Jump to content

40 Years Ago: STS-9, the First Spacelab Science Mission


Recommended Posts

  • Publishers
Posted

On Nov. 28, 1983, space shuttle Columbia took to the skies for its sixth trip into space on the first dedicated science mission using the Spacelab module provided by the European Space Agency (ESA). The longest shuttle mission at the time also included many other firsts. Aboard Columbia to conduct dozens of science experiments, the first six-person crew of Commander John W. Young, making his record-breaking sixth spaceflight, Pilot Brewster H. Shaw, Mission Specialists Owen K. Garriott and Robert A.R. Parker, and the first two payload specialists, American Byron K. Lichtenberg and German Ulf Merbold representing ESA, the first non-American to fly on a U.S. space mission. During the 10-day Spacelab 1 flight, the international team of astronauts conducted 72 experiments in a wide variety of science disciplines.

The STS-9 crew patch Official photo of the STS-9 crew of Owen K. Garriott, seated left, Brewster H. Shaw, John W. Young, and Robert A.R. Parker; Byron K. Lichtenberg, standing left, and Ulf Merbold of West Germany representing the European Space Agency The payload patch for Spacelab 1
Left: The STS-9 crew patch. Middle: Official photo of the STS-9 crew of Owen K. Garriott, seated left, Brewster H. Shaw, John W. Young, and Robert A.R. Parker; Byron K. Lichtenberg, standing left, and Ulf Merbold of West Germany representing the European Space Agency. Right: The payload patch for Spacelab 1.

In August 1973, NASA and the European Space Research Organization, the forerunner of today’s ESA, agreed on a cooperative plan to build a reusable laboratory called Spacelab to fly in the space shuttle’s cargo bay. In exchange for ESA building the pressurized modules and unpressurized pallets, NASA provided flight opportunities for European astronauts. In December 1977, ESA named physicist Merbold of the Max Planck Institute in West Germany, physicist Wubbo Ockels of The Netherlands, and astrophysicist Claude Nicollier of Switzerland as payload specialist candidates for the first Spacelab mission. In September 1982, ESA selected Merbold as the prime crew member to fly the mission and Ockels as his backup. Nicollier had in the meantime joined NASA’s astronaut class of 1980 as a mission specialist candidate. In 1978, NASA selected biomedical engineer Lichtenberg of the Massachusetts Institute of Technology as its payload specialist with physicist Michael L. Lampton of CalTech as his backup. In April 1982, NASA assigned the orbiter crew of Young, Shaw, Garriott, and Parker. As commander of STS-9, Young made a record-breaking sixth flight into space. The mission’s pilot Shaw, an astronaut from the 1978 class, made his first trip into space. The two mission specialists had a long history with NASA – Garriott, selected as an astronaut in 1965, completed a 59-day stay aboard the Skylab space station in 1973, and Parker, selected in 1967, made his first spaceflight after a 16-year wait. Although the crew included only two veterans, it had the most previous spaceflight experience of any crew up to that time – 84 days between Young’s and Garriott’s earlier missions.

Arrival of the Spacelab 1 long module at NASA’s Kennedy Space Center (KSC) in Florida Workers place the Spacelab module and pallet into Columbia’s payload bay in KSC’s Orbiter Processing Facility The Spacelab pallet, top, pressurized long module, and tunnel in Columbia’s payload bay
Left: Arrival of the Spacelab 1 long module at NASA’s Kennedy Space Center (KSC) in Florida. Middle: Workers place the Spacelab module and pallet into Columbia’s payload bay in KSC’s Orbiter Processing Facility. Right: The Spacelab pallet, top, pressurized long module, and tunnel in Columbia’s payload bay.

The pressurized module for the first Spacelab mission arrived at KSC on Dec. 11, 1981, from its manufacturing facility in Bremen, West Germany. Additional components arrived throughout 1982 as workers in KSC’s Operations and Checkout Building integrated the payload racks into the module. The ninth space shuttle mission saw the return of the orbiter Columbia to space, having flown the first five flights of the program. Since it arrived back at KSC after STS-5 on Nov. 22, 1982, engineers in the Orbiter Processing Facility (OPF) modified Columbia to prepare it for the first Spacelab mission. The completed payload, including the pressurized module, the external pallet, and the transfer tunnel, rolled over to the OPF, where workers installed it into Columbia’s payload bay on Aug. 16, 1983.

In the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida, workers lift space shuttle Columbia to mate it with its external tank (ET) and solid rocket boosters (SRBs) for the first time Space shuttle Columbia’s first trip from the VAB to Launch Pad 39A In the VAB, workers have disassembled the stack and prepare to reposition the ET with its SRBs
Left: In the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida, workers lift space shuttle Columbia to mate it with its external tank (ET) and solid rocket boosters (SRBs) for the first time. Middle: Space shuttle Columbia’s first trip from the VAB to Launch Pad 39A. Right: In the VAB, workers have disassembled the stack and prepare to reposition the ET with its SRBs.

Rollover of Columbia to the Vehicle Assembly Building (VAB) took place on Sept. 24, where workers mated it with an external tank (ET) and two solid rocket boosters (SRBs). Following integrated testing, the stack rolled out to Launch Pad 39A four days later for a planned Oct. 29 liftoff. However, on Oct. 14, managers called off that initial launch attempt after discovering that the engine nozzle of the left hand SRB contained the same material that nearly caused a burn through during STS-8. The replacement of the nozzle required a rollback to the VAB. Taking place on Oct. 17, it marked the first rollback of a flight vehicle in the shuttle’s history. Workers in the VAB demated the vehicle and destacked the left hand SRB to replace its nozzle. Columbia temporarily returned to the OPF on Oct. 19, where workers replaced its fuel cells using three borrowed from space shuttle Discovery and also replaced its waste collection system. Columbia returned to the VAB on Nov. 3 for remating with its ET and SRBs and rolled back out to the launch pad on Nov. 8.

The STS-9 crew during their preflight press conference at NASA’s Johnson Space Center in Houston On launch day at NASA’s Kennedy Space Center in Florida, the STS-9 astronauts leave crew quarters to board the Astrovan for the ride to Launch Pad 39A In the VIP stands to watch the STS-9 launch, Steven Spielberg, left, and George Lucas
Left: The STS-9 crew during their preflight press conference at NASA’s Johnson Space Center in Houston. Middle: On launch day at NASA’s Kennedy Space Center in Florida, the STS-9 astronauts leave crew quarters to board the Astrovan for the ride to Launch Pad 39A. Right: In the VIP stands to watch the STS-9 launch, Steven Spielberg, left, and George Lucas.

-Liftoff of space shuttle Columbia on STS-9 carrying the first Spacelab science module
Liftoff of space shuttle Columbia on STS-9 carrying the first Spacelab science module.

Ground track of STS-9’s orbit, inclined 57 degrees to the equator, passing over 80 percent of the world’s land masses
Ground track of STS-9’s orbit, inclined 57 degrees to the equator, passing over 80 percent of the world’s land masses.

On Nov. 28, 1983, Columbia thundered off KSC’s Launch Pad 39A to begin the STS-9 mission. The shuttle entered an orbit inclined 57 degrees to the equator, the highest inclination U.S. spaceflight at the time, allowing the astronauts to observe about 80 percent of the Earth’s landmasses. Mounted inside Columbia’s payload bay, the first Spacelab 18-foot long module provided a shirt-sleeve environment for the astronauts to conduct scientific experiments in a variety of disciplines. During the Spacelab 1 mission, the STS-9 crew carried out 72 experiments in atmospheric and plasma physics, astronomy, solar physics, materials sciences, technology, astrobiology, and Earth observations. For the first time in spaceflight history, the crew divided into two teams working opposite 12-hour shifts, allowing science to be conducted 24 hours a day. The Tracking and Data Relay Satellite, launched the previous April during the STS-6 mission, and now fully operational, enabled transmission of television and significant amounts of science data to the Payload Operations Control Center, located in the Mission Control Center at NASA’s Johnson Space Center in Houston.

View of the Spacelab module in the shuttle’s payload bay Several STS-9 crew members struggle to open the hatch to the transfer tunnel Owen K. Garriott, left, Ulf Merbold, and Byron K. Lichtenberg enter the Spacelab for the first time to begin activating the module
Left: View of the Spacelab module in the shuttle’s payload bay. Middle: Several STS-9 crew members struggle to open the hatch to the transfer tunnel. Right: Owen K. Garriott, left, Ulf Merbold, and Byron K. Lichtenberg enter the Spacelab for the first time to begin activating the module.

Upon reaching orbit, the crew opened the payload bay doors and deployed the shuttle’s radiators. Shortly after, following a few tense minutes during which the astronauts struggled with a balky hatch, they opened it, translated down the transfer tunnel, and entered Spacelab for the first time. Garriott, Lichtenberg, and Merbold activated the module and turned on the first experiments. For the next nine days, the Red Team of Young, Parker, and Merbold, and the Blue Team of Shaw, Garriott, and Lichtenberg performed flawlessly to carry out the experiments. Young and Shaw managed the shuttle’s systems while the mission and payload specialists conducted the bulk of the research. With ample consumables available, Mission Control granted them an extra day in space to complete additional science. One afternoon, the astronauts chatted with U.S. President Ronald W. Reagan in the White House and German Chancellor Helmut Kohl, attending the European Community Summit in Athens, Greece. The two leaders praised the astronauts for their scientific work and the cooperation between the two countries that enabled the flight to take place.

sts-9-18-inside-spacelab-s09-15-755.jpg Garriott preparing to draw a blood sample from Lichtenberg for one of the life sciences experiments Garriott, front, and Lichtenberg at work in the Spacelab module
Left: Robert A.R. Parker, left, Byron K. Lichtenberg, Owen K. Garriott, and Ulf Merbold at work inside the Spacelab module. Middle: Garriott preparing to draw a blood sample from Lichtenberg for one of the life sciences experiments. Right: Garriott, front, and Lichtenberg at work in the Spacelab module.

The rotating dome experiment to study visual vestibular interactions Owen K. Garriott prepares to place blood samples in a passive freezer Inflight photograph of the STS-9 crew
Left: The rotating dome experiment to study visual vestibular interactions. Middle: Owen K. Garriott prepares to place blood samples in a passive freezer. Right: Inflight photograph of the STS-9 crew.

The Manicougan impact crater in Quebec, Canada, with the shuttle’s tail visible at upper right STS-9 crew Earth observation photograph Hong Kong STS-9 crew Earth observation photograph of Cape Campbell, New Zealand
A selection of the STS-9 crew Earth observation photographs. Left: The Manicougan impact crater in Quebec, Canada, with the shuttle’s tail visible at upper right. Middle: Hong Kong. Right: Cape Campbell, New Zealand.

On Dec. 8, their last day in space, the crew finished the experiments, closed up the Spacelab module, and strapped themselves into their seats to prepare for their return to Earth. Five hours before the scheduled landing, during thruster firings one of Columbia’s five General Purpose Computers (GPC) failed, followed six minutes later by a second GPC. Mission Control decided to delay the landing until the crew could fix the problem. Young and Shaw  brought the second GPC back up but had no luck with the first. Meanwhile, one of Columbia’s Inertial Measurement Units, used for navigation, failed. Finally, after eight hours of troubleshooting, the astronauts fired the shuttle’s Orbital Maneuvering System engines to begin the descent from orbit. Young piloted Columbia to a smooth landing on a lakebed runway at Edwards Air Force Base in California’s Mojave Desert, completing 166 orbits around the Earth in 10 days, 6 hours, and 47 minutes, at the time the longest shuttle flight. Shortly before landing, a hydrazine leak caused two of the orbiter’s three Auxiliary Power Units (APU) to catch fire. The fire burned itself out, causing damage in the APU compartment but otherwise not affecting the landing. The astronauts safely exited the spacecraft without incident. On Dec. 14, NASA ferried Columbia back to KSC to remove the Spacelab module from the payload bay. In January 1984, Columbia returned to its manufacturer, Rockwell International in Palmdale, California, where workers spent the next two years refurbishing NASA’s first orbiter before its next mission, STS-61C, in January 1986.

John W. Young in the shuttle commander’s seat prior to entry and landing Space shuttle Columbia lands at Edward Air Force Base in California to end the STS-9 mission Space shuttle Columbia lands at Edward Air Force Base in California to end the STS-9 mission
Left: John W. Young in the shuttle commander’s seat prior to entry and landing. Middle: Space shuttle Columbia lands at Edward Air Force Base in California to end the STS-9 mission. Right: The six STS-9 crew members descend the stairs from the orbiter after their successful 10-day scientific mission.

Workers at Edwards Air Force Base in California safe space shuttle Columbia after its return from space Atop a Shuttle Carrier Aircraft, Columbia begins its cross country journey to NASA’s Kennedy Space Center in Florida The STS-9 crew during their postflight press conference at NASA’s Johnson Space Center in Houston
Left: Workers at Edwards Air Force Base in California safe space shuttle Columbia after its return from space. Middle: Atop a Shuttle Carrier Aircraft, Columbia begins its cross country journey to NASA’s Kennedy Space Center in Florida. Right: The STS-9 crew during their postflight press conference at NASA’s Johnson Space Center in Houston.

The journal Science published preliminary results from Spacelab 1 in their July 13, 1984, issue. The two Spacelab modules flew a total of 16 times, the last one during the STS-90 Neurolab mission in April 1998. The module that flew on STS-9 and eight other missions is displayed at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia, while the other module resides at the Airbus Defence and Space plant in Bremen, Germany, not on public display.

The Spacelab long module that flew on STS-9 and eight other missions on display at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia The Spacelab long module that flew on STS-9 and eight other missions on display at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia The Spacelab long module that flew on STS-9 and eight other missions on display at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia
The Spacelab long module that flew on STS-9 and eight other missions on display at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia.

Enjoy the crew narrate a video about the STS-9 mission. Read Shaw’s, Garriott’s, and Parker’s recollections of the STS-9 mission in their oral histories with the JSC History Office.

Share

Details

Last Updated
Nov 28, 2023

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Download Press Kit (PDF) Return to CLPS Homepage
      View the full article
    • By NASA
      Explore This Section Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 8 min read
      AGU 2024: NASA Science on Display in the Nation’s Capital
      Introduction
      The American Geophysical Union (AGU) returned to the nation’s capital in 2024, hosting its annual meeting at the Walter E. Washington Convention Center in Washington, DC from December 9–14, 2024. NASA Science upheld its long-standing tradition as an AGU partner and exhibitor, leveraging the meeting as an opportunity to share NASA’s cutting-edge research, data, and technology with the largest collection of Earth and planetary science professionals in the world. Many of the estimated 25,000 students, scientists, and industry personnel who attended the conference visited the NASA Science exhibit, interacting with NASA subject matter experts as detailed in the essay that follows – see Photo 1. Visitors also watched live Hyperwall presentations and collected NASA Science outreach materials, such as the 2025 NASA Science Planning Guide.
      Photo 1. Paulo Younse [NASA/Jet Propulsion Laboratory (JPL), Robotics Systems Group—Engineer,] poses with a model of the sample tube he designed for the caching architecture that was used on NASA’s Mars Sample Return mission. Photo credit: NASA Highlights from the NASA Science Exhibit
      NASA Hyperwall Stories
      The NASA Hyperwall has been a focal point of the agency’s outreach efforts for over two decades, serving as both a powerful storytelling platform and the primary vehicle through which the public engages with the award-winning visualizations published by NASA’s Scientific Visualization Studio (SVS) – see Photo 2. Forty-nine NASA mission scientists and program representatives shared NASA science with the public from the Hyperwall stage during AGU24. NASA leadership shared mission news and outlined upcoming research across all five of the NASA Science divisions: Earth science, planetary science, heliophysics, astrophysics, and biological and physical sciences – see Photos 3–8. A catalog of NASA project scientists and mission representatives, who provided colorful overviews of everything from NASA’s Mars Sample Return to the Parker Solar Probe’s historic flyby of the Sun, delivered additional presentations. 
      Photo 2. Mark Subbarao [NASA GSFC—Director of NASA’s Scientific Visualization Studio] highlighted key visualizations produced by NASA’s Scientific Visualization Studio during 2024 and presented them as a countdown of the top 10 visualizations of the year. Photo credit: NASA The complete AGU24 Hyperwall schedule is available at this link. Readers can view YouTube videos of the presentations via links over the individual names in the photo captions below.
      Photo 3. Nicola Fox [NASA HQ—Associate Administrator of Science Mission Directorate] kicked off the week’s Hyperwall storytelling series by sharing 12 images selected for the 2025 NASA Science Planning Guide. Each image underscores the beauty of the natural world and the inherent value of scientific endeavors undertaken not only at NASA but by citizens around the globe. Photo credit: NASA Photo 4. Karen St. Germain [NASA HQ—Director of the Earth Science Division] provided audience members with an overview of NASA’s Earth Science Division – including the latest science from the Plankton, Aerosol, Cloud, and Ecosystems (PACE) mission. Photo credit: NASA Photo 5. Jack Kaye [NASA HQ—Director of the Airborne Science Program] highlighted key airborne science missions that flew in 2024 and demonstrated the broad list of airborne satellites and instruments and how their applications enable the advancement of Earth science research around the globe. Photo credit: NASA Photo 6. Joseph Westlake [NASA HQ—Director of the Heliophysics Division] delivered a talk in front of the NASA Hyperwall that captured the groundbreaking research that NASA has planned for the culmination of the Heliophysics Big Year, including mission news related to the Parker Solar Probe, Interstellar Mapping and Acceleration Probe (IMAP), and Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites (TRACERS). Photo credit: NASA Photo 7. Mark Clampin [NASA HQ—Director of the Astrophysics Division] gave AGU attendees a glimpse of NASA missions that will help researchers around the globe observe distant worlds and answer profound questions about the physics of the universe beyond our solar system. His presentation centered around the impact of the upcoming Nancy Grace Roman Telescope and Habitable Worlds Observatory (HWO). Photo credit: NASA Photo 8. Lisa Carnell [NASA HQ—Director of the Biological Sciences Division], who sits at the helm of NASA’s newest scientific division, gave an overview of the current and future NASA research that is enhancing our understanding of how humans can live and work in space. Photo credit: NASA During AGU, NASA also celebrated the winners of the 2024 AGU Michael Freilich Student Visualization Competition, an annual competition honoring former NASA Earth Science Division director Michael Freilich that inspires students to develop creative strategies for effectively communicating complex scientific problems – see Photo 9. See the summary of “Symposium on Earth Science and Applications from Space…” [The Earth Observer, Mar–Apr 2020, Volume 32 Issue 3, 4–18] to learn more about Freilich’s career at NASA and impact on Earth science.  A list of the award’s past recipients, dating back to the 2016, is published on AGU’s website.
      Photo 9a. In partnership with AGU, student winners of the 2024 AGU Michael Freilich Student Visualization Competition received prizes and presented their work at the NASA hyperwall stage. Steve Platnick [NASA GSFC—Research Scientist for Earth Science Division ] [left with back to camera] congratulates Caitlin Haedrich [NC State University—Ph.D. candidate, contest winner (CW)]. Photo credit: NASA Photo 9b. Standing on the NASA Hyperwall stage [left to right] are Erik Hankin [AGU—Assistant Director of Career and Student Programs], Barry Lefer [NASA HQ—Program Manager for the Tropospheric Composition Program (TCP)], Mya Thomas [University of Missouri-Kansas City—Undergraduate Student.  CW], Mariliee Karinshak [Washington University in St. Louis—Undergraduate Student, CW], Swati Singh [Auburn University—PhD Candidate, CW], Crisel Suarez [Vanderbilt University—PhD Candidate, CW], and Steve Graham [GSFC/Global Science & Technology Inc.—NASA Science Support Office Task Leader]. Photo credit: NASA Photo 9c. Patrick Kerwin [University of Arizona—Graduate Student, CW] delivers his award-winning talk titled Earth Observation for Disaster Response: Highlighting Applied Products. Photo credit: NASA




      Face-to-face With NASA Experts
      AGU opened its exhibit hall to the public at 10:00 AM on December 9. Thousands of eager attendees poured into the space to engage with exhibit staff, representing a variety of universities, research institutions, and private organizations from around the world.
      Photo 10. AGU attendees explore the NASA Science exhibit space shortly after the exhibit hall opened on December 9. Photo credit: NASA Photo 11a. AGU meeting participants anticipate the distribution of the NASA Science Planning Guide each year, which features artwork from Science Mission Directorate (SMD) art director Jenny Mottar and a collection of science images curated by SMD leadership. Photo credit: NASA Photo 11b. AGU meeting participants anticipate the distribution of the NASA Science Planning Guide each year, which features artwork from Science Mission Directorate (SMD) art director Jenny Mottar and a collection of science images curated by SMD leadership. Photo credit: NASA




      NASA Science welcomed AGU attendees, who gathered within the perimeter of the exhibit shortly after opening – see Photo 10 – where NASA staff distributed the 2025 NASA Science Planning Guide – see Photo 11.
      Attendees filtered through the NASA Science booth by the thousands, where more than 130 outreach specialists and subject matter experts from across the agency were available to share mission-specific science and interface directly with members of the public – see Photos 12–15.
      Photo 12. The NASA Science booth included a collection of exhibit tables, where mission scientists and outreach specialists shared information and materials specific to various NASA missions and programs. Photo credit: NASA Photo 13. Outreach specialists from NASA’s Dragonfly mission, which plans to send a robotic aircraft to the surface of Saturn’s moon Titan, speak with attendees in front of a to-scale model of the aircraft. Photo credit: NASA Photo 14. Staff from NASA’s astrobiology program share a collection of graphic novels produced by graphic artist Aaron Gronstal, highlighting the research that the program conducts to answer important questions about the origin, evolution, and distribution of life in the universe. Photo credit: NASA Photo 15. Exhibit staff and AGU attendees interact with three-dimensional (3D) models of NASA spacecraft and technology in augmented reality. Photo credit: NASA AGU attendees met with project scientists and experts at a new exhibit, called “Ask Me Anything.” The discussions spanned a variety of NASA missions, including Mars Sample Return, James Webb Space Telescope, and Parker Solar Probe, with specialists from these and other missions who spoke during the sessions – see Photo 16. An installation of NASA’s Earth Information Center also made an appearance at AGU24, providing attendees with additional opportunities to speak with Earth scientists and learn more about NASA research – see Photo 17.
      Photo 16. NASA Heliophysicists discuss solar science with AGU attendees at the “Ask Me About Heliophysics” table. Photo credit: NASA Photo 17. At the Earth Information Center, attendees spoke with NASA staff about the various ways that NASA keeps tabs on the health of Earth’s atmosphere, oceans, and landmasses from space. Photo credit: NASA 2024 SMD Strategic Content and Integration Meeting
      As they have done for many years now, staff and leadership from NASA’s Science Mission Directorate (SMD) Engagement Branch convened in Washington, DC on December 8 (the day before the Fall AGU meeting began) to discuss agency communications and outreach priorities. This annual meeting provided personnel from each of SMD’s scientific divisions a valuable opportunity to highlight productive strategies and initiatives from the previous calendar year and chart a path for the year ahead. During the single-day event, team leaders shared information related to NASA’s web-modernization efforts, digital outreach strategies, and exhibit presence. Approximately 150 in-person and 50 online NASA staff joined the hybrid meeting.
      After a welcome from Steve Graham [GSFC/GST—NASA Science Support Office Task Leader], who covered meeting logistics, the participants heard from NASA Headquarters’ SMD Engagement and Communication representatives throughout the day. 
      Amy Kaminski [Engagement Branch Chief], who recently replaced Kristen Erickson in this role, used this opportunity to more formally introduce herself to those who might not know her and share her visions for engagement. Karen Fox [Senior Science Communications Official] discussed the evolution of communication for SMD missions over the past decade – moving from siloed communications a decade ago that very much focused on “my mission,” to a much more cooperation between missions and focus on thematic communications. Following up on Kaminski’s remarks that gave an overall vision for engagement, and Fox’s remarks about how having a vision will help streamline our messaging, Alex Lockwood [Strategic Messaging and Engagement Lead] delved into the nuts and bolts of strategic planning, with focus on the use of work packages and memorandums of understanding for promoting upcoming missions.
      After the leadership set the tone for the meeting, Emily Furfaro [NASA Science Digital Manager] gave a rapid tour of many of NASA’s digital assets intended to give participants an idea of the vast resources available for use. Diana Logreira [NASA Science Public Web Manager] then laid out some principles to be followed in developing unified vision for the NASA Science public web experience.
      In the afternoon, there were individual breakout sessions for the Earth Science, Planetary Science, and Heliophysics divisions. These sub-meetings were led by Ellen Gray, Erin Mahoney, and Deb Hernandez, Engagement Leads for Earth Science, Heliophysics, and Planetary Sciences respectively.  These breakout sessions afforded participants with an opportunity to focus on ideas and goals specific to their own divisions for 2025. In the Earth Science breakout session, participants heard from other several other speakers who discussed the beats, or content focus areas, that had been chosen for Earth Science Communications in 2024 – including oceans and Earth Action (formerly known as Applied Sciences) – and those that have been identified for 2025: technology, land science, and continued focus on Earth Action.
      Photo 18a. NASA Science Mission Directorate staff gathers in Washington, DC ahead of AGU for the annual meeting, where in-person attendees hear from leadership and work collaboratively to refine communications strategies for 2025.  Photo credit: NASA Photo 18b. Joseph Westlake [NASA HQ—Heliophysics Division Director] discusses division-specific goals with Heliophysics communication leads during the division’s “breakout session.” Photo credit: NASA Photo 18c. Science Mission Directorate leadership fields questions from SMD staff during the end-of-meeting panel discussion. Photo credit: NASA




      After participants reconvened from the breakouts, Nicola Fox [Associate Administrator, Science Mission Directorate] gave a mid-afternoon presentation in which she presented her perspective on integrated NASA science, which led into a one-hour “Ask Us” panel with Division Directors to conclude the meeting. Participants included: Mark Clampin [Astrophysics], Lisa Carnell [Biological], Julie Robinson [Earth Science, Deputy], Joe Westlake [Heliophysics], John Gagosian [Joint Agency Satellite], Charles Webb [Planetary Science, Acting].
      Based on this meeting, and other communications guidance from NASA HQ, a few general SMD/Earth Science content and engagement priorities for 2025 have emerged. They include:
      continuing to develop stories and products related to the three primary beats for 2025: technology, land, and Earth action; emphasizing the value of SMD science as a whole or system of connected divisions, promoting cross-divisional science; increasing the use of social media as a vehicle to share NASA missions and programs with diverse audiences; focusing on critical – and high-profile – ongoing missions [e.g., Parker Solar Probe, Europa Clipper, Plankton Aerosols, Cloud and ocean Ecosystem (PACE)] and upcoming launches [ARTEMIS and NASA–Indian Space Research Organisation (ISRO) Synthetic Aperture Radar (NISAR)]; fostering collaborations and partnerships with agencies and institutions, e.g. instillation of the Earth Information Center at the Smithsonian Museum of Natural History; and improving the visitor and guest experience at NASA centers, including Kennedy Space Center launches. Conclusion
      The NASA exhibit is an important component of the agency’s presence at AGU, and NASA leverages its large cohort of scientists who participate in the exchange of information and ideas outside of the exhibit hall – in plenary meetings, workshops, poster sessions, panels, and informal discussions. AGU sessions and events that featured NASA resources, scientists, and program directors included the Living with a Star Town Hall, NASA’s Early Career Research Program, NASA’s Sea Level Change Team: Turning Research into Action, and many more. Click here for the complete list of NASA-related events at AGU24.
      As the final event in a busy calendar of annual scientific conferences, AGU is often an opportunity for NASA scientists to publish findings from the previous year and set goals for the year ahead. Just as they did in 2024, the agency’s robust portfolio of missions and programs will continue to set new records, such as NASA’s Parker Solar Probe pass of the Sun, and conduct fundamental research in the fields of Earth and space science.
      The 2025 AGU annual meeting will be held at the New Orleans Ernest N. Morial Convention Center, in New Orleans, LA, from December 15–19, 2025. See you there.
      Nathan Marder
      NASA’s Goddard Space Flight Center/Global Science & Technology Inc.
      nathan.marder@nasa.gov
      Share








      Details
      Last Updated Feb 25, 2025 Related Terms
      Earth Science View the full article
    • By NASA
      4 Min Read Science in Orbit: Results Published on Space Station Research in 2024
      NASA and its international partners have hosted research experiments and fostered collaboration aboard the International Space Station for over 25 years. More than 4,000 investigations have been conducted, resulting in over 4,400 research publications with 361 in 2024 alone. Space station research continues to advance technology on Earth and prepare for future space exploration missions.
      Below is a selection of scientific results that were published over the past year. For more space station research achievements and additional information about the findings mentioned here, check out the 2024 Annual Highlights of Results.
      Making stronger cement
      NASA’s Microgravity Investigation of Cement Solidification (MICS) observes the hydration reaction and hardening process of cement paste on the space station. As part of this experiment, researchers used artificial intelligence to create 3D models from 2D microscope images of cement samples formed in microgravity. Characteristics such as pore distribution and crystal growth can impact the integrity of any concrete-like material, and these artificial intelligence models allow for predicting internal structures that can only be adequately captured in 3D. Results from the MICS investigation improve researchers’ understanding of cement hardening and could support innovations for civil engineering, construction, and manufacturing of industrial materials on exploration missions.
      European Space Agency (ESA) astronaut Alexander Gerst works on the Microgravity Investigation of Cement Solidification (MICS) experiment in a portable glovebag aboard the International Space Station.NASA Creating Ideal Clusters
      The JAXA (Japan Aerospace Exploration Agency) Colloidal Clusters investigation uses the attractive forces between oppositely charged particles to form pyramid-shaped clusters. These clusters are a key building block for the diamond lattice, an ideal structure in materials with advanced light-manipulation capabilities. Researchers immobilized clusters on the space station using a holding gel with increased durability. The clusters returned to Earth can scatter light in the visible to near-infrared range used in optical and laser communications systems. By characterizing these clusters, scientists can gain insights into particle aggregation in nature and learn how to effectively control light reflection for technologies that bend light, such as specialized sensors, high-speed computing components, and even novel cloaking devices.
      A fluorescent micrograph image shows colloidal clusters immobilized in gel. Negatively charged particles are represented by green fluorescence, and positively charged particles are red. JAXA/ Nagoya City University Controlling Bubble Formation
      NASA’s Optical Imaging of Bubble Dynamics on Nanostructured Surfaces studies how different types of surfaces affect bubbles generated by boiling water on the space station. Researchers found that boiling in microgravity generates larger bubbles and that bubbles grow about 30 times faster than on Earth. Results also show that surfaces with finer microstructures generate slower bubble formation due to changes in the rate of heat transfer. Fundamental insights into bubble growth could improve thermal cooling systems and sensors that use bubbles.
      High-speed video shows dozens of bubbles growing in microgravity until they collapse.Tengfei Luo Evaluating Cellular Responses to Space
      The ESA (European Space Agency) investigation Cytoskeleton attempts to uncover how microgravity impacts important regulatory processes that control cell multiplication, programmed cell death, and gene expression. Researchers cultured a model of human bone cells and identified 24 pathways that are affected by microgravity. Cultures from the space station showed a reduction of cellular expansion and increased activity in pathways associated with inflammation, cell stress, and iron-dependent cell death. These results help to shed light on cellular processes related to aging and the microgravity response, which could feed into the development of future countermeasures to help maintain astronaut health and performance.
      Fluorescent staining of cells from microgravity (left) and ground control (right).ESA Improving Spatial Awareness
      The CSA (Canadian Space Agency) investigation Wayfinding investigates the impact of long-duration exposure to microgravity on the orientation skills in astronauts. Researchers identified reduced activity in spatial processing regions of the brain after spaceflight, particularly those involved in visual perception and orientation of spatial attention. In microgravity, astronauts cannot process balance cues normally provided by gravity, affecting their ability to perform complex spatial tasks. A better understanding of spatial processes in space allows researchers to find new strategies to improve the work environment and reduce the impact of microgravity on the spatial cognition of astronauts.
      An MRI (magnetic resonance imaging) scan of the brain shows activity in the spatial orientation regions.NeuroLab Monitoring low Earth orbit
      The Roscomos-ESA-Italian Space Agency investigation Mini-EUSO (Multiwavelength Imaging New Instrument for the Extreme Universe Space Observatory) is a multipurpose telescope designed to examine light emissions entering Earth’s atmosphere. Researchers report that Mini-EUSO data has helped to develop a new machine learning algorithm to detect space debris and meteors that move across the field of view of the telescope. The algorithm showed increased precision for meteor detection and identified characteristics such as rotation rate. The algorithm could be implemented on ground-based telescopes or satellites to identify space debris, meteors, or asteroids and increase the safety of space activities.
      The Mini-EUSO telescope is shown in early assembly.JEM-EUSO Program For more space station research achievements and additional information about the findings mentioned here, check out the 2024 Annual Highlights of Results.

      Destiny Doran
      International Space Station Research Communications Team
      Johnson Space Center
      Keep Exploring Discover More Topics From NASA
      Space Station Research Results
      Humans In Space
      Space Station Research and Technology
      Space Station Research and Technology Resources

      View the full article
    • By NASA
      6 Min Read NASA Marshall Reflects on 65 Years of Ingenuity, Teamwork 
      NASA’s Marshall Space Flight Center in Huntsville, Alabama, is celebrating its 65-year legacy of ingenuity and service to the U.S. space program – and the expansion of its science, engineering, propulsion, and human spaceflight portfolio with each new decade since the NASA field center opened its doors on July 1, 1960.
      What many Americans likely call to mind are the “days of smoke and fire,” said Marshall Director Joseph Pelfrey, referring to the work conducted at Marshall to enable NASA’s launch of the first Mercury-Redstone rocket and the Saturn V which lifted Americans to the Moon, the inaugural space shuttle mission, and the shuttle flights that carried the Hubble Space Telescope, Chandra X-ray Observatory, and elements of the International Space Station to orbit. Most recently, he said they’re likely to recall the thunder of NASA’s SLS (Space Launch System), rising into the sky during Artemis I.
      NASA’s Space Launch System, carrying the Orion spacecraft, launches on the Artemis I flight test on Nov. 16, 2022. NASA’s Marshall Space Flight Center in Huntsville, Alabama, led development and oversees all work on the new flagship rocket, building on its storied history of propulsion and launch vehicle design dating back to the Redstone and Saturn rockets. The most powerful rocket ever built, SLS is the backbone of NASA’s Artemis program, set to carry explorers back to the Moon in 2026, help establish a permanent outpost there, and make possible new, crewed journeys to Mars in the years to come.NASA/Bill Ingalls Yet all the other days are equally meaningful, Pelfrey said, highlighting a steady stream of milestones reflecting the work of Marshall civil service employees, contractors, and industry partners through the years – as celebrated in a new “65 Years of Marshall” timeline.
      “The total sum of hours, contributed by tens of thousands of men and women across Marshall’s history, is incalculable,” Pelfrey said. “Together they’ve blended legacy with innovation – advancing space exploration and scientific discovery through collaboration, engineering excellence, and technical solutions. They’ve invented and refined technologies that make it possible to safely live and work in space, to explore other worlds, and to help safeguard our own.
      The total sum of hours, contributed by tens of thousands of men and women across Marshall’s history, is incalculable.
      Joseph Pelfrey
      Marshall Space Flight Center Director
      “Days of smoke and fire may be the most visible signs, but it’s the months and years of preparation and the weeks of post-launch scientific discovery that mark the true dedication, sacrifice, and monumental achievements of this team.”
      Reflecting on Marshall history
      Marshall’s primary task in the 1960s was the development and testing of the rockets that carried the first American astronaut to space, and the much larger and more technically complex Saturn rocket series, culminating in the mighty Saturn V, which carried the first human explorers to the Moon’s surface in 1969.
      “Test, retest, and then fly – that’s what we did here at the start,” said retired engineer Harry Craft, who was part of the original U.S. Army rocket development team that moved from Fort Bliss, Texas, to Huntsville to begin NASA’s work at Marshall. “And we did it all without benefit of computers, working out the math with slide rules and pads of paper.”
      The 138-foot-long first stage of the Saturn V rocket is lowered to the ground following a successful static test firing in fall 1966 at the S-1C test stand at NASA’s Marshall Space Flight Center in Huntsville, Alabama. The Saturn V, developed and managed at Marshall, was a multi-stage, multi-engine launch vehicle that stood taller than the Statue of Liberty and lofted the first Americans to the Moon. Its success helped position Marshall as an aerospace leader in propulsion, space systems, and launch vehicle development.NASA “Those were exciting times,” retired test engineer Parker Counts agreed. He joined Marshall in 1963 to conduct testing of the fully assembled and integrated Saturn first stages. It wasn’t uncommon for work weeks to last 10 hours a day, plus weekend shifts when deadlines were looming. 
      Counts said Dr. Wernher von Braun, Marshall’s first director, insisted staff in the design and testing organizations be matched with an equal number of engineers in Marshall’s Quality and Reliability Assurance Laboratory. 
      “That checks-and-balances engineering approach led to mission success for all 32 of the Saturn family of rockets,” said Counts, who went on to support numerous other propulsion programs before retiring from NASA in 2003.
      “We worked with the best minds and best equipment available, pushing the technology every day to deliver the greatest engineering achievement of the 20th century,” said instrumentation and electronics test engineer Willie Weaver, who worked at Marshall from 1960 to 1988 – and remains a tour guide at its visitor center, the U.S. Space & Rocket Center. 
      We worked with the best minds and best equipment available, pushing the technology every day to deliver the greatest engineering achievement of the 20th century.
      Willie Weaver
      Former Marshall Space Flight Center Employee
      The 1970s at Marshall were a period of transition and expanded scientific study, as NASA ended the Apollo Program and launched the next phase of space exploration. Marshall provided critical work on the first U.S. space station, Skylab, and led propulsion element development and testing for NASA’s Space Shuttle Program.
      Marshall retiree Jim Odom, a founding engineer who got his start launching NASA satellites in the run-up to Apollo, managed the Space Shuttle External Tank project. The role called for weekly trips to NASA’s Michoud Assembly Facility in New Orleans, which has been managed by Marshall since NASA acquired the government facility in 1961. The shuttle external tanks were manufactured in the same bays there where NASA and its contractors built the Saturn rockets. 
      This photograph shows the liquid hydrogen tank and liquid oxygen tank for the Space Shuttle external tank (ET) being assembled in the weld assembly area of the Michoud Assembly Facility (MAF). The ET provides liquid hydrogen and liquid oxygen to the Shuttle’s three main engines during the first eight 8.5 minutes of flight. At 154-feet long and more than 27-feet in diameter, the ET is the largest component of the Space Shuttle, the structural backbone of the entire Shuttle system, and the only part of the vehicle that is not reusable. The ET is manufactured at the Michoud Assembly Facility near New Orleans, Louisiana, by the Martin Marietta Corporation under management of the Marshall Space Flight Center.NASA “We didn’t have cellphones or telecon capabilities yet,” Odom recalled. “I probably spent more time with the pilot of the twin-engine plane in those days than I did with my wife.”
      Marshall’s shuttle propulsion leadership led to the successful STS-1 mission in 1981, launching an era of orbital science exemplified by NASA’s Spacelab program. 
      “Spacelab demonstrated that NASA could continue to achieve things no one had ever done before,” said Craft, who served as mission manager for Spacelab 1 in 1983 – a highlight of his 40-year NASA career. “That combination of science, engineering, and global partnership helped shape our goals in space ever since.” 
      Engineers in the X-ray Calibration Facility at NASA’s Marshall Space Flight Center in Huntsville, Alabama, work to integrate elements of the Chandra X-ray Observatory in this March 1997 photo. Chandra was lifted to orbit by space shuttle Columbia on July 23, 1999, the culmination of two decades of telescope optics, mirror, and spacecraft development and testing at Marshall. In the quarter century since, Chandra has delivered nearly 25,000 detailed observations of neutron stars, supernova remnants, black holes, and other high-energy objects, some as far as 13 billion light-years distant. Marshall continues to manage the program for NASA. NASA Bookended by the successful Hubble and Chandra launches, the 1990s also saw Marshall deliver the first U.S. module for the International Space Station, signaling a transformative new era of human spaceflight.
      Odom, who retired in 1989 as associate administrator for the space station at NASA Headquarters, reflects on his three-decade agency career with pride. 
      “It was a great experience, start to finish, working with the teams in Huntsville and New Orleans and our partners nationwide and around the globe, meeting each new challenge, solving the practical, day-to-day engineering and technology problems we only studied about in college,” he said. 
      Shrouded for transport, a 45-foot segment of the International Space Station’s “backbone” truss rolls out of test facilities at NASA’s Marshall Space Flight Center in Huntsville, Alabama, in July 2000, ready to be flown to the Kennedy Space Center in Florida for launch. Marshall played a key role in the development, testing, and delivery of the truss and other critical space station modules and structural elements, as well as the station’s air and water recycling systems and science payload hardware. Marshall’s Payload Operations Integration Center also continues to lead round-the-clock space station science. NASA That focus on human spaceflight solutions continued into the 21st century. Marshall delivered additional space station elements and science hardware, refined its air and water recycling systems, and led round-the-clock science from the Payload Operations Integration Center. Marshall scientists also managed the Gravity Probe Band Hinode missions and launched NASA’s SERVIR geospatial observation system. Once primary space stationconstruction – and the 40-year shuttle program – concluded in the 2010s, Marshall took on oversight of NASA’s Space Launch System, led James Webb Space Telescope mirror testing, and delivered the orbiting Imaging X-ray Polarimetry Explorer.
      As the 2020s continue, Marshall meets each new challenge with enthusiasm and expertise, preparing for the highly anticipated Artemis II crewed launch and a host of new science and discovery missions – and buoyed by strong industry partners and by the Huntsville community, which takes pride in being home to “Rocket City USA.”
      “Humanity is on an upward, outward trajectory,” Pelfrey said. “And day after day, year after year, Marshall is setting the course to explore beyond tomorrow’s horizon.”
      Read more about Marshall and its 65-year history:
      https://www.nasa.gov/marshall
      Hannah Maginot
      Marshall Space Flight Center, Huntsville, Ala.
      256-544-0034
      hannah.l.maginot@nasa.gov  
      Share
      Details
      Last Updated Feb 24, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center Explore More
      6 min read How NASA’s Lunar Trailblazer Will Make a Looping Voyage to the Moon
      Article 2 weeks ago 5 min read NASA Readies Moon Rocket for the Future with Manufacturing Innovation
      Article 2 weeks ago 5 min read Exoplanets Need to Be Prepared for Extreme Space Weather, Chandra Finds
      Article 1 month ago Keep Exploring Discover More Topics From NASA
      Legacy to Horizon: Marshall 65
      Marshall Space Flight Center Missions
      Marshall Space Flight Center
      Marshall Space Flight Center History
      View the full article
    • By NASA
      Improving space-based pharmaceutical research
      View of the Ice Cubes experiment #6 (Kirara) floating in the Columbus European Laboratory module aboard the International Space Station.UAE (United Arab Emirates)/Sultan Alneyadi Researchers found differences in the stability and degradation of the anti-Covid drug Remdesivir in space and on Earth on its first research flight, but not on a second. This highlights the need for more standardized procedures for pharmaceutical research in space.

      Long-term stability of drugs is critical for future space missions. Because multiple characteristics of spaceflight could influence chemical stability, the scientists repeated their experiment under circumstances as nearly identical as possible. This research used Kirara, a temperature-controlled incubator developed by JAXA (Japan Aerospace Exploration Agency) for crystallizing proteins in microgravity. Results also confirmed that a solubility enhancer used in the drug is radiation resistant and its quality was not affected by microgravity and launch conditions.

      Evaluating postflight task performance
      A test subject performing a sensorimotor field test on the ground.NASA/Lauren Harnett Immediately after returning from the International Space Station and for up to one week, astronauts perform functional tasks in ways similar to patients on Earth who have a loss of inner ear function. This finding suggests that comparing data from these patients and astronauts could provide insight into the role of the balance and sensory systems in task performance during critical parts of a mission such as landing on the Moon or Mars.   

      Spaceflight causes changes to the balance (vestibular) and sensory systems that can lead to symptoms such as disorientation and impaired locomotion. Standard Measures collects a set of data, including tests of sensorimotor function, related to human spaceflight risks from astronauts before, during, and after missions to help characterize how people adapt to living and working in space.

      View the full article
  • Check out these Videos

×
×
  • Create New...