Jump to content

NASA’s 6-Pack of Mini-Satellites Ready for Their Moment in the Sun


Recommended Posts

  • Publishers
Posted

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

The six satellites that make up NASA’s SunRISE mission
The six satellites that make up NASA’s SunRISE mission are each only about the size of a cereal box, flanked by small solar panels. This fleet of six SmallSats will work together to effectively create a much larger radio antenna in space.
Space Dynamics Laboratory/Allison Bills

Most NASA missions feature one spacecraft or, occasionally, a few. The agency’s Sun Radio Interferometer Space Experiment (SunRISE) is using half a dozen. This month, mission members completed construction of the six identical cereal box-size satellites, which will now go into storage and await their final testing and ride to space. SunRISE will launch as a rideshare aboard a United Launch Alliance Vulcan rocket, sponsored by the United States Space Force (USSF)’s Space Systems Command (SSC).

Once launched, these six small satellites, or SmallSats, will work together to act like one giant radio antenna in space. The mission will study the physics of explosions in the Sun’s atmosphere in order to gain insights that could someday help protect astronauts and space hardware from showers of accelerated particles.

“This is a big moment for everyone who has worked on SunRISE,” said Jim Lux, the SunRISE project manager at NASA’s Jet Propulsion Laboratory in Southern California, which manages the mission for the agency. “Challenges are expected when you’re doing something for the first time, and especially when the space vehicles are small and compact. But we have a small team that works well together, across multiple institutions and companies. I’m looking forward to the day when we receive the first images of the Sun in these radio wavelengths.”

Monitoring Solar Radio Bursts

They may be small, but the six satellites have a big job ahead of them studying solar radio bursts, or the generation of radio waves in the outer atmosphere of the Sun. These bursts result from electrons accelerated in the Sun’s atmosphere during energetic events known as coronal mass ejections and solar flares.

Particles accelerated by these events can damage spacecraft electronics – including on communications satellites in Earth orbit – and pose a health threat to astronauts. Scientists still have big questions about how solar radio bursts, coronal mass ejections, and solar flares are created and how they are linked. SunRISE may shed light on this complex question. Someday, tracking solar radio bursts and pinpointing their location could help warn humans when the energetic particles from coronal mass ejections and solar flares are likely to hit Earth.

This type of monitoring isn’t possible from the ground. Earth’s atmosphere blocks the range of radio wavelengths primarily emitted by solar radio bursts. For a space-based monitoring system, scientists need a radio telescope bigger than any previously flown in space. This is where SunRISE comes in.

To look out for solar radio events, the SmallSats will fly about 6 miles (10 kilometers) apart and each deploy four radio antennas that extend 10 feet (2.5 meters). Mission scientists and engineers will track where the satellites are relative to one another and measure with precise timing when each one observes a particular event. Then they will combine the information collected by the satellites into a single data stream from which images of the Sun will be produced for scientists to study – a technique called interferometry.

“Some missions put multiple scientific instruments on a single spacecraft, whereas we use multiple small satellites to act as a single instrument,” said JPL’s Andrew Romero-Wolf, the deputy project scientist for SunRISE.

More About the Mission

SunRISE is a Mission of Opportunity under the Heliophysics Division of NASA’s Science Mission Directorate (SMD). Missions of Opportunity are part of the Explorers Program, managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. SunRISE is led by Justin Kasper at the University of Michigan in Ann Arbor and managed by NASA’s Jet Propulsion Laboratory in Southern California, a division of Caltech in Pasadena, California. Utah State University’s Space Dynamics Laboratory built the SunRISE spacecraft. JPL, a division of Caltech in Pasadena, California, provides the mission operations center and manages the mission for NASA.

News Media Contacts

Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov

Denise Hill
NASA Headquarters, Washington
202-308-2071
denise.hill@nasa.gov

Share

Details

Last Updated
Nov 30, 2023

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 Min Read NASA’s Parker Solar Probe Makes History With Closest Pass to Sun
      An artist’s concept showing Parker Solar Probe. Credits:
      NASA/APL Operations teams have confirmed NASA’s mission to “touch” the Sun survived its record-breaking closest approach to the solar surface on Dec. 24, 2024.
      Breaking its previous record by flying just 3.8 million miles above the surface of the Sun, NASA’s Parker Solar Probe hurtled through the solar atmosphere at a blazing 430,000 miles per hour — faster than any human-made object has ever moved. A beacon tone received late on Dec. 26 confirmed the spacecraft had made it through the encounter safely and is operating normally.
      This pass, the first of more to come at this distance, allows the spacecraft to conduct unrivaled scientific measurements with the potential to change our understanding of the Sun.
      Flying this close to the Sun is a historic moment in humanity’s first mission to a star.
      Nicky fox
      NASA Associate Administrator, Science Mission Directorate
      “Flying this close to the Sun is a historic moment in humanity’s first mission to a star,” said Nicky Fox, who leads the Science Mission Directorate at NASA Headquarters in Washington. “By studying the Sun up close, we can better understand its impacts throughout our solar system, including on the technology we use daily on Earth and in space, as well as learn about the workings of stars across the universe to aid in our search for habitable worlds beyond our home planet.”
      NASA’s Parker Solar Probe survived its record-breaking closest approach to the solar surface on Dec. 24, 2024. Breaking its previous record by flying just 3.8 million miles above the surface of the Sun, the spacecraft hurtled through the solar atmosphere at a blazing 430,000 miles per hour — faster than any human-made object has ever moved.
      Credits: NASA This video can be freely shared and downloaded at https://svs.gsfc.nasa.gov/14741.
      Parker Solar Probe has spent the last six years setting up for this moment. Launched in 2018, the spacecraft used seven flybys of Venus to gravitationally direct it ever closer to the Sun. With its last Venus flyby on Nov. 6, 2024, the spacecraft reached its optimal orbit. This oval-shaped orbit brings the spacecraft an ideal distance from the Sun every three months — close enough to study our Sun’s mysterious processes but not too close to become overwhelmed by the Sun’s heat and damaging radiation. The spacecraft will remain in this orbit for the remainder of its primary mission.
      “Parker Solar Probe is braving one of the most extreme environments in space and exceeding all expectations,” said Nour Rawafi, the project scientist for Parker Solar Probe at the Johns Hopkins Applied Physics Laboratory (APL), which designed, built, and operates the spacecraft from its campus in Laurel, Maryland. “This mission is ushering a new golden era of space exploration, bringing us closer than ever to unlocking the Sun’s deepest and most enduring mysteries.”
      Close to the Sun, the spacecraft relies on a carbon foam shield to protect it from the extreme heat in the upper solar atmosphere called the corona, which can exceed 1 million degrees Fahrenheit. The shield was designed to reach temperatures of 2,600 degrees Fahrenheit — hot enough to melt steel — while keeping the instruments behind it shaded at a comfortable room temperature. In the hot but low-density corona, the spacecraft’s shield is expected to warm to 1,800 degrees Fahrenheit.
      The spacecraft’s record close distance of 3.8 million miles may sound far, but on cosmic scales it’s incredibly close. If the solar system was scaled down with the distance between the Sun and Earth the length of a football field, Parker Solar Probe would be just four yards from the end zone — close enough to pass within the tenuous outer atmosphere of the Sun known as the corona. NASA/APL “It’s monumental to be able to get a spacecraft this close to the Sun,” said John Wirzburger, the Parker Solar Probe mission systems engineer at APL. “This is a challenge the space science community has wanted to tackle since 1958 and had spent decades advancing the technology to make it possible.”
      By flying through the solar corona, Parker Solar Probe can take measurements that help scientists better understand how the region gets so hot, trace the origin of the solar wind (a constant flow of material escaping the Sun), and discover how energetic particles are accelerated to half the speed of light.
      “The data is so important for the science community because it gives us another vantage point,” said Kelly Korreck, a program scientist at NASA Headquarters and heliophysicist who worked on one of the mission’s instruments. “By getting firsthand accounts of what’s happening in the solar atmosphere, Parker Solar Probe has revolutionized our understanding of the Sun.”
      Previous passes have already aided scientists’ understanding of the Sun. When the spacecraft first passed into the solar atmosphere in 2021, it found the outer boundary of the corona is wrinkled with spikes and valleys, contrary to what was expected. Parker Solar Probe also pinpointed the origin of important zig-zag-shaped structures in the solar wind, called switchbacks, at the visible surface of the Sun — the photosphere.
      Since that initial pass into the Sun, the spacecraft has been spending more time in the corona, where most of the critical physical processes occur.
      This conceptual image shows Parker Solar Probe about to enter the solar corona. NASA/Johns Hopkins APL/Ben Smith “We now understand the solar wind and its acceleration away from the Sun,” said Adam Szabo, the Parker Solar Probe mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This close approach will give us more data to understand how it’s accelerated closer in.”
      Parker Solar Probe has also made discoveries across the inner solar system. Observations showed how giant solar explosions called coronal mass ejections vacuum up dust as they sweep across the solar system, and other observations revealed unexpected findings about solar energetic particles. Flybys of Venus have documented the planet’s natural radio emissions from its atmosphere, as well as the first complete image of its orbital dust ring.
      So far, the spacecraft has only transmitted that it’s safe, but soon it will be in a location that will allow it to downlink the data it collected on this latest solar pass.
      The data that will come down from the spacecraft will be fresh information about a place that we, as humanity, have never been.
      Joe Westlake
      Heliophysics Division Director, NASA Headquarters
      “The data that will come down from the spacecraft will be fresh information about a place that we, as humanity, have never been,” said Joe Westlake, the director of the Heliophysics Division at NASA Headquarters. “It’s an amazing accomplishment.”
      The spacecraft’s next planned close solar passes come on March 22, 2025, and June 19, 2025.
      By Mara Johnson-Groh
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact: Sarah Frazier
      Share








      Details
      Last Updated Dec 27, 2024 Editor Abbey Interrante Related Terms
      Goddard Space Flight Center Heliophysics Heliophysics Division Parker Solar Probe (PSP) Science & Research Science Mission Directorate Solar Flares Solar Wind Space Weather The Sun The Sun & Solar Physics Explore More
      1 min read NASA’s Parker Solar Probe Touches The Sun For The First Time


      Article


      3 years ago
      4 min read Final Venus Flyby for NASA’s Parker Solar Probe Queues Closest Sun Pass


      Article


      2 months ago
      6 min read 10 Things to Know About Parker Solar Probe
      On Aug. 12, 2018, NASA launched Parker Solar Probe to the Sun, where it will…


      Article


      6 years ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By USH
      On December 25, 2024, NASA's Stereo Lasco C3 satellite captured an extraordinary phenomenon near the sun. In a split second, the satellite's imaging was disrupted by what appeared to be a swarm of spherical objects hurtling through space at incredible speeds. 

      Speculation surrounds the event, with some suggesting it could be a meteor debris field. However, the unusual appearance of the objects has raised questions. Could debris naturally form into such perfectly round shapes, each featuring a dark center that resembles donut-shaped UFOs? 

      This event might be a natural occurrence, however, with all the recent strange sightings of unknown drones, UFOs, and orbs combined with predictions from several specialists that something significant might happen soon in the realm of the UFO phenomena, one might wonder if these mysterious spheres are connected to something larger on the horizon?


      View the full article
    • By Amazing Space
      NASA's Parker Solar Probe Reaches Unprecedented 435000 mph Touching The Sun
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A crane lowers the steel reflector framework for Deep Space Station 23 into position Dec. 18 on a 65-foot-high (20-meter) platform above the antenna’s pedestal that will steer the reflector. Panels will be affixed to the structure create a curved surface to collect radio frequency signals.NASA/JPL-Caltech After the steel framework of the Deep Space Station 23 reflector dish was lowered into place on Dec. 18, a crew installed the quadripod, a four-legged support structure that will direct radio frequency signals from deep space that bounce off the main reflector into the antenna’s receiver.NASA/JPL-Caltech Deep Space Station 23’s 133-ton reflector dish was recently installed, marking a key step in strengthening NASA’s Deep Space Network.
      NASA’s Deep Space Network, an array of giant radio antennas, allows agency missions to track, send commands to, and receive scientific data from spacecraft venturing to the Moon and beyond. NASA is adding a new antenna, bringing the total to 15, to support increased demand for the world’s largest and most sensitive radio frequency telecommunication system.
      Installation of the latest antenna took place on Dec. 18, when teams at NASA’s Goldstone Deep Space Communications Complex near Barstow, California, installed the metal reflector framework for Deep Space Station 23, a multifrequency beam-waveguide antenna. When operational in 2026, Deep Space Station 23 will receive transmissions from missions such as Perseverance, Psyche, Europa Clipper, Voyager 1, and a growing fleet of future human and robotic spacecraft in deep space.
      “This addition to the Deep Space Network represents a crucial communication upgrade for the agency,” said Kevin Coggins, deputy associate administrator of NASA’s SCaN (Space Communications and Navigation) program. “The communications infrastructure has been in continuous operation since its creation in 1963, and with this upgrade we are ensuring NASA is ready to support the growing number of missions exploring the Moon, Mars, and beyond.”
      This time-lapse video shows the entire day of construction activities for the Deep Space Station 23 antenna at the NASA Deep Space Network’s Goldstone Space Communications Complex near Barstow, California, on Dec. 18. NASA/JPL-Caltech Construction of the new antenna has been under way for more than four years, and during the installation, teams used a crawler crane to lower the 133-ton metal skeleton of the 112-foot-wide (34-meter-wide) parabolic reflector before it was bolted to a 65-foot-high (20-meter-high) alidade, a platform above the antenna’s pedestal that will steer the reflector during operations.
      “One of the biggest challenges facing us during the lift was to ensure that 40 bolt-holes were perfectly aligned between the structure and alidade,” said Germaine Aziz, systems engineer, Deep Space Network Aperture Enhancement Program of NASA’s Jet Propulsion Laboratory in Southern California. “This required a meticulous emphasis on alignment prior to the lift to guarantee everything went smoothly on the day.”
      Following the main lift, engineers carried out a lighter lift to place a quadripod, a four-legged support structure weighing 16 1/2 tons, onto the center of the upward-facing reflector. The quadripod features a curved subreflector that will direct radio frequency signals from deep space that bounce off the main reflector into the antenna’s pedestal, where the antenna’s receivers are housed.
      In the early morning of Dec. 18, a crane looms over the 112-foot-wide (34-meter-wide) steel framework for Deep Space Station 23 reflector dish, which will soon be lowered into position on the antenna’s base structure.NASA/JPL-Caltech Engineers will now work to fit panels onto the steel skeleton to create a curved surface to reflect radio frequency signals. Once complete, Deep Space Station 23 will be the fifth of six new beam-waveguide antennas to join the network, following Deep Space Station 53, which was added at the Deep Space Network’s Madrid complex in 2022.
      “With the Deep Space Network, we are able to explore the Martian landscape with our rovers, see the James Webb Space Telescope’s stunning cosmic observations, and so much more,” said Laurie Leshin, director of JPL. “The network enables over 40 deep space missions, including the farthest human-made objects in the universe, Voyager 1 and 2. With upgrades like these, the network will continue to support humanity’s exploration of our solar system and beyond, enabling groundbreaking science and discovery far into the future.”
      NASA’s Deep Space Network is managed by JPL, with the oversight of NASA’s SCaN Program. More than 100 NASA and non-NASA missions rely on the Deep Space Network and Near Space Network, including supporting astronauts aboard the International Space Station and future Artemis missions, monitoring Earth’s weather and the effects of climate change, supporting lunar exploration, and uncovering the solar system and beyond. 
      For more information about the Deep Space Network, visit:
      https://www.nasa.gov/communicating-with-missions/dsn
      News Media Contact
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      2024-179
      Share
      Details
      Last Updated Dec 20, 2024 Related Terms
      Deep Space Network Jet Propulsion Laboratory Space Communications & Navigation Program Space Operations Mission Directorate Explore More
      4 min read Lab Work Digs Into Gullies Seen on Giant Asteroid Vesta by NASA’s Dawn
      Article 8 hours ago 5 min read Avalanches, Icy Explosions, and Dunes: NASA Is Tracking New Year on Mars
      Article 9 hours ago 8 min read NASA’s Kennedy Space Center Looks to Thrive in 2025
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      This article is for students grades 5-8.
      The Sun is the star of our solar system. Its gravity holds Earth and our planetary neighbors in its orbit. At 865,000 miles (1.4 million km) in diameter, it’s the largest object in our solar system. On Earth, its influence is felt in our weather, seasons, climate, and more. Let’s learn about our dynamic star and its connections to life on Earth.
      What is the Sun, and what is it made of?
      The Sun is a yellow dwarf star. It is approximately 4.5 billion years old and is in its “main sequence” phase. This means it is partway through its lifecycle with a few billion more years ahead of it.
      The Sun is made of hydrogen and helium gases. At its core, hydrogen is fused to form helium. This nuclear reaction creates the Sun’s heat and light. That energy moves outward through the Sun’s radiative zone and convective zone. It then reaches the Sun’s visible surface and lower atmosphere, called the photosphere. Above the photosphere lies the chromosphere, which forms the Sun’s middle atmosphere, and beyond that is the corona, the Sun’s outermost atmosphere.
      The Sun is a yellow dwarf star with a complex series of layers and features.NASA What is the solar cycle?
      The Sun goes through a pattern of magnetic activity known as the solar cycle. During each cycle, the Sun experiences a very active period called “solar maximum” and a less active period called “solar minimum.”
      During solar maximum, increased magnetic activity creates sunspots. These appear as darker, cooler spots on the Sun’s surface. The more sunspots we can see, the more active the Sun is.
      The solar cycle begins at solar minimum, peaks at solar maximum, and then returns to solar minimum. This cycle is driven by the Sun’s magnetic polarity, which flips – north becomes south, and vice versa – every 11 years. It takes two cycles – or 22 years – to complete the full magnetic cycle where the poles return to their original positions.  
      The Sun’s level of magnetic activity changes throughout its 11-year solar cycle. During each cycle, the Sun experiences a less-active period called “solar minimum” (left) and a very active period called “solar maximum” (right).NASA Wait. The Sun’s magnetic poles can flip??
      Yes! Like Earth, the Sun has north and south magnetic poles. But unlike Earth, the Sun’s poles flip regularly. Each 11-year solar cycle is marked by the flipping of the Sun’s poles. The increased magnetic activity during solar maximum makes the north and south poles less defined. As the cycle moves back to solar minimum, the polarization of the poles returns – with flipped polarity.
      Unlike Earth, the Sun’s poles regularly flip with each 11-year solar cycle.NASA What is space weather?
      Space weather includes phenomena such as solar wind, solar storms, and solar flares. When space weather conditions are calm, there may be little noticeable effect on Earth. But when the Sun is more active, space weather has real impacts on Earth and in space.
      Let’s explore these phenomena and how they affect our planet.
      Periods of increased solar activity can cause noticeable effects on Earth and in space.NASA What is solar wind?
      Solar wind is a stream of charged particles that flow outward from the Sun’s corona. It extends far beyond the orbit of the planets in our solar system. When solar wind reaches Earth, its charged particles interact with Earth’s magnetic field. This causes colorful streams of moving light at Earth’s north and south poles called aurora.
      Earth’s magnetic field protects our planet from the charged solar particles of the solar wind.NASA What are solar storms, solar flares, and coronal mass ejections?
      The Sun’s magnetic fields are a tangle of constant motion. These fields twist and stretch to the point that they snap and reconnect. When this magnetic reconnection occurs, it releases a burst of energy that can cause a solar storm.
      Solar storms can include phenomena such as solar flares or coronal mass ejections. They happen more frequently around the solar maximum of the Sun’s cycle. A solar flare is an intense burst of light and energy from the Sun’s surface. Solar flares tend to happen near sunspots where the Sun’s magnetic fields are strongest. A coronal mass ejection is a massive cloud of material flowing outward from the Sun. These can occur on their own or along with solar flares.
      The Sun’s magnetic field is strongest near sunspots. These active regions of the Sun’s surface release energy in the form of solar flares and coronal mass ejections like these.NASA How do these phenomena affect Earth?
      When a solar storm erupts towards Earth, our atmosphere and magnetic field protect us from significant harm. However, some impacts are possible, both on Earth and in space. For example, strong solar storms can cause power outages and radio blackouts. GPS signals can be disrupted. Satellite electronics can be affected. And astronauts working outside of the International Space Station could be exposed to dangerous radiation. NASA monitors and forecasts space weather to protect the safety and health of astronauts and spacecraft.
      When charged particles from intense solar storms interact with Earth’s magnetic fields, colorful auroras like this one captured in Saskatchewan, Canada, can occur.NASA Learn more about the Sun
      NASA’s Parker Solar Probe launched in 2018 on the first-ever mission to fly into the Sun’s corona. Since its first pass through the corona in 2021, every orbit has brought it closer to the Sun. On Dec. 24, 2024, it makes the first of its three final, closest solar approaches of its primary mission. Test your knowledge with NASA’s new quiz, Kahoot! Parker Solar Probe trivia.
      Visit these resources for more details about the Sun:
      https://science.nasa.gov/sun/facts/ https://spaceplace.nasa.gov/all-about-the-sun/en/ https://science.nasa.gov/exoplanets/stars/ Explore More For Students Grades 5-8 View the full article
  • Check out these Videos

×
×
  • Create New...