Jump to content

Announcing the New Heliophysics Division Director 


NASA

Recommended Posts

  • Publishers

3 min read

Announcing the New Heliophysics Division Director 

November 29, 2023

NASA has selected Dr. Joseph Westlake to fill the position of Heliophysics Division Director. Joe will join the Science Mission Directorate and assume his new role on Jan. 16, 2024. 

I am pleased to have Joe take on the role as the Heliophysics Division Director. Joe has a strong background in heliophysics and planetary science and has already made significant contributions to our efforts by supporting several NASA missions including the Magnetospheric Multiscale mission, the Van Allen Probes, Parker Solar Probe, the Interstellar Boundary Explorer mission, the Juno mission, Cassini and the European Space Agency’s Juice mission to Ganymede. 

Joe brings with him more than 18 years of scientific, technical, management, and programmatic experience in heliophysics, astrophysics, and planetary science. He is coming to us from the Johns Hopkins University Applied Physics Laboratory (JHUAPL) where he works as a researcher and project scientist for the Interstellar Mapping and Acceleration Probe mission and principal investigator for the Plasma Instrument for Magnetic Sounding, or PIMS, instrument destined for Jupiter’s moon, Europa, onboard the Europa Clipper mission.  

“I’m very excited to join NASA as the Division Director for Heliophysics,” said Westlake. “I look forward to diving in and working with the vibrant community of scientists and engineers that are uncovering the mysteries of our star.” 

In 2024, the National Academies will release a new Decadal Survey that lays out a strategy to advance scientific understanding of the Sun, Sun-Earth connections and the origins of space weather, the Sun’s interactions with other bodies in the solar system, the interplanetary medium, and the interstellar medium; Joe’s experience across several scientific disciplines, as well as his leadership and technical experience, uniquely qualifies him for this critical leadership position in the Science Mission Directorate as we embark on an exciting new decade of solar and space physics. 

I extend my sincere appreciation to Peg Luce who led the Division for nearly a year while the director position was vacant; she has done a stellar job. With nearly 10 years as the deputy director, Peg’s exceptional efforts have brought significant strides within Science Mission Directorate and the broader scientific community. I am thrilled she will continue serving as the Heliophysics Division Deputy Director and helping Joe usher the division into this new era. 

“The Sun touches everything and the science of heliophysics is helping us unlock its mysteries,” said Peg Luce, deputy division director, Heliophysics Division at NASA Headquarters in Washington. “Joe’s unique experience and insight will help guide the division as we usher in solar max, launch a host of new heliophysics missions, and flow through the Heliophysics Big Year.” 

Please join me in welcoming Joe to Headquarters! 

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      5 Surprising NASA Heliophysics Discoveries Not Related to the Sun
      With NASA’s fleet of heliophysics spacecraft, scientists monitor our Sun and investigate its influences throughout the solar system. However, the fleet’s constant watch and often-unique perspectives sometimes create opportunities to make discoveries that no one expected, helping us to solve mysteries about of the solar system and beyond.
      Here are five examples of breakthroughs made by NASA heliophysics missions in other fields of science.
      This graphic shows missions in NASA’s Heliophysics Division fleet as of July 2024. NASA Thousands and Thousands of Comets
      The SOHO mission — short for Solar and Heliospheric Observatory, which is a joint mission between ESA (European Space Agency) and NASA — has a coronagraph that blocks out the Sun in order to see the Sun’s faint outer atmosphere, or corona. 
      It turns out SOHO’s coronagraph also makes it easy to spot sungrazing comets, those that pass so close to the Sun that other observatories can’t see them against the brightness of our star.
      Before SOHO was launched in December 1995, fewer than 20 sungrazing comets were known. Since then, SOHO has discovered more than 5,000. 
      The vast number of comets discovered using SOHO has allowed scientists to learn more about sungrazing comets and identify comet families, descended from ancestor comets that broke up long ago.

      Learn More

      Two sungrazing comets fly close to the Sun in these images captured by ESA/NASA’s SOHO (Solar and Heliospheric Observatory). They were the 3,999th and 4,000th comets discovered in SOHO images. ESA/NASA/SOHO/Karl Battams Dimming of a Supergiant
      In late 2019, the supergiant star Betelgeuse began dimming unexpectedly. Telescopes all over the world — ​​​​and around it — tracked these changes until a few months later when Betelgeuse appeared too close to the Sun to observe. That’s when NASA’s STEREO (Sun-watching Solar Terrestrial Relations Observatory (STEREO) came to the rescue. 
      For several weeks in the middle of 2020, STEREO was the only observatory able to see Betelgeuse. At the time, the STEREO-A spacecraft was trailing behind Earth, at a vantage point where Betelgeuse was still far enough away from the Sun to be seen. This allowed astronomers to keep tabs on the star while it was out of view from Earth.  
      STEREO’s observations revealed another unexpected dimming between June and August of 2020, when ground-based telescopes couldn’t view the star.
      Astronomers later concluded that these dimming episodes were caused by an ejection of mass from Betelgeuse — like a coronal mass ejection from our Sun but with about 400 times more mass — which obscured part of the star’s bright surface.

      Learn More

      The background image shows the star Betelgeuse as seen by the Heliospheric Imager aboard NASA’s STEREO (Solar Terrestrial Relations Observatory) spacecraft. The inset figure shows measurements of Betelgeuse’s brightness taken by different observatories from late 2018 to late 2020. STEREO’s observations, marked in red, revealed an unexpected dimming in mid-2020 when Betelgeuse appeared too close to the Sun for other observatories to view it. NASA/STEREO/HI (background); Dupree et al. (inset) The Glowing Surface of Venus
      NASA’s Parker Solar Probe studies the Sun’s corona up close — by flying through it. To dive into the Sun’s outer atmosphere, the spacecraft has flown past Venus several times, using the planet’s gravity to fling itself closer and closer to the Sun.
      On July 11, 2020, during Parker’s third Venus flyby, scientists used Parker’s wide-field imager, called WISPR, to try to measure the speed of the clouds that obscure Venus’ surface. Surprisingly, WISPR not only observed the clouds, it also saw through them to the surface below.
      The images from that flyby and the next (in 2021) revealed a faint glow from Venus’ hot surface in near-infrared light and long wavelengths of red (visible) light that maps distinctive features like mountainous regions, plains, and plateaus.
      Scientists aimed WISPR at Venus again on Nov. 6, 2024, during Parker’s seventh flyby, observing a different part of the planet than previous flybys. With these images, they’re hoping to learn more about Venus’ surface geology, mineralogy, and evolution.

      Learn More

      As Parker Solar Probe flew by Venus on its fourth flyby, it captured these images, strung into a video, showing bright and dark features on the nightside surface of the planet. NASA/APL/NRL The Brightest Gamma-Ray Burst
      You’ve heard of the GOAT. But have you heard of the BOAT?
      It stands for the “brightest of all time”, a gamma-ray burst discovered on Oct. 9, 2022.  
      A gamma-ray burst is a brief but intense eruption of gamma rays in space, lasting from seconds to hours.
      This one, named GRB 221009A, glowed brilliantly for about 10 minutes in the constellation Sagitta before slowly fading.
      The burst was detected by dozens of spacecraft, including NASA’s Wind, which studies the perpetual flow of particles from the Sun, called the solar wind, just before it reaches Earth.
      Wind and NASA’s Fermi Gamma-Ray Space Telescope measured the brightness of GRB 221009A, showing that it was 70 times brighter than any other gamma-ray burst ever recorded by humans — solidifying its status as the BOAT.

      Learn More

      Astronomers think GRB 221009A represents the birth of a new black hole formed within the heart of a collapsing star. In this artist’s concept, the black hole drives powerful jets of particles traveling near the speed of light. The jets emit X-rays and gamma rays as they stream into space. NASA/Swift/Cruz deWilde A Volcano Blasts Its Way to Space
      NASA’s ICON (Ionospheric Connection Explorer) launched in 2019 to study how Earth’s weather interacts with weather from space. When the underwater Hunga Tonga-Hunga Ha‘apai volcano erupted on Jan. 15, 2022, ICON helped show that the volcano produced more than ash and tsunami waves — its effects reached the edge of space.
      In the hours after the eruption, ICON detected hurricane-speed winds in the ionosphere — Earth’s electrified upper atmospheric layer at the edge of space. ICON clocked the wind speeds at up to 450 miles per hour, making them the strongest winds the mission had ever measured below 120 miles altitude.
      The ESA Swarm mission revealed that these extreme winds altered an electric current in the ionosphere called the equatorial electrojet. After the eruption, the equatorial electrojet surged to five times its normal peak power and dramatically flipped direction.
      Scientists were surprised that a volcano could affect the electrojet so severely — something they’d only seen during a strong geomagnetic storm caused by an eruption from the Sun.

      Learn More

      The Hunga Tonga-Hunga Ha’apai eruption on Jan. 15, 2022, caused many effects, some illustrated here, that were felt around the world and even into space. Some of those effects, like extreme winds and unusual electric currents were picked up by NASA’s ICON (Ionospheric Connection Explorer) mission and ESA’s (the European Space Agency) Swarm. Illustration is not to scale.  NASA’s Goddard Space Flight Center/Mary Pat Hrybyk-Keith By Vanessa Thomas
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Nov 20, 2024 Related Terms
      Comets Fermi Gamma-Ray Space Telescope Gamma-Ray Bursts Goddard Space Flight Center Heliophysics Heliophysics Division ICON (Ionospheric Connection Explorer) Parker Solar Probe (PSP) SOHO (Solar and Heliospheric Observatory) Stars STEREO (Solar TErrestrial RElations Observatory) The Sun The Sun & Solar Physics Uncategorized Venus Volcanoes Wind Mission Explore More
      5 min read NASA’s Swift Reaches 20th Anniversary in Improved Pointing Mode


      Article


      3 hours ago
      4 min read NASA Satellites Reveal Abrupt Drop in Global Freshwater Levels
      Earth’s total amount of freshwater dropped abruptly starting in May 2014 and has remained low…


      Article


      5 days ago
      4 min read NASA’s Swift Studies Gas-Churning Monster Black Holes


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      5 Min Read Making Mars’ Moons: Supercomputers Offer ‘Disruptive’ New Explanation
      A NASA study using a series of supercomputer simulations reveals a potential new solution to a longstanding Martian mystery: How did Mars get its moons? The first step, the findings say, may have involved the destruction of an asteroid. 
      The research team, led by Jacob Kegerreis, a postdoctoral research scientist at NASA’s Ames Research Center in California’s Silicon Valley, found that an asteroid passing near Mars could have been disrupted – a nice way of saying “ripped apart” – by the Red Planet’s strong gravitational pull.
      The team’s simulations show the resulting rocky fragments being strewn into a variety of orbits around Mars. More than half the fragments would have escaped the Mars system, but others would’ve stayed in orbit. Tugged by the gravity of both Mars and the Sun, in the simulations some of the remaining asteroid pieces are set on paths to collide with one another, every encounter further grinding them down and spreading more debris. 
      Many collisions later, smaller chunks and debris from the former asteroid could have settled into a disk encircling the planet. Over time, some of this material is likely to have clumped together, possibly forming Mars’ two small moons, Phobos and Deimos.
      To assess whether this was a realistic chain of events, the research team explored hundreds of different close encounter simulations, varying the asteroid’s size, spin, speed, and distance at its closest approach to the planet. The team used their high-performance, open-source computing code, called SWIFT, and the advanced computing systems at Durham University in the United Kingdom to study in detail both the initial disruption and, using another code, the subsequent orbits of the debris.
      In a paper published Nov. 20 in the journal Icarus, the researchers report that, in many of the scenarios, enough asteroid fragments survive and collide in orbit to serve as raw material to form the moons. 
      “It’s exciting to explore a new option for the making of Phobos and Deimos – the only moons in our solar system that orbit a rocky planet besides Earth’s,” said Kegerreis. “Furthermore, this new model makes different predictions about the moons’ properties that can be tested against the standard ideas for this key event in Mars’ history.”
      Two hypotheses for the formation of the Martian moons have led the pack. One proposes that passing asteroids were captured whole by Mars’ gravity, which could explain the moons’ somewhat asteroid-like appearance. The other says that a giant impact on the planet blasted out enough material – a mix of Mars and impactor debris – to form a disk and, ultimately, the moons. Scientists believe a similar process formed Earth’s Moon.
      The latter explanation better accounts for the paths the moons travel today – in near-circular orbits that closely align with Mars’ equator. However, a giant impact ejects material into a disk that, mostly, stays close to the planet. And Mars’ moons, especially Deimos, sit quite far away from the planet and probably formed out there, too. 
      “Our idea allows for a more efficient distribution of moon-making material to the outer regions of the disk,” said Jack Lissauer, a research scientist at Ames and co-author on the paper. “That means a much smaller ‘parent’ asteroid could still deliver enough material to send the moons’ building blocks to the right place.”
      It’s exciting to explore a new option for the making of Phobos and Deimos – the only moons in our solar system that orbit a rocky planet besides Earth’s.
      Jacob Kegerreis
      Postdoctoral research scientist at NASA’s Ames Research Center
      Testing different ideas for the formation of Mars’ moons is the primary goal of the upcoming Martian Moons eXploration (MMX) sample return mission led by JAXA (Japan Aerospace Exploration Agency). The spacecraft will survey both moons to determine their origin and collect samples of Phobos to bring to Earth for study. A NASA instrument on board, called MEGANE – short for Mars-moon Exploration with GAmma rays and Neutrons – will identify the chemical elements Phobos is made of and help select sites for the sample collection. Some of the samples will be collected by a pneumatic sampler also provided by NASA as a technology demonstration contribution to the mission. Understanding what the moons are made of is one clue that could help distinguish between the moons having an asteroid origin or a planet-plus-impactor source.
      Before scientists can get their hands on a piece of Phobos to analyze, Kegerreis and his team will pick up where they left off demonstrating the formation of a disk that has enough material to make Phobos and Deimos. 
      “Next, we hope to build on this proof-of-concept project to simulate and study in greater detail the full timeline of formation,” said Vincent Eke, associate professor at the Institute for Computational Cosmology at Durham University and a co-author on the paper. “This will allow us to examine the structure of the disk itself and make more detailed predictions for what the MMX mission could find.”  
      For Kegerreis, this work is exciting because it also expands our understanding of how moons might be born – even if it turns out that Mars’ own formed by a different route. The simulations offer a fascinating exploration, he says, of the possible outcomes of encounters between objects like asteroids and planets. These events were common in the early solar system, and simulations could help researchers reconstruct the story of how our cosmic backyard evolved. 
      This research is a collaborative effort between Ames and Durham University, supported by the Institute for Computational Cosmology’s Planetary Giant Impact Research group. The simulations used were run using the open-source SWIFT code, carried out on the DiRAC (Distributed Research Utilizing Advanced Computing) Memory Intensive service (“COSMA”), hosted by Durham University on behalf of the DiRAC High-Performance Computing facility.
      For news media:
      Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
      Share
      Details
      Last Updated Nov 20, 2024 Related Terms
      Mars Ames Research Center Ames Research Center's Science Directorate General High-Tech Computing Mars Moons Martian Moon Exploration (MMX) Missions NASA Centers & Facilities Planets Technology The Solar System Explore More
      5 min read NASA’s Swift Reaches 20th Anniversary in Improved Pointing Mode
      After two decades in space, NASA’s Neil Gehrels Swift Observatory is performing better than ever…
      Article 1 hour ago 2 min read Gateway Tops Off
      Gateway’s Power and Propulsion Element is now equipped with its xenon and liquid fuel tanks.
      Article 2 hours ago 2 min read About the Office of the Chief Knowledge Officer (OCKO)
      Article 6 hours ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Zoom into Solar Orbiter's four new Sun images, assembled from high-resolution observations by the spacecraft's PHI and EUI instruments made on 22 March 2023. The PHI images are the highest-resolution full views of the Sun's visible surface to date, including maps of the Sun's messy magnetic field and movement on the surface. These can be compared to the new EUI image, which reveals the Sun's glowing outer atmosphere, or corona.
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)

      Abigail Reigner, a systems engineer at NASA’s Glenn Research Center in Cleveland, supports the agency’s research in electrified aircraft propulsion to enable more sustainable air travel. Behind her is a 25% scale model of NASA’s SUbsonic Single Aft eNgine (SUSAN) Electrofan aircraft concept used to test and demonstrate hybrid electric propulsion systems for emission reductions and performance boosts in future commercial aircraft.
      Credit: NASA/Sara Lowthian-Hanna Growing up outside of Philadelphia, Abigail Reigner spent most of her childhood miles away from where her family called home, and where there was little trace of her Native American tribe and culture.
      Belonging to the Comanche Nation that resides in Lawton, Oklahoma, Reigner’s parents made every effort to keep her connected to her Indigenous heritage and part of a community that would later play a key role in her professional journey.
      “My parents were really adamant on making sure my brother and I were still involved in the Native American traditions."
      Abigail Reigner

      “My parents were really adamant on making sure my brother and I were still involved in the Native American traditions,” Reigner said. “We would go down to Oklahoma often in the summertime, spending time with family and staying immersed in our culture.”
      Both her parents come from a teaching background, so Reigner was surrounded by hands-on learning experiences early in life. As a school teacher, her mother would participate in local outreach events each year, talking and interacting with students. Her father, a middle school technology education teacher, taught Reigner how to use computer-aided design (CAD) and helped introduce her to the world of engineering at a young age.  
      These unique experiences helped spark Reigner’s curiosity for learning about science, technology, engineering, and math (STEM) and connecting with others in her community who shared these interests. Reigner says she never takes her upbringing for granted. 
      “I feel pretty lucky to have grown up with so many educational opportunities, and I try to use them as a way to give back to my community,” Reigner said.
      After participating in various engineering and robotics classes in high school and realizing a career in STEM was the right fit for her, Reigner went on to attend the Rochester Institute of Technology in New York where she earned bachelor’s and master’s degrees in mechanical engineering.
      During her time there, she joined the American Indian Science and Engineering Society (AISES) where she got the unique opportunity to connect with other Indigenous students and mentors in STEM fields and gain leadership experience on projects that eventually set her up for internship opportunities at NASA.
      “The opportunities I got through AISES led me to get an internship at NASA’s Jet Propulsion Laboratory during the summer of 2021, and then an eight-month co-op the following year working in the center’s materials science division,” Reigner said.
      Through AISES, Reigner also met Joseph Connolly, an aerospace engineer at NASA’s Glenn Research Center in Cleveland who was looking to recruit Indigenous students for full-time positions in the agency. Upon graduating from college, Reigner joined NASA Glenn as an engineer in the summer of 2024.
      Abigail Reigner (top far left) and Joseph Connolly (middle far right) pose with NASA employees while staffing a booth at an American Indian Science and Engineering Society (AISES) conference to help recruit Indigenous students to the agency. Credit: Abigail Reigner Today, Reigner works as a systems engineer supporting NASA Glenn’s efforts to test and demonstrate electrified aircraft propulsion technologies for future commercial aircraft as part of the agency’s mission to make air travel more sustainable.
      One of the projects she works on is NASA’s Electrified Powertrain Flight Demonstration (EPFD), where she supports risk-reduction testing that enables the project to explore the feasibility of hybrid electric propulsion in reducing emissions and improving efficiency in future aircraft.

      “It’s always good to know that you’re doing something that is furthering the benefit of humanity,” Reigner said. “Seeing that unity across NASA centers and knowing that you are a part of something that is accelerating technology for the future is very cool.” 
      “I really feel like the reason I am here at NASA is because of the success of not just the Native American support group here at Glenn, but also Natives across the agency.”
      Abigail Reigner

      The growing community of Native Americans at NASA Glenn has fostered several initiatives over the years that have helped recruit, inspire, and retain Indigenous employees.
      Leveraging some of the agency’s diversity programs that provide educational STEM opportunities for underrepresented communities, the Native Americans at NASA group has encouraged more students with Indigenous backgrounds to get involved in technical projects while developing the skills needed to excel in STEM fields.
      “The Native American support group at NASA has been around since the mid-to-late 1980s and was actually one of the first Native American employee resources groups at the agency,” Connolly said. “Through this, we’ve been able to connect a number of Native employees with senior leaders across NASA and establish more agencywide recruitment efforts and initiatives for Native Americans.”
      These initiatives range from support through NASA’s Minority University Research and Education Project (MUREP) to help recruit more Indigenous students, to encouraging participation in hands-on learning experiences through projects such as NASA’s University Leadership Initiative (ULI) and the agency’s involvement in the First Nations Launch competition, which helps provide students with opportunities to conduct research while developing engineering and team-building skills.
      The efforts of the Native American community at NASA Glenn and across the agency have been successful in not only creating a direct pipeline for Indigenous students into the NASA workforce, but also allowing them to feel seen and represented in the agency, says Connolly.
      For Reigner, having this community and resource group at NASA to help guide and support her through her journey has been crucial to her success and important for the future of diversity within the agency.
      “I really feel like the reason I am here at NASA is because of the success of not just the Native American support group here at Glenn, but also Natives across the agency,” Reigner said. Without their support and initiatives to recruit and retain students, I wouldn’t be here today.” 
      Explore More
      7 min read Six Ways Supercomputing Advances Our Understanding of the Universe
      Article 4 days ago 1 min read NASA Glenn Chief Counsel Named to CSU Law Hall of Fame 
      Article 6 days ago 1 min read NASA Encourages Careers in STEM During Event
      Article 6 days ago View the full article
    • By NASA
      Clayton P. Turner, associate administrator for Space Technology Mission DirectorateCredit: NASA Clayton P. Turner will serve as the associate administrator of the Space Technology Mission Directorate (STMD) at the agency’s headquarters in Washington, NASA Administrator Bill Nelson announced Monday. His appointment is effective immediately.
      Turner has served as the acting associate administrator of STMD since July. In this role, Turner will continue to oversee executive leadership, strategic planning, and overall management of all technology maturation and demonstration programs executed from the directorate enabling critical space focused technologies that deliver today and help create tomorrow.
      “Under Turner’s skilled and steady hand, the Space Technology Mission Directorate will continue to do what it does best: help NASA push the boundaries of what’s possible and drive American leadership in space,” said NASA Administrator Bill Nelson. “I look forward to what STMD will achieve under Turner’s direction.”
      As NASA embarks on the next era of space exploration, STMD leverages partnerships to advance technologies and test new capabilities helping the agency develop a sustainable presence on the Moon and beyond. As associate administrator of STMD, Turner will plan, coordinate, and evaluate the mission directorate’s full range of programs and activities, including budget formulation and execution, as well as represent the programs to officials within and outside the agency.
      Previously, Turner served as NASA Langley Research Center Director since September 2019 and has been with the agency for more than 30 years. He has held several roles at NASA Langley, including engineering director, associate center director, and deputy center director. Throughout his NASA career, he has worked on many projects for the agency, including: the Earth Science Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation Project; the materials technology development Gas Permeable Polymer Materials Project; the Space Shuttle Program’s Return to Flight work; the flight test of the Ares 1-X rocket; the flight test of the Orion Launch Abort System; and the entry, descent, and landing segment of the Mars Science Laboratory.
      In recognition of his commitment to the agency and engineering, Turner has received many prestigious awards, such as the NASA Distinguished Service Medal, the NASA Outstanding Leadership Medal, the NASA Exceptional Engineering Achievement Medal. He is also an Associate Fellow of the American Institute of Aeronautics and Astronautics (AIAA) and a Board of Trustees member of his alma mater, Rochester Institute of Technology.
      NASA Glenn Research Center Deputy Director, Dawn Schaible, became acting Langley Center Director in July and will continue to serve in this role. At NASA Langley, Schaible leads a skilled group of more than 3,000 civil servant and contractor scientists, researchers, engineers, and support staff, who work to advance aviation, expand understanding of Earth’s atmosphere, and develop technology for space exploration.
      For more about Turner’s experience, visit his full biography online at:
      https://go.nasa.gov/48UmkmS
      -end-
      Meira Bernstein / Jasmine Hopkins
      Headquarters, Washington
      202-358-1600
      meira.b.bernstein@nasa.gov / jasmine.s.hopkins@nasa.gov
      Share
      Details
      Last Updated Nov 18, 2024 LocationNASA Headquarters Related Terms
      Space Technology Mission Directorate View the full article
  • Check out these Videos

×
×
  • Create New...