Jump to content

Chandra Catches Spider Pulsars Destroying Nearby Stars


NASA

Recommended Posts

  • Publishers

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A cluster brimming with millions of stars glistens like an iridescent opal in this image from NASA's Spitzer Space Telescope. Called Omega Centauri, the sparkling orb of stars is like a miniature galaxy. It is the biggest and brightest of the 150 or so similar objects, called globular clusters, that orbit around the outside of our Milky Way galaxy. Stargazers at southern latitudes can spot the stellar gem with the naked eye in the constellation Centaurus. Globular clusters are some of the oldest objects in our universe. Their stars are over 12 billion years old, and, in most cases, formed all at once when the universe was just a toddler. Omega Centauri is unusual in that its stars are of different ages and possess varying levels of metals, or elements heavier than boron. Astronomers say this points to a different origin for Omega Centauri than other globular clusters: they think it might be the core of a dwarf galaxy that was ripped apart and absorbed by our Milky Way long ago. In this new view of Omega Centauri, Spitzer's infrared observations have been combined with visible-light data from the National Science Foundation's Blanco 4-meter telescope at Cerro Tololo Inter-American Observatory in Chile. Visible-light data with a wavelength of .55 microns is colored blue, 3.6-micron infrared light captured by Spitzer's infrared array camera is colored green and 24-micron infrared light taken by Spitzer's multiband imaging photometer is colored red. Where green and red overlap, the color yellow appears. Thus, the yellow and red dots are stars revealed by Spitzer. These stars, called red giants, are more evolved, larger and dustier. The stars that appear blue were spotted in both visible and 3.6-micron-, or near-, infrared light. They are less evolved, like our own sun. Some of the red spots in the picture are distant galaxies beyond our own.
X-ray: NASA/CXC/SAO; Optical: NASA/ESA/STScI/AURA; IR:NASA/JPL/Caltech; Image Processing: NASA/CXC/SAO/N. Wolk

A group of dead stars known as “spider pulsars” are obliterating companion stars within their reach. Data from NASA’s Chandra X-ray Observatory of the globular cluster Omega Centauri is helping astronomers understand how these spider pulsars prey on their stellar companions.

pulsar is the spinning dense core that remains after a massive star collapses into itself to form a neutron star. Rapidly rotating neutron stars can produce beams of radiation. Like a rotating lighthouse beam, the radiation can be observed as a powerful, pulsing source of radiation, or pulsar. Some pulsars spin around dozens to hundreds of times per second, and these are known as millisecond pulsars.

Spider pulsars are a special class of millisecond pulsars, and get their name for the damage they inflict on small companion stars in orbit around them. Through winds of energetic particles streaming out from the spider pulsars, the outer layers of the pulsar’s companion stars are methodically stripped away.

Astronomers recently discovered 18 millisecond pulsars in Omega Centauri — located about 17,700 light-years from Earth — using the Parkes and MeerKAT radio telescopes. A pair of astronomers from the University of Alberta in Canada then looked at Chandra data of Omega Centauri to see if any of the millisecond pulsars give off X-rays.

They found 11 millisecond pulsars emitting X-rays, and five of those were spider pulsars concentrated near the center of Omega Centauri. The researchers next combined the data of Omega Centauri with Chandra observations of 26 spider pulsars in 12 other globular clusters.

A close-up image of Omega Centauri, in X-ray & optical light, shows the locations of some of the spider pulsars. Spider pulsars are a special class of millisecond pulsars, and get their name for the damage they inflict on small companion stars in orbit around them.
A close-up image of Omega Centauri, in X-ray & optical light, shows the locations of some of the spider pulsars. Spider pulsars are a special class of millisecond pulsars, and get their name for the damage they inflict on small companion stars in orbit around them.
X-ray: NASA/CXC/SAO; Optical: NASA/ESA/STScI/AURA; Image Processing: NASA/CXC/SAO/N. Wolk

There are two varieties of spider pulsars based on the size of the star being destroyed. “Redback” spider pulsars are damaging companion stars weighing between a tenth and a half the mass of the Sun. Meanwhile, the “black widow” spider pulsars are damaging companion stars with less than 5 percent of the Sun’s mass.

The team found a clear difference between the two classes of spider pulsars, with the redbacks being brighter in X-rays than the black widows, confirming previous work. The team is the first to show a general correlation between X-ray brightness and companion mass for spider pulsars, with pulsars that produce more X-rays being paired with more massive companions. This gives clear evidence that the mass of the companion to spider pulsars influences the X-ray dose the star receives.

The X-rays detected by Chandra are mainly thought to be generated when the winds of particles flowing away from the pulsars collide with winds of matter blowing away from the companion stars and produce shock waves, similar to those produced by supersonic aircraft.

Spider pulsars are typically separated from their companions by only about one to 14 times the distance between the Earth and Moon. This close proximity — cosmically speaking — causes the energetic particles from the pulsars to be particularly damaging to their companion stars.

This finding agrees with theoretical models that scientists have developed. Because more massive stars produce a denser wind of particles, there is a stronger shock — producing brighter X-rays — when their wind collides with the particles from the pulsar. The proximity of the companion stars to their pulsars means the X-rays can cause significant damage to the stars, along with the pulsar’s wind.

Chandra’s sharp X-ray vision is crucial for studying millisecond pulsars in globular clusters because they often contain large numbers of X-ray sources in a small part of the sky, making it difficult to distinguish sources from each other. Several of the millisecond pulsars in Omega Centauri have other, unrelated X-ray sources only a few arc seconds away. (One arc second is the apparent size of a penny seen at a distance of 2.5 miles.)

The paper describing these results will be published in the December issue of the Monthly Notices of the Royal Astronomical Society, and a preprint of the accepted paper is available online. The authors of the paper are Jiaqi (Jake) Zhao and Craig Heinke, both from the University of Alberta in Canada.

NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.

Read more from NASA’s Chandra X-ray Observatory.

For more Chandra images, multimedia and related materials, visit:

https://www.nasa.gov/mission/chandra-x-ray-observatory/

News Media Contact

Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998

Jonathan Deal
Marshall Space Flight Center
Huntsville, Ala.
256-544-0034

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Hubble Traces Star Formation in a Nearby Nebula
      NASA, ESA, and L. C. Johnson (Northwestern University); Image Processing: Gladys Kober (NASA/Catholic University of America) NGC 261 blooms a brilliant ruby red against a myriad of stars in this new image from NASA’s Hubble Space Telescope. Discovered on Sept. 5, 1826 by Scottish astronomer James Dunlop, this nebula is located in one of the Milky Way’s closest galactic companions, the Small Magellanic Cloud (SMC). The ionized gas blazing from within this diffuse region marks NGC 261 as an emission nebula. It is home to numerous stars hot enough to irradiate surrounding hydrogen gas, causing the cloud to emit a pinkish-red glow.
      This inset image shows the location of NGC 261 within the Small Magellanic Cloud. NASA, ESA, L. C. Johnson (Northwestern University), and ESO/VISTA VMC; Image Processing: Gladys Kober (NASA/Catholic University of America) Hubble turned its keen eye toward NGC 261 to investigate how efficiently stars form in molecular clouds, which are extremely dense and compact regions of gas and dust. These clouds often consist of large amounts of molecular hydrogen — cold areas where most stars form. However, measuring this raw fuel of star formation in stellar nurseries is a challenge because molecular hydrogen doesn’t radiate easily. Since it is difficult to detect, scientists instead trace other molecules present in the molecular clouds.
      The SMC hosts a gas-rich environment of young stars along with trace amounts of carbon monoxide (CO), a chemical correlated with hydrogen and often used to identify the presence of such clouds. Using the Advanced Camera for Surveys (ACS) and Wide Field Camera 3 (WFC3), Hubble imaged these stars in the southwest portion of the SMC where NGC 261 resides. The combined power of ACS and WFC3 allowed scientists to closely examine the nebula’s star-forming properties through its CO content at optical and near-infrared wavelengths. This research helps astronomers better understand how stars form in our home galaxy and others in our galactic neighborhood.

      Download Image

      Explore More

      Hubble’s Galaxies

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Aug 28, 2024 Editor Michelle Belleville Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Galaxies Goddard Space Flight Center Hubble Space Telescope Stars Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science



      Hubble’s Galaxies



      Stars


      View the full article
    • By NASA
      5 Min Read Cassiopeia A, Then the Cosmos: 25 Years of Chandra X-ray Science
      By Rick Smith
      On Aug. 26, 1999, NASA’s Chandra X-ray Observatory opened its powerful telescopic eye in orbit and captured its awe-inspiring “first light” images of Cassiopeia A, a supernova remnant roughly 11,000 light-years from Earth. That first observation was far more detailed than anything seen by previous X-ray telescopes, even revealing – for the first time ever – a neutron star left in the wake of the colossal stellar detonation.
      Those revelations came as no surprise to Chandra project scientist Martin Weisskopf, who led Chandra’s development at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “When you build instrumentation that’s 10 times more sensitive than anything that was done before, you’re bound to discover something new and exciting,” he said. “Every step forward was a giant step forward.”
      Twenty-five years later, Chandra has repeated that seminal moment of discovery again and again, delivering – to date – nearly 25,000 detailed observations of neutron stars, quasars, supernova remnants, black holes, galaxy clusters, and other highly energetic objects and events, some as far away as 13 billion light-years from Earth.
      Chandra has further helped scientists gain tangible evidence of dark matter and dark energy, documented the first electromagnetic events tied to gravitational waves in space, and most recently aided the search for habitable exoplanets – all vital tools for understanding the vast, interrelated mechanisms of the universe we live in.
      NASA’s Chandra X-ray Observatory has observed Cassiopeia A for more than 2 million total seconds since its “first light ” images of the supernova remnant on Aug. 26, 1999. Cas A is some 11,000 light-years from Earth. Chandra X-rays are depicted in blue and composited with infrared images from NASA’s James Webb Space Telescope in orange and white.Credits: X-ray: NASA/CXC/SAO; Infrared: NASA/ESA/CSA/STScI/D. Milisavljevic (Purdue Univ.), I. De Looze (University of Ghent), T. Temim (Princeton Univ.); Image Processing: NASA/CXC/SAO/J. Schmidt, K. Arcand, and J. Major “Chandra’s first image of Cas A provided stunning demonstration of Chandra’s exquisite X-ray mirrors, but it simultaneously revealed things we had not known about young supernova remnants,” said Pat Slane, director of the CXC (Chandra X-ray Center) housed at the Smithsonian Astrophysical Observatory in Cambridge, Massachusetts. “In a blink, Chandra not only revealed the neutron star in Cas A; it also taught us that young neutron stars can be significantly more modest in their output than what previously had been understood. Throughout its 25 years in space, Chandra has deepened our understanding of fundamental astrophysics, while also greatly broadening our view of the universe.”
      To mark Chandra’s silver anniversary, NASA and CXC have shared 25 of its most breathtaking images and debuted a new video, “Eye on the Cosmos.”
      Chandra often is used in conjunction with other space telescopes that observe the cosmos in different parts of the electromagnetic spectrum, and with other high-energy missions such as ESA’s (European Space Agency’s) XMM-Newton; NASA’s Swift, NuSTAR (Nuclear Spectroscopic Telescope Array), and IXPE (Imaging X-ray Polarization Explorer) imagers, and NASA’s NICER (Neutron Star Interior Composition Explorer) X-ray observatory, which studies high-energy phenomena from its vantage point aboard the International Space Station.
      Chandra remains a unique, global science resource, with a robust data archive that will continue to serve the science community for many years.
      “NASA’s project science team has always strived to conduct Chandra science as equitably as possible by having the world science community collectively decide how best to use the observatory’s many tremendous capabilities,” said Douglas Swartz, a USRA (Universities Space Research Association) principal research scientist on the Chandra project science team.
      These images were released to commemorate the 25th anniversary of Chandra. They represent the wide range of objects that the telescope has observed over its quarter century of observations. X-rays are an especially penetrating type of light that reveals extremely hot objects and very energetic physical processes. The images range from supernova remnants, like Cassiopeia A, to star-formation regions like the Orion Nebula, to the region at the center of the Milky Way. This montage also contains objects beyond our own Galaxy including other galaxies and galaxy clusters.X-ray: NASA/CXC/UMass/Q.D. Wang; “Chandra will continue to serve the astrophysics community long after its mission ends,” said Andrew Schnell, acting Chandra program manager at Marshall. “Perhaps its greatest discovery hasn’t been discovered yet. It’s just sitting there in our data archive, waiting for someone to ask the right question and use the data to answer it. It could be somebody who hasn’t even been born yet.”
      That archive is impressive indeed. To date, Chandra has delivered more than 70 trillion bytes of raw data. More than 5,000 unique principal investigators and some 3,500 undergraduate and graduate students around the world have conducted research based on Chandra’s observations. Its findings have helped earn more than 700 PhDs and resulted in more than 11,000 published papers, with half a million total citations.
      Weisskopf is now an emeritus researcher who still keeps office hours every weekday despite having retired from NASA in 2022. He said the work remains as stimulating now as it was 25 years ago, waiting breathlessly for those “first light” images.
      NASA’s Chandra X-ray Observatory data, seen here in violet and white, is joined with that of NASA’s Hubble Space Telescope (red, green, and blue) and Imaging X-ray Polarimetry Explorer (purple) to show off the eerie beauty of the Crab Nebula. The nebula is the result of a bright supernova explosion first witnessed and documented in 1054 A.D.X-ray: (Chandra) NASA/CXC/SAO, (IXPE) NASA/MSFC; Optical: NASA/ESA/STScI; Image Processing: NASA/CXC/SAO/J. Schmidt, K. Arcand, and L. Frattare “We’re always trying to put ourselves out of business with the next bit of scientific understanding,” he said. “But these amazing discoveries have demonstrated how much NASA’s astrophysics missions still have to teach us.”
      The universe keeps turning – and Chandra’s watchful eye endures.
      More about Chandra
      Chandra, managed for NASA by Marshall in partnership with the CXC, is one of NASA’s Great Observatories, along with the Hubble Space Telescope and the now-retired Spitzer Space Telescope and Compton Gamma Ray Observatory. It was first proposed to NASA in 1976 by Riccardo Giacconi, recipient of the 2002 Nobel Prize for Physics based on his contributions to X-ray astronomy, and Harvey Tananbaum, who would later become the first director of the Chandra X-ray Center. Chandra was named in honor of the late Nobel laureate Subrahmanyan Chandrasekhar, who earned the Nobel Prize in Physics in 1983 for his work explaining the structure and evolution of stars.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://cxc.harvard.edu
      News Media Contact
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      Share
      Details
      Last Updated Aug 26, 2024 Related Terms
      Chandra X-Ray Observatory Crab Nebula Galaxies Marshall Space Flight Center Nebulae Explore More
      5 min read Webb Finds Early Galaxies Weren’t Too Big for Their Britches After All
      It got called the crisis in cosmology. But now astronomers can explain some surprising recent…
      Article 5 hours ago 2 min read Hubble Captures Unique Ultraviolet View of a Spectacular Star Cluster
      Roughly 210,000 light-years away, the Small Magellanic Cloud (SMC) is one of our Milky Way…
      Article 5 hours ago 2 min read Hubble Reaches a Lonely Light in the Dark
      A splatter of stars glows faintly at almost 3 million light-years away in this new…
      Article 3 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      The NASA Ames Science Directorate recognizes the outstanding contributions of (pictured left to right) Sangsavang Stevie Phothisane, Taryn Kavanagh, Andro Rios, and Hami Ray. Their commitment to the NASA mission represents the talent, camaraderie, and vision needed to explore this world and beyond.

      Earth Science Star: Sangsavang Stevie Phothisane
      Sangsavang Stevie Phothisane, a Deputy Project Manager in the Earth Science Project Office (ESPO), demonstrated outstanding leadership as the site manager for both of the field campaigns of the Arctic Radiation-Cloud-Aerosol-Surface Interaction Experiment (ARCSIX) based at Pituffik Space Base, Greenland.  He has excelled in managing this large and complex project, which encompasses over 75 scientists and engineers and 3 research aircraft, in an extremely remote location 750 miles north of the Arctic Circle.

      Space Science & Astrobiology Star: Taryn Kavanagh
      Taryn Kavanagh, Research Support Specialist, is an indispensable member of the Astrophysics Branch. She is a consummate professional in all of her administrative duties and goes above and beyond expectations to support our team, our customers and our mission. Taryn recently supported many high-level visits with increased workload in addition to meeting branch needs which has boosted morale and goodwill with both internal and external partners.

      Space Science & Astrobiology Star of the Month: Andro Rios
      Dr. Andro Rios, a research scientist in the Exobiology Branch, established new strategic partnerships with San Jose State University and Skyline College through the Science Mission Directorate Bridge Program (now MOSAICS). He was awarded grant funding for the ASPIRE Program (Astrobiology Scholars Program Immersive Research Experience), offering a two-year internship for under-represented undergraduates to work with NASA scientists and engineers. Dr. Rios selected and successfully led the first cohort of students for ASPIRE this summer.

      Space Biosciences Star: Hami Ray
      Hami Ray has stepped up as the Deputy Project Manager for the Lunar Explorer Instrument for space biology Applications (LEIA) mission to study the biological effects of the lunar surface’s extreme environmental conditions on living organisms. She has been instrumental in timely and critical process improvement efforts for LEIA to enable project success. In addition to Ray’s role with LEIA, she also excels as the Deputy Project Manager for the Space Synthetic Biology (SynBio) mission and as the Project Manager for the GLOW mission concept to explore Venus’ upper atmospheric dynamics.

      View the full article
    • By NASA
      This graphic shows a three-dimensional map of stars near the Sun. The blue haloes represent stars observed with NASA’s Chandra X-ray Observatory and ESA’s XMM-Newton. Astronomers are using these X-ray data to determine how habitable exoplanets may be based on whether they receive lethal radiation from the stars they orbit. This research will help guide observations with the next generation of telescopes aiming to make the first images of planets like Earth. Researchers used almost 10 days of Chandra observations and 26 days of XMM observations to examine the X-ray behavior of 57 nearby stars, some of them with known planets. Results were presented at the 244th meeting of the American Astronomical Society meeting in Madison, Wisconsin, by Breanna Binder (California State Polytechnic University in Pomona). To view the full article, visit: https://chandra.harvard.edu/photo/2024/exoplanets/.
      View the full article
    • By NASA
      Phil Kaaret (ST12) is lead author on the paper which describes Chandra X-ray Observatory observations of the galaxy NGC 2366. Escape of Lyman continuum (LyC) emission from galaxies found in the early universe was essential for the reionization of the universe when the intergalactic medium (IGM) changed from being neutral gas to the ionized IGM that we observe today. Compact emission-line galaxies (LCGs) are the most abundant class of confirmed Lyman continuum (LyC) emitters and provide (relatively) nearby analogs of the galaxies found in the early universe. An optical integral field study of NGC 2366 revealed an outflow originating at a star cluster known as “knot B” that is thought to clear a channel via mechanical feedback that enables LyC escape. We observed NGC 2366 with the Chandra and detected X-ray emission from a point source coincident with the apex of the outflow at knot B. The pointlike nature and variability of the X-ray emission suggests accretion onto a compact object in an X-ray binary. The accretion could produce sufficient kinetic energy to power the outflow. Thus, outflows from X-ray binaries may be important in enabling LyC emission from galaxies.
      Read more at: https://arxiv.org/abs/2405.13192.
      Illustration of ChandraView the full article
  • Check out these Videos

×
×
  • Create New...