results in relatively lower sea surface heights in the center that draw up cooler, nutrient-rich water from the deep ocean. These nutrients act like fertilizer, which can boost phytoplankton growth in sunlit waters at the surface.
Overlapping SWOT and PACE data enables a better understanding of the connections between ocean dynamics and aquatic ecosystems, which can help improve the management of resources such as fisheries, since phytoplankton form the base of most food chains in the sea. Integrating these kinds of datasets also helps to improve calculations of how much carbon is exchanged between the atmosphere and the ocean. This, in turn, can indicate whether regions of the ocean that absorb excess atmospheric carbon are changing.
More About SWOT
The SWOT satellite was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. NASA’s Jet Propulsion Laboratory, managed for the agency by Caltech in Pasadena, California, leads the U.S. component of the project. For the flight system payload, NASA provided the Ka-band radar interferometer (KaRIn) instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations. The Doppler Orbitography and Radioposition Integrated by Satellite system, the dual frequency Poseidon altimeter (developed by Thales Alenia Space), the KaRIn radio-frequency subsystem (together with Thales Alenia Space and with support from the UK Space Agency), the satellite platform, and ground operations were provided by CNES. The KaRIn high-power transmitter assembly was provided by CSA.
To learn more about SWOT, visit:
https://swot.jpl.nasa.gov
More About PACE
The PACE mission is managed by NASA Goddard Space Flight Center, which also built and tested the spacecraft and the Ocean Color Instrument, which collected the data shown in the visualization. The satellite’s Hyper-Angular Rainbow Polarimeter #2 was designed and built by the University of Maryland, Baltimore County, and the Spectro-polarimeter for Planetary Exploration was developed and built by a Dutch consortium led by Netherlands Institute for Space Research, Airbus Defence, and Space Netherlands.
To learn more about PACE, visit:
https://pace.gsfc.nasa.gov
News Media Contacts
Jacob Richmond (for PACE)
NASA’s Goddard Space Flight Center, Greenbelt, Md.
jacob.a.richmond@nasa.gov
Jane J. Lee / Andrew Wang (for SWOT)
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
2024-169
Share
Details
Last Updated Dec 09, 2024 Related Terms
PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) Climate Science Oceans SWOT (Surface Water and Ocean Topography) Explore More
7 min read Six Ways Supercomputing Advances Our Understanding of the Universe
Article 3 weeks ago 4 min read NASA Data Helps International Community Prepare for Sea Level Rise
Article 4 weeks ago 6 min read Inia Soto Ramos, From the Mountains of Puerto Rico to Mountains of NASA Earth Data
Dr. Inia Soto Ramos became fascinated by the mysteries of the ocean while growing up…
Article 4 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By European Space Agency
Researchers from the University of Leeds have detected methane leaking from a faulty pipe in Cheltenham, Gloucestershire, UK, using GHGSat satellite data – part of ESA’s Third Party Mission Programme. This marks the first time a UK methane emission has been identified from space and successfully mitigated.
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
When it comes to NASA’s ASTRO CAMP®, the numbers – and impact – of the initiative to help students across the nation and world learn about NASA and STEM (science, technology, engineering, and mathematics) just continue to grow and grow and grow.
As in recent years, the NASA ASTRO CAMP® Community Partners (ACCP) program surpassed previous milestone marks in fiscal year 2024 by partnering with 373 community sites, including 50 outside the United States, to inspire youth, families, and educators. Participants included students from various population segments, focusing on students from underrepresented groups, accessibility for differently-abled students, and reaching under-resourced urban and rural settings.
“This year has been extremely impactful for the students at ACCP collaborating partner sites,” said Kelly Martin-Rivers, principal investigator for NASA’s ACCP. “A particular highlight was being a part of NASA’s focus on the solar eclipses of 2024, supporting over 42,000 students at 52 NASA ACCP events. Supporting more and more exciting research and activities by the Science Activation grantees and Globe citizen scientists also continues to bring hands-on experiences directly to students across the country and around the world.”
NASA’s ASTRO CAMP® continued its success in fiscal year 2024 as students across the nation and world learn about NASA and STEM (science, technology, engineering, and mathematics. The NASA ASTRO CAMP® Community Partners program partnered with 323 sites in 29 states and the District of Columbia. It also reached beyond the borders to partner with 50 sites in six countries, including Mexico, India, Turkey, Canada, Spain, and Ukraine.NASA ASTRO CAMP® NASA’s ASTRO CAMP® continued its success in fiscal year 2024 as students across the nation and world learn about NASA and STEM (science, technology, engineering, and mathematics. The NASA ASTRO CAMP® Community Partners program partnered with 323 sites in 29 states and the District of Columbia. It also reached beyond the borders to partner with 50 sites in six countries, including Mexico, India, Turkey, Canada, Spain, and Ukraine.NASA ASTRO CAMP® NASA’s ASTRO CAMP® continued its success in fiscal year 2024 as students across the nation and world learn about NASA and STEM (science, technology, engineering, and mathematics. The NASA ASTRO CAMP® Community Partners program partnered with 323 sites in 29 states and the District of Columbia. It also reached beyond the borders to partner with 50 sites in six countries, including Mexico, India, Turkey, Canada, Spain, and Ukraine.NASA ASTRO CAMP® NASA’s ASTRO CAMP® continued its success in fiscal year 2024 as students across the nation and world learn about NASA and STEM (science, technology, engineering, and mathematics. The NASA ASTRO CAMP® Community Partners program partnered with 323 sites in 29 states and the District of Columbia. It also reached beyond the borders to partner with 50 sites in six countries, including Mexico, India, Turkey, Canada, Spain, and Ukraine.NASA ASTRO CAMP® NASA’s ASTRO CAMP® continued its success in fiscal year 2024 as students across the nation and world learn about NASA and STEM (science, technology, engineering, and mathematics. The NASA ASTRO CAMP® Community Partners program partnered with 323 sites in 29 states and the District of Columbia. It also reached beyond the borders to partner with 50 sites in six countries, including Mexico, India, Turkey, Canada, Spain, and Ukraine.NASA ASTRO CAMP® NASA’s ASTRO CAMP® continued its success in fiscal year 2024 as students across the nation and world learn about NASA and STEM (science, technology, engineering, and mathematics. The NASA ASTRO CAMP® Community Partners program partnered with 323 sites in 29 states and the District of Columbia. It also reached beyond the borders to partner with 50 sites in six countries, including Mexico, India, Turkey, Canada, Spain, and Ukraine.NASA ASTRO CAMP® In the most recent year, the NASA ACCP partnered with 323 sites in 29 states and the District of Columbia. It also reached beyond the borders to partner with 50 sites in six countries, including Mexico, India, Turkey, Canada, Spain, and Ukraine. Overall, almost 150,000 students took part in the program, a 30% increase from fiscal year 2023. In addition, almost 107,000 students took part in special STEM activities, an increase of 43.6% from the previous year’s total of more than 74,000. ACCP trained 1,454 facilitators during Educator Professional Development sessions as well, representing an increase of 25.3% from the prior year.
Taken together, the total NASA ACCP impact exceeded a quarter of a million (257,765) people.
As part of the NASA Science Mission Directorate Science Activation program, ACCP continues to make strides in bridging disparities and breaking barriers in STEM. Demographically, the initiative reached a range of ethnic and multiethnic groups. One-third of participants were African American, with another 13% identified as Hispanic. Participants were almost equally divided between male (52%) and female (48%).
In terms of age, 38% of participants were elementary school students. Another 30% were middle school aged, with the remaining 38% high school students. In a final breakdown, more than 42,000 of the participants were impacted during 52 NASA ACCP solar eclipse events in the spring of 2024.
ACCP activities offer real-world opportunities for students to enhance scientific understanding and contribute to NASA science missions, while also inspiring lifelong learning. The ACCP theme was “NASA Science … Fire to Water to Ice and Beyond!” The program featured materials and activities related to NASA science missions, astrophysics, heliophysics, Earth science, and planetary science.
The unique methodology teaches students to work collaboratively to complete missions and provides trained community educators to implement the themed NASA modules, developed by the ACCP team, seated at NASA’s Stennis Space Center near Bay St. Louis, Mississippi.
ASTRO CAMP began at NASA Stennis as a single one-week camp in the 1990s. Since then, it has developed into several adaptable models for schools, museums, universities, libraries, and youth service organizations, enabling a worldwide expansion.
For more information about becoming a NASA ASTRO CAMP Collaborative Community Partner, contact: Kelly Martin-Rivers at kelly.e.martin-rivers@nasa.gov or 228-688-1500; or Maria Lott at maria.l.lott@nasa.gov or 228-688-1776.
For more on the ASTRO CAMP Collaborative Community Partner Program, visit:
https://www.nasa.gov/stennis/stem-engagement-at-stennis/nasa-accp/.
Share
Details
Last Updated Dec 06, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
Stennis Space Center Explore More
4 min read Lagniappe for December 2024
Article 2 days ago 5 min read NASA Stennis – An Ideal Place for Commercial Companies
Article 3 weeks ago 4 min read NASA Stennis Propulsion Testing Contributes to Artemis Missions
Article 3 weeks ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.