Jump to content

NASA’s 6-Pack of Mini-Satellites Ready for Their Moment in the Sun


Recommended Posts

  • Publishers
Posted

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

The six satellites that make up NASA’s SunRISE mission
The six satellites that make up NASA’s SunRISE mission are each only about the size of a cereal box, flanked by small solar panels. This fleet of six SmallSats will work together to effectively create a much larger radio antenna in space.
Space Dynamics Laboratory/Allison Bills

Most NASA missions feature one spacecraft or, occasionally, a few. The agency’s Sun Radio Interferometer Space Experiment (SunRISE) is using half a dozen. This month, mission members completed construction of the six identical cereal box-size satellites, which will now go into storage and await their final testing and ride to space. SunRISE will launch as a rideshare aboard a United Launch Alliance Vulcan rocket, sponsored by the United States Space Force (USSF)’s Space Systems Command (SSC).

Once launched, these six small satellites, or SmallSats, will work together to act like one giant radio antenna in space. The mission will study the physics of explosions in the Sun’s atmosphere in order to gain insights that could someday help protect astronauts and space hardware from showers of accelerated particles.

“This is a big moment for everyone who has worked on SunRISE,” said Jim Lux, the SunRISE project manager at NASA’s Jet Propulsion Laboratory in Southern California, which manages the mission for the agency. “Challenges are expected when you’re doing something for the first time, and especially when the space vehicles are small and compact. But we have a small team that works well together, across multiple institutions and companies. I’m looking forward to the day when we receive the first images of the Sun in these radio wavelengths.”

Monitoring Solar Radio Bursts

They may be small, but the six satellites have a big job ahead of them studying solar radio bursts, or the generation of radio waves in the outer atmosphere of the Sun. These bursts result from electrons accelerated in the Sun’s atmosphere during energetic events known as coronal mass ejections and solar flares.

Particles accelerated by these events can damage spacecraft electronics – including on communications satellites in Earth orbit – and pose a health threat to astronauts. Scientists still have big questions about how solar radio bursts, coronal mass ejections, and solar flares are created and how they are linked. SunRISE may shed light on this complex question. Someday, tracking solar radio bursts and pinpointing their location could help warn humans when the energetic particles from coronal mass ejections and solar flares are likely to hit Earth.

This type of monitoring isn’t possible from the ground. Earth’s atmosphere blocks the range of radio wavelengths primarily emitted by solar radio bursts. For a space-based monitoring system, scientists need a radio telescope bigger than any previously flown in space. This is where SunRISE comes in.

To look out for solar radio events, the SmallSats will fly about 6 miles (10 kilometers) apart and each deploy four radio antennas that extend 10 feet (2.5 meters). Mission scientists and engineers will track where the satellites are relative to one another and measure with precise timing when each one observes a particular event. Then they will combine the information collected by the satellites into a single data stream from which images of the Sun will be produced for scientists to study – a technique called interferometry.

“Some missions put multiple scientific instruments on a single spacecraft, whereas we use multiple small satellites to act as a single instrument,” said JPL’s Andrew Romero-Wolf, the deputy project scientist for SunRISE.

More About the Mission

SunRISE is a Mission of Opportunity under the Heliophysics Division of NASA’s Science Mission Directorate (SMD). Missions of Opportunity are part of the Explorers Program, managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. SunRISE is led by Justin Kasper at the University of Michigan in Ann Arbor and managed by NASA’s Jet Propulsion Laboratory in Southern California, a division of Caltech in Pasadena, California. Utah State University’s Space Dynamics Laboratory built the SunRISE spacecraft. JPL, a division of Caltech in Pasadena, California, provides the mission operations center and manages the mission for NASA.

News Media Contacts

Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov

Denise Hill
NASA Headquarters, Washington
202-308-2071
denise.hill@nasa.gov

Share

Details

Last Updated
Nov 30, 2023

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s Artemis II SLS (Space Launch System) rocket poised to send four astronauts from Earth on a journey around the Moon next year may appear identical to the Artemis I SLS rocket. On closer inspection, though, engineers have upgraded the agency’s Moon rocket inside and out to improve performance, reliability, and safety.
      SLS flew a picture perfect first mission on the Artemis I test flight, meeting or exceeding parameters for performance, attitude control, and structural stability to an accuracy of tenths or hundredths of a percent as it sent an uncrewed Orion thousands of miles beyond the Moon. It also returned volumes of invaluable flight data for SLS engineers to analyze to drive improvements.
      Teams with NASA’s Exploration Ground Systems integrate the SLS (Space Launch System) Moon rocket with the solid rocket boosters onto mobile launcher 1 inside High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in March 2025. Artemis II is the first crewed test flight under NASA’s Artemis campaign and is another step toward missions on the lunar surface and helping the agency prepare for future human missions to Mars.NASA/Frank Michaux For Artemis II, the major sections of SLS remain unchanged – a central core stage, four RS-25 main engines, two five-segment solid rocket boosters, the ICPS (interim cryogenic propulsion stage), a launch vehicle stage adapter to hold the ICPS, and an Orion stage adapter connecting SLS to the Orion spacecraft. The difference is in the details.
      “While we’re proud of our Artemis I performance, which validated our overall design, we’ve looked at how SLS can give our crews a better ride,” said John Honeycutt, NASA’s SLS Program manager. “Some of our changes respond to specific Artemis II mission requirements while others reflect ongoing analysis and testing, as well as lessons learned from Artemis I.”
      Engineers have outfitted the ICPS with optical targets that will serve as visual cues to the astronauts aboard Orion as they manually pilot Orion around the upper stage and practice maneuvers to inform docking operations for Artemis III.
      The Artemis II rocket includes an improved navigation system compared to Artemis I.  Its communications capability also has been improved by repositioning antennas on the rocket to ensure continuous communications with NASA ground stations and the U.S. Space Force’s Space Launch Delta 45 which controls launches along the Eastern Range.
      An emergency detection system on the ICPS allows the rocket to sense and respond to problems and notify the crew. The flight safety system adds a time delay to the self-destruct system to allow time for Orion’s escape system to pull the capsule to safety in event of an abort.
      The separation motors that push the solid rocket booster away after the elements are no longer needed were angled an additional 15 degrees to increase separation clearance as the rest of the rocket speeds by.
      Additionally, SLS will jettison the spent boosters four seconds earlier during Artemis II ascent than occurred during Artemis I. Dropping the boosters several seconds closer to the end of their burn will give engineers flight data to correlate with projections that shedding the boosters several seconds sooner will yield approximately 1,600 pounds of payload to Earth orbit for future SLS flights.
      Engineers have incorporated additional improvements based on lessons learned from Artemis I. During the Artemis I test flight the SLS rocket experienced higher-than-expected vibrations near the solid rocket booster attachment points that was caused by unsteady airflow.
      To steady the airflow, a pair of six-foot-long strakes flanking each booster’s forward connection points on the SLS intertank will smooth vibrations induced by airflow during ascent, and the rocket’s electronics system was requalified to endure higher levels of vibrations.
      Engineers updated the core stage power distribution control unit, mounted in the intertank, which controls power to the rocket’s other electronics and protects against electrical hazards.
      These improvements have led to an enhanced rocket to support crew as part of NASA’s Golden Age of innovation and exploration.
      The approximately 10-day Artemis II test flight is the first crewed flight under NASA’s Artemis campaign. It is another step toward new U.S.-crewed missions on the Moon’s surface that will help the agency prepare to send the first astronauts – Americans – to Mars.
      https://www.nasa.gov/artemis
      News Media Contact
      Jonathan Deal
      Marshall Space Flight Center, Huntsville, Ala. 
      256.631.9126
      jonathan.e.deal@nasa.gov
      Share
      Details
      Last Updated Sep 17, 2025 EditorLee MohonContactJonathan DealLocationMarshall Space Flight Center Related Terms
      Space Launch System (SLS) Artemis Artemis 2 Exploration Ground Systems Marshall Space Flight Center Explore More
      2 min read NASA Makes Webby 30s List of Most Iconic, Influential on Internet
      Article 1 day ago 6 min read Artemis II Crew to Advance Human Spaceflight Research
      Article 5 days ago 9 min read Artemis II Crew Both Subjects and Scientists in NASA Deep Space Research
      Article 6 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      On Sept. 9, 2025, NASA’s Solar Dynamics Observatory captured this image of the Sun.NASA/GSFC/Solar Dynamics Observatory It looked like the Sun was heading toward a historic lull in activity. That trend flipped in 2008, according to new research.
      The Sun has become increasingly active since 2008, a new NASA study shows. Solar activity is known to fluctuate in cycles of 11 years, but there are longer-term variations that can last decades. Case in point: Since the 1980s, the amount of solar activity had been steadily decreasing all the way up to 2008, when solar activity was the weakest on record. At that point, scientists expected the Sun to be entering a period of historically low activity.
      But then the Sun reversed course and started to become increasingly active, as documented in the study, which appears in The Astrophysical Journal Letters. It’s a trend that researchers said could lead to an uptick in space weather events, such as solar storms, flares, and coronal mass ejections.
      “All signs were pointing to the Sun going into a prolonged phase of low activity,” said Jamie Jasinski of NASA’s Jet Propulsion Laboratory in Southern California, lead author of the new study. “So it was a surprise to see that trend reversed. The Sun is slowly waking up.”
      The earliest recorded tracking of solar activity began in the early 1600s, when astronomers, including Galileo, counted sunspots and documented their changes. Sunspots are cooler, darker regions on the Sun’s surface that are produced by a concentration of magnetic field lines. Areas with sunspots are often associated with higher solar activity, such as solar flares, which are intense bursts of radiation, and coronal mass ejections, which are huge bubbles of plasma that erupt from the Sun’s surface and streak across the solar system.
      NASA scientists track these space weather events because they can affect spacecraft, astronauts’ safety, radio communications, GPS, and even power grids on Earth. Space weather predictions are critical for supporting the spacecraft and astronauts of NASA’s Artemis campaign, as understanding the space environment is a vital part of mitigating astronaut exposure to space radiation.
      Launching no earlier than Sept. 23, NASA’s IMAP (Interstellar Mapping and Acceleration Probe) and Carruthers Geocorona Observatory missions, as well as the National Oceanic and Atmospheric Administration’s SWFO-L1 (Space Weather Follow On-Lagrange 1) mission, will provide new space weather research and observations that will help to drive future efforts at the Moon, Mars, and beyond.
      Solar activity affects the magnetic fields of planets throughout the solar system. As the solar wind — a stream of charged particles flowing from the Sun — and other solar activity increase, the Sun’s influence expands and compresses magnetospheres, which serve as protective bubbles of planets with magnetic cores and magnetic fields, including Earth. These protective bubbles are important for shielding planets from the jets of plasma that stream out from the Sun in the solar wind.
      Over the centuries that people have been studying solar activity, the quietest times were a three-decade stretch from 1645 to 1715 and a four-decade stretch from 1790 to 1830. “We don’t really know why the Sun went through a 40-year minimum starting in 1790,” Jasinski said. “The longer-term trends are a lot less predictable and are something we don’t completely understand yet.”
      In the two-and-a-half decades leading up to 2008, sunspots and the solar wind decreased so much that researchers expected the “deep solar minimum” of 2008 to mark the start of a new historic low-activity time in the Sun’s recent history.
      “But then the trend of declining solar wind ended, and since then plasma and magnetic field parameters have steadily been increasing,” said Jasinski, who led the analysis of heliospheric data publicly available in a platform called OMNIWeb Plus, run by NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      The data Jasinski and colleagues mined for the study came from a broad collection of NASA missions. Two primary sources — ACE (Advanced Composition Explorer) and the Wind mission — launched in the 1990s and have been providing data on solar activity like plasma and energetic particles flowing from the Sun toward Earth. The spacecraft belong to a fleet of NASA Heliophysics Division missions designed to study the Sun’s influence on space, Earth, and other planets.
      News Media Contacts
      Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-287-4115
      gretchen.p.mccartney@jpl.nasa.gov 
      Karen Fox / Abbey Interrante
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / abbey.a.interrante@nasa.gov
      2025-118
      Share
      Details
      Last Updated Sep 15, 2025 Related Terms
      Heliophysics Jet Propulsion Laboratory The Solar System Explore More
      3 min read Weird Ways to Observe the Moon
      International Observe the Moon Night is on October 4, 2025, this year– but you can observe…
      Article 8 hours ago 5 min read NASA’s GUARDIAN Tsunami Detection Tech Catches Wave in Real Time
      Article 3 days ago 5 min read New U.S.-European Sea Level Satellite Will Help Safeguard Ships at Sea
      Article 4 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By Amazing Space
      LIVE NOW: CLOSE UP VIEWS OF THE SUN 8th September
    • By NASA
      6 Min Read Upcoming Launch to Boost NASA’s Study of Sun’s Influence Across Space
      Soon, there will be three new ways to study the Sun’s influence across the solar system with the launch of a trio of NASA and National Oceanic and Atmospheric Administration (NOAA) spacecraft. Expected to launch no earlier than Tuesday, Sept. 23, the missions include NASA’s IMAP (Interstellar Mapping and Acceleration Probe), NASA’s Carruthers Geocorona Observatory, and NOAA’s SWFO-L1 (Space Weather Follow On-Lagrange 1) spacecraft. 
      The three missions will launch together aboard a SpaceX Falcon 9 rocket from NASA’s Kennedy Space Center in Florida. From there, the spacecraft will travel together to their destination at the first Earth-Sun Lagrange point (L1), around one million miles from Earth toward the Sun.
      The missions will each focus on different effects of the solar wind — the continuous stream of particles emitted by the Sun — and space weather — the changing conditions in space driven by the Sun — from their origins at the Sun to their farthest reaches billions of miles away at the edge of our solar system. Research and observations from the missions will help us better understand the Sun’s influence on Earth’s habitability, map our home in space, and protect satellites and voyaging astronauts and airline crews from space weather impacts. 
      The IMAP and Carruthers missions add to NASA’s heliophysics fleet of spacecraft. Together, NASA’s heliophysics missions study a vast, interconnected system from the Sun to the space surrounding Earth and other planets to the farthest limits of the Sun’s constantly flowing streams of solar wind. The SWFO-L1 mission, funded and operated by NOAA, will be the agency’s first satellite designed specifically for and fully dedicated to continuous, operational space weather observations.
      Mapping our home in space: IMAP
      The IMAP mission will study the heliosphere, our home in space.
      NASA/Princeton University/Patrick McPike As a modern-day celestial cartographer, IMAP will investigate two of the most important overarching issues in heliophysics: the interaction of the solar wind at its boundary with interstellar space and the energization of charged particles from the Sun.
      The IMAP mission will principally study the boundary of our heliosphere — a huge bubble created by the solar wind that encapsulates our solar system — and study how the heliosphere interacts with the local galactic neighborhood beyond. The heliosphere protects the solar system from dangerous high-energy particles called galactic cosmic rays. Mapping the heliosphere’s boundaries helps scientists understand our home in space and how it came to be habitable. 
      “IMAP will revolutionize our understanding of the outer heliosphere,” said David McComas, IMAP mission principal investigator at Princeton University in New Jersey. “It will give us a very fine picture of what’s going on out there by making measurements that are 30 times more sensitive and at higher resolution than ever before.”
      The IMAP mission will also explore and chart the vast range of particles in interplanetary space. The spacecraft will provide near real-time observations of the solar wind and energetic particles, which can produce hazardous conditions not only in the space environment near Earth, but also on the ground. The mission’s data will help model and improve prediction capabilities of the impacts of space weather ranging from power-line disruptions to loss of satellites. 
      Imaging Earth’s exosphere: Carruthers Geocorona Observatory
      An illustration shows the Carruthers Geocorona Observatory spacecraft. NASA/BAE Systems Space & Mission Systems The Carruthers Geocorona Observatory, a small satellite, will launch with IMAP as a rideshare. The mission was named after Dr. George Carruthers, creator of the Moon-based telescope that captured the first images of Earth’s exosphere, the outermost layer of our planet’s atmosphere. 
      The Carruthers mission will build upon Dr. Carruthers’ legacy by charting changes in Earth’s exosphere. The mission’s vantage point at L1 offers a complete view of the exosphere not visible from the Moon’s relatively close distance to Earth. From there, it will address fundamental questions about the nature of the region, such as its shape, size, density, and how it changes over time.
      The exosphere plays an important role in Earth’s response to space weather, which can impact our technology, from satellites in orbit to communications signals in the upper atmosphere or power lines on the ground. During space weather storms, the exosphere mediates the energy absorption and release throughout the near-Earth space environment, influencing strength of space weather disturbances. Carruthers will help us better understand the fundamental physics of our exosphere and improve our ability to predict the impacts of the Sun’s activity.
      “We’ll be able to create movies of how this atmospheric layer responds when a solar storm hits, and watch it change with the seasons over time,” said Lara Waldrop, the principal investigator for the Carruthers Geocorona Observatory at the University of Illinois at Urbana-Champaign. 
      New space weather station: SWFO-L1
      SWFO-L1 will provide real-time observations of the Sun’s corona and solar wind to help forecast the resulting space weather.
      NOAA/BAE Systems Space & Mission Systems Distinct from NASA’s research satellites, SWFO-L1 will be an operational satellite, designed to observe solar activity and the solar wind in real time to provide critical data in NOAA’s mission to protect the nation from environmental hazards. SWFO-L1 will serve as an early-warning beacon for potentially damaging space weather events that could impact our technology on Earth. SWFO-L1 will observe the Sun’s outer atmosphere for large eruptions, called coronal mass ejections, and measure the solar wind upstream from Earth with a state-of-the-art suite of instruments and processing system.
      This mission is the first of a new generation of NOAA space weather observatories dedicated to 24/7 operations, working to avoid gaps in continuity. 
      “SWFO-L1 will be an amazing deep-space mission for NOAA,” said Dimitrios Vassiliadis, SWFO program scientist at NOAA. “Thanks to its advantageous location at L1, it will continuously monitor the solar atmosphere while measuring the solar wind and its interplanetary magnetic fields well before it impacts Earth — and transmit these data in record time.”
      With SWFO-L1’s enhanced performance, unobstructed views, and minimal delay between observations and data return, NOAA’s Space Weather Prediction Center forecasters will give operators improved lead time required to take precautionary actions that protect vital infrastructure, economic interests, and national security on Earth and in space.
      By Mara Johnson-Groh
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Sep 04, 2025 Related Terms
      Carruthers Geocorona Observatory (GLIDE) Heliophysics Heliosphere IMAP (Interstellar Mapping and Acceleration Probe) NOAA (National Oceanic and Atmospheric Administration) Solar Wind Space Weather The Sun The Sun & Solar Physics Explore More
      3 min read Juno Detected the Final Missing Auroral Signature from Jupiter’s Four Largest Moons


      Article


      2 days ago
      6 min read NASA, IBM’s ‘Hot’ New AI Model Unlocks Secrets of Sun


      Article


      2 weeks ago
      3 min read Sun at the Center: Teacher Ambassadors Bring Heliophysics to Classrooms Nationwide


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By European Space Agency
      The European Space Agency-led Solar Orbiter mission has split the flood of energetic particles flung out into space from the Sun into two groups, tracing each back to a different kind of outburst from our star.
      View the full article
  • Check out these Videos

×
×
  • Create New...