Jump to content

Webb Telescope: A prominent protostar in Perseus


Recommended Posts

  • Publishers
Posted
3 Min Read

Webb Telescope: A prominent protostar in Perseus

In the lower half of the image is a narrow, horizontal nebula that stretches from edge to edge. It is brightly coloured with more variety on its right side. In the upper half there is a glowing point with multi-coloured light radiating from it in all directions. A bright star with long diffraction spikes lies along the right edge, and a few smaller stars are spread around. The background is covered in a thin haze.
Webb Space Telescope reveals intricate details of the Herbig Haro object 797 (HH 797).

This new Picture of the Month from the NASA/ESA/CSA James Webb Space Telescope reveals intricate details of the Herbig Haro object 797 (HH 797). Herbig-Haro objects are luminous regions surrounding newborn stars (known as protostars), and are formed when stellar winds or jets of gas spewing from these newborn stars form shockwaves colliding with nearby gas and dust at high speeds. HH 797, which dominates the lower half of this image, is located close to the young open star cluster IC 348, which is located near the eastern edge of the Perseus dark cloud complex. The bright infrared objects in the upper portion of the image are thought to host two further protostars.

This image was captured with Webb’s Near-InfraRed Camera (NIRCam). Infrared imaging is powerful in studying newborn stars and their outflows, because the youngest stars are invariably still embedded within the gas and dust from which they are formed. The infrared emission of the star’s outflows penetrates the obscuring gas and dust, making Herbig-Haro objects ideal for observation with Webb’s sensitive infrared instruments. Molecules excited by the turbulent conditions, including molecular hydrogen and carbon monoxide, emit infrared light that Webb can collect to visualise the structure of the outflows. NIRCam is particularly good at observing the hot (thousands of degree Celsius) molecules that are excited as a result of shocks.

Image: Protostar in Perseus

In the lower half of the image is a narrow, horizontal nebula that stretches from edge to edge. It is brightly coloured with more variety on its right side. In the upper half there is a glowing point with multi-coloured light radiating from it in all directions. A bright star with long diffraction spikes lies along the right edge, and a few smaller stars are spread around. The background is covered in a thin haze.
The NASA/ESA/CSA James Webb Space Telescope reveals intricate details of the Herbig Haro object 797 (HH 797). Herbig-Haro objects are luminous regions surrounding newborn stars (known as protostars), and are formed when stellar winds or jets of gas spewing from these newborn stars form shockwaves colliding with nearby gas and dust at high speeds. HH 797, which dominates the lower half of this image, is located close to the young open star cluster IC 348, which is located near the eastern edge of the Perseus dark cloud complex. The bright infrared objects in the upper portion of the image are thought to host two further protostars. This image was captured with Webb’s Near-InfraRed Camera (NIRCam).
ESA/Webb, NASA & CSA, T. Ray (Dublin Institute for Advanced Studies)

Using ground-based observations, researchers have previously found that for cold molecular gas associated with HH 797, most of the red-shifted gas (moving away from us) is found to the south (bottom right), while the blue-shifted gas (moving towards us) is to the north (bottom left). A gradient was also found across the outflow, such that at a given distance from the young central star, the velocity of the gas near the eastern edge of the jet is more red-shifted than that of the gas on the western edge. Astronomers in the past thought this was due to the outflow’s rotation. In this higher resolution Webb image, however, we can see that what was thought to be one outflow is in fact made up of two almost parallel outflows with their own separate series of shocks (which explains the velocity asymmetries). The source, located in the small dark region (bottom right of center), and already known from previous observations, is therefore not a single but a double star. Each star is producing its own dramatic outflow. Other outflows are also seen in this image, including one from the protostar in the top right of center along with its illuminated cavity walls.

HH 797 resides directly north of HH 211 (separated by approximately 30 arcseconds), which was the feature of a Webb image release in September 2023.

Media Contacts

Laura Betzlaura.e.betz@nasa.gov, Rob Gutrorob.gutro@nasa.gov
NASA’s  Goddard Space Flight Center, Greenbelt, Md.

Bethany Downer –  Bethany.Downer@esawebb.org
ESA/Webb Chief Science Communications Officer

Downloads

Download full resolution images for this article from ESAWebb.org

Related Information

Star Formation

Piercing the Dark Birthplaces of Massive Stars with Webb

Webb Mission – https://science.nasa.gov/mission/webb/

Webb News – https://science.nasa.gov/mission/webb/latestnews/

Webb Images – https://science.nasa.gov/mission/webb/multimedia/images/

Related For Kids

What Is a Nebula?

What Is a Galaxy?

What is the Webb Telescope?

SpacePlace for Kids

En Español

Ciencia de la NASA

NASA en español 

Space Place para niños

Share

Details

Last Updated
Nov 28, 2023
Editor
steve sabia
Contact
Laura Betz

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s SPHEREx space observatory was photographed at BAE Systems in Boulder, Colorado, in November 2024 after completing environmental testing. The spacecraft’s three concentric cones help direct heat and light away from the telescope and other components, keeping them cool. Credit: BAE Systems NASA will host a news conference at 12 p.m. EST Friday, Jan. 31, to discuss a new telescope that will improve our understanding of how the universe evolved and search for key ingredients for life in our galaxy.
      Agency experts will preview NASA’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) mission, which will help scientists better understand the structure of the universe, how galaxies form and evolve, and the origins and abundance of water. Launch is targeted for no earlier than Thursday, Feb. 27.
      The news conference will be hosted at the agency’s Jet Propulsion Laboratory in Southern California. Watch live on NASA+, as well as JPL’s X and YouTube channels. Learn how to watch NASA content through a variety of platforms, including social media.
      Laurie Leshin, director, NASA JPL, will provide opening remarks. Additional briefing participants include:
      Shawn Domagal-Goldman, acting director, Astrophysics Division, NASA Headquarters James Fanson, project manager, SPHEREx, NASA JPL Beth Fabinsky, deputy project manager, SPHEREx, NASA JPL   Jamie Bock, principal investigator, SPHEREx, Caltech Cesar Marin, SPHEREx integration engineer, Launch Services Program, NASA’s Kennedy Space Center in Florida To ask questions by phone, members of the media must RSVP no later than two hours before the start of the event to: rexana.v.vizza@jpl.nasa.gov. NASA’s media accreditation policy is available online. Questions also can be asked on social media during the briefing using #AskNASA.
      The SPHEREx observatory will survey the entire celestial sky in near-infrared light to help answer cosmic questions involving the birth of the universe, and the subsequent development of galaxies. It also will search for ices of water and organic molecules — essentials for life as we know it — in regions where stars are born from gas and dust, as well as disks around stars where new planets could be forming. Astronomers will use the mission to gather data on more than 450 million galaxies, as well as more than 100 million stars in our own Milky Way galaxy.
      The space observatory will share its ride on a SpaceX Falcon 9 rocket with NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission, which will lift off from Launch Complex 4E at Vandenberg Space Force Base in Central California. 
      The SPHEREx mission is managed by NASA JPL for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters in Washington. The principal investigator is based at Caltech in Pasadena, California, which manages NASA JPL for the agency. 
      The spacecraft is supplied by BAE Systems. The Korea Astronomy and Space Science Institute contributed the non-flight cryogenic test chamber. Mission data will be publicly available through IPAC at Caltech.
      For more information about the mission, visit:
      https://nasa.gov/spherex
      -end-
      Alise Fisher
      Headquarters, Washington
      202-358-2546
      alise.m.fisher@nasa.gov
      Val Gratias / Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-6215 / 626-808-2469
      valerie.m.gratias@jpl.nasa.gov / calla.e.cofield@jpl.nasa.gov
      Share
      Details
      Last Updated Jan 27, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) Astrophysics Division Jet Propulsion Laboratory Polarimeter to Unify the Corona and Heliosphere (PUNCH) Science Mission Directorate View the full article
    • By NASA
      NASA’s Roman Coronagraph Instrument will greatly advance our ability to directly image exoplanets, or planets and disks around other stars.
      The Roman Coronagraph Instrument, a technology demonstration designed and built by NASA’s Jet Propulsion Laboratory, will fly aboard NASA’s next flagship astrophysics observatory, the Nancy Grace Roman Space Telescope.
      Coronagraphs work by blocking light from a bright object, like a star, so that the observer can more easily see a nearby faint object, like a planet. The Roman Coronagraph Instrument will use a unique suite of technologies including deformable mirrors, masks, high-precision cameras, and active wavefront sensing and control to detect planets 100 million times fainter than their stars, or 100 to 1,000 times better than existing space-based coronagraphs. The Roman Coronagraph will be capable of directly imaging reflected starlight from a planet akin to Jupiter in size, temperature, and distance from its parent star.
      Artwork Key
      1. The Nancy Grace Roman Space Telescope
      2. Exoplanet Count : Total number of exoplanets discovered at the time of poster release. This number is increasing all of the time.
      3. Nancy Grace Roman’s birth year : Nancy Grace Roman was born on May 16, 1925.  
      4. Color Filters : Filters block different wavelengths, or colors, of light.
      5. Exoplanet Camera
      6. Deformable Mirrors : Adjusts the wavefront of incoming light by changing the shape of a mirror with thousands of tiny pistons.
      7. Focal Plane Mask : This is a mask that helps to block starlight and reveal exoplanets.
      8. Lyot Stop Mask : This is a mask that helps to block starlight and reveal exoplanets.
      9. Fast Steering Mirror : This element corrects for telescope pointing jitter.
      10. Additional Coronagraph Masks : These masks block most of the glare from stars to reveal faint orbiting planets and dusty debris disks.
      Downloads
      Download the Digital Version of Poster
      Jan 14, 2025
      PDF ()


      Download Press Version (highest quality for print)
      Jan 14, 2025
      PDF ()


      Keep Exploring Discover More about Roman
      Latest Roman Stories



      Roman Observatory



      About Roman



      Coronagraph


      View the full article
    • By NASA
      The Wide-Field Instrument (WFI), the primary instrument aboard NASA’s Nancy Grace Roman Space Telescope, is a 300-megapixel visible and infrared camera that will allow scientists to perform revolutionary astrophysics surveys.  
      This specialized camera detects faint light across the cosmos and will be used to study a wide range of astrophysics topics including the expansion and acceleration of our universe, planets orbiting other stars in the Milky Way, and far off galaxies.
      WFI will conduct surveys to detect and measure billions of stars and galaxies along with rare phenomena that would otherwise be difficult or impossible to find. To survey large areas of sky, WFI uses a suite of 18 detectors that convert incoming light into electrical signals that are translated into images.
      While Roman will operate alongside other space telescopes like Hubble, WFI’s capabilities are pushing the boundaries of what is possible. Roman’s WFI has a similar sensitivity and resolution to Hubble, but WFI will capture images that cover about 100 times more sky in a single observation and will survey the sky up to 1,000 times faster.
      Artwork Key
      1. The Nancy Grace Roman Space Telescope
      2. Light Path : The light entering the telescope will take this path, bouncing off of multiple focusing mirrors and passing through filters or dispersers in the element wheel to reach the detectors.
      3. Important Years : 1990: NASA’s Hubble Space Telescope launched. 1960: Nancy Grace Roman became NASA’s Chief Astronomer.
      4. Field of View : Roman’s field of view is about 100 times larger than that of the infrared camera onboard the Hubble Space Telescope. WFI’s large field of view is achieved using an array of 18 detectors which are represented by the squares in this graphic
      5. Detectors : This dial has one tick mark for each of WFI’s 18 detectors.
      6. Modes : WFI has imaging and spectroscopy modes.
      7. Wavelengths : WFI will observe in both visible and infrared light and can select which wavelengths    reach the detectors using filters in the element wheel.
      8. “Dark Energy” Drink + “Dark Matter” Candy : Roman will enable new research into the mysteries of dark energy and dark matter.  
      9. Science Goals : The names of these games capture WFI’s role as a survey instrument and the types of surveys it will perform.
      10. Joystick : This joystick features design elements found on the WFI’s element wheel assembly, a large, rotating metal disk with optics that filter or disperse light.
      Downloads
      Download the Digital Version of Poster
      Jan 14, 2025
      PDF ()


      Download Press Version (highest quality for print)
      Jan 14, 2025
      PDF ()


      Keep Exploring Discover More about Roman
      Latest Roman Stories



      Roman Observatory



      About Roman



      Wide Field Instrument


      View the full article
    • By NASA
      Webb Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read NASA’s Webb Reveals Intricate Layers of Interstellar Dust, Gas
      This shimmering cosmic curtain shows interstellar gas and dust that has been heated by the flashbulb explosion of a long-ago supernova. The gas then glows infrared light in what is known as a thermal light echo. As the supernova illumination travels through space at the speed of light, the echo appears to expand. NASA’s James Webb Space Telescope observed this light echo in the vicinity of the supernova remnant Cassiopeia A. Credits:
      NASA, ESA, CSA, STScI, J. Jencson (Caltech/IPAC) Once upon a time, the core of a massive star collapsed, creating a shockwave that blasted outward, ripping the star apart as it went. When the shockwave reached the star’s surface, it punched through, generating a brief, intense pulse of X-rays and ultraviolet light that traveled outward into the surrounding space. About 350 years later, that pulse of light has reached interstellar material, illuminating it, warming it, and causing it to glow in infrared light.
      NASA’s James Webb Space Telescope has observed that infrared glow, revealing fine details resembling the knots and whorls of wood grain. These observations are allowing astronomers to map the true 3D structure of this interstellar dust and gas (known as the interstellar medium) for the first time.
      “We were pretty shocked to see this level of detail,” said Jacob Jencson of Caltech/IPAC in Pasadena, principal investigator of the science program.
      “We see layers like an onion,” added Josh Peek of the Space Telescope Science Institute in Baltimore, a member of the science team. “We think every dense, dusty region that we see, and most of the ones we don’t see, look like this on the inside. We just have never been able to look inside them before.”
      The team is presenting their findings in a press conference at the 245th meeting of the American Astronomical Society in Washington.
      “Even as a star dies, its light endures—echoing across the cosmos. It’s been an extraordinary three years since we launched NASA’s James Webb Space Telescope. Every image, every discovery, shows a portrait not only of the majesty of the universe but the power of the NASA team and the promise of international partnerships. This groundbreaking mission, NASA’s largest international space science collaboration, is a true testament to NASA’s ingenuity, teamwork, and pursuit of excellence,” said NASA Administrator Bill Nelson. “What a privilege it has been to oversee this monumental effort, shaped by the tireless dedication of thousands of scientists and engineers around the globe. This latest image beautifully captures the lasting legacy of Webb—a keyhole into the past and a mission that will inspire generations to come.”
      Image A: Light Echoes Near Cassiopeia A (NIRCam)
      These shimmering cosmic curtains show interstellar gas and dust that has been heated by the flashbulb explosion of a long-ago supernova. The gas then glows infrared light in what is known as a thermal light echo. As the supernova illumination travels through space at the speed of light, the echo appears to expand. NASA’s James Webb Space Telescope observed this light echo in the vicinity of the supernova remnant Cassiopeia A three separate times, in essence creating a 3D scan of the interstellar material. Note that the field of view in the top row is rotated slightly clockwise relative to the middle and bottom rows, due to the roll angle of the Webb telescope when the observations were taken. NASA, ESA, CSA, STScI, J. Jencson (Caltech/IPAC) Video A: Light Echoes Near Cassiopeia A (NIRCam)
      This time-lapse video using data from NASA’s James Webb Space Telescope highlights the evolution of one light echo in the vicinity of the supernova remnant Cassiopeia A. A light echo is created when a star explodes or erupts, flashing light into surrounding clumps of interstellar dust and causing them to shine in an ever-expanding pattern. Webb’s exquisite resolution not only shows incredible detail within these light echoes, but also shows their expansion over the course of just a few weeks – a remarkably short timescale considering that most cosmic targets remain unchanged over a human lifetime.
      Credit: NASA, ESA, CSA, STScI, J. Jencson (Caltech/IPAC) Taking a CT Scan
      The images from Webb’s NIRCam (Near-Infrared Camera) highlight a phenomenon known as a light echo. A light echo is created when a star explodes or erupts, flashing light into surrounding clumps of dust and causing them to shine in an ever-expanding pattern. Light echoes at visible wavelengths (such as those seen around the star V838 Monocerotis) are due to light reflecting off of interstellar material. In contrast, light echoes at infrared wavelengths are caused when the dust is warmed by energetic radiation and then glows.
      The researchers targeted a light echo that had previously been observed by NASA’s retired Spitzer Space Telescope. It is one of dozens of light echoes seen near the Cassiopeia A supernova remnant – the remains of the star that exploded. The light echo is coming from unrelated material that is behind Cassiopeia A, not material that was ejected when the star exploded.
      The most obvious features in the Webb images are tightly packed sheets. These filaments show structures on remarkably small scales of about 400 astronomical units, or less than one-hundredth of a light-year. (An astronomical unit, or AU, is the average Earth-Sun distance. Neptune’s orbit is 60 AU in diameter.)
      “We did not know that the interstellar medium had structures on that small of a scale, let alone that it was sheet-like,” said Peek.
      These sheet-like structures may be influenced by interstellar magnetic fields. The images also show dense, tightly wound regions that resemble knots in wood grain. These may represent magnetic “islands” embedded within the more streamlined magnetic fields that suffuse the interstellar medium.
      “This is the astronomical equivalent of a medical CT scan,” explained Armin Rest of the Space Telescope Science Institute, a member of the science team. “We have three slices taken at three different times, which will allow us to study the true 3D structure. It will completely change the way we study the interstellar medium.”
      Image B: Cassiopeia A (Spitzer with Webb Insets)
      This background image of the region around supernova remnant Cassiopeia A was released by NASA’s Spitzer Space Telescope in 2008. By taking multiple images of this region over three years with Spitzer, researchers were able to examine a number of light echoes. Now, NASA’s James Webb Space Telescope has imaged some of these light echoes in much greater detail. Insets at lower right show one epoch of Webb observations, while the inset at left shows a Webb image of the central supernova remnant released in 2023. Spitzer Image: NASA/JPL-Caltech/Y. Kim (Univ. of Arizona/Univ. of Chicago). Cassiopeia A Inset: NASA, ESA, CSA, STScI, Danny Milisavljevic (Purdue University), Ilse De Looze (UGent), Tea Temim (Princeton University). Light Echoes Inset: NASA, ESA, CSA, STScI, J. Jencson (Caltech/IPAC). Future Work
      The team’s science program also includes spectroscopic observations using Webb’s MIRI (Mid-Infrared Instrument). They plan to target the light echo multiple times, weeks or months apart, to observe how it evolves as the light echo passes by.
      “We can observe the same patch of dust before, during, and after it’s illuminated by the echo and try to look for any changes in the compositions or states of the molecules, including whether some molecules or even the smallest dust grains are destroyed,” said Jencson.
      Infrared light echoes are also extremely rare, since they require a specific type of supernova explosion with a short pulse of energetic radiation. NASA’s upcoming Nancy Grace Roman Space Telescope will conduct a survey of the galactic plane that may find evidence of additional infrared light echoes for Webb to study in detail.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Science – Jacob Jencson (Caltech/IPAC)
      Related Information
      Articles: Past Webb news releases on Cassiopeia A
      Interactive: Explore light echoes in V838 Monocerotis
      Videos: Learn more about supernovas.
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is a supernova?
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars Stories



      Universe



      Spitzer Space Telescope


      Spitzer uses an ultra-sensitive infrared telescope to study asteroids, comets, planets and distant galaxies.

      Share








      Details
      Last Updated Jan 14, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      Astrophysics Goddard Space Flight Center James Webb Space Telescope (JWST) Nebulae Science & Research Supernova Remnants Supernovae The Universe View the full article
    • By NASA
      Astronomers have released a set of more than a million simulated images showcasing the cosmos as NASA’s upcoming Nancy Grace Roman Space Telescope will see it. This preview will help scientists explore a myriad of Roman’s science goals.
      “We used a supercomputer to create a synthetic universe and simulated billions of years of evolution, tracing every photon’s path all the way from each cosmic object to Roman’s detectors,” said Michael Troxel, an associate professor of physics at Duke University in Durham, North Carolina, who led the simulation campaign. “This is the largest, deepest, most realistic synthetic survey of a mock universe available today.”
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This video begins with a tiny one-square-degree portion of the full OpenUniverse simulation area (about 70 square degrees, equivalent to an area of sky covered by more than 300 full moons). It spirals in toward a particularly galaxy-dense region, zooming by a factor of 75. This simulation showcases the cosmos as NASA’s Nancy Grace Roman Space Telescope could see it, allowing scientists to preview the next generation of cosmic discovery now. Roman’s real future surveys will enable a deep dive into the universe with highly resolved imaging, as demonstrated in this video. NASA’s Goddard Space Flight Center and M. Troxel The project, called OpenUniverse, relied on the now-retired Theta supercomputer at the DOE’s (Department of Energy’s) Argonne National Laboratory in Illinois. The supercomputer accomplished a process that would take over 6,000 years on a typical computer in just nine days.
      In addition to Roman, the 400-terabyte dataset will also preview observations from the Vera C. Rubin Observatory, which is jointly funded by the National Science Foundation and the U.S. Department of Energy, and approximate simulations from ESA’s (the European Space Agency’s) Euclid mission, which has NASA contributions. The Roman data is available now here, and the Rubin and Euclid data will soon follow.
      The team used the most sophisticated modeling of the universe’s underlying physics available and fed in information from existing galaxy catalogs and the performance of the telescopes’ instruments. The resulting simulated images span 70 square degrees, equivalent to an area of sky covered by more than 300 full moons. In addition to covering a broad area, it also covers a large span of time — more than 12 billion years.
      Each tiny dot in the image at left is a galaxy simulated by the OpenUniverse campaign. The one-square-degree image offers a small window into the full simulation area, which is about 70 square degrees (equivalent to an area of sky covered by more than 300 full moons), while the inset at right is a close-up of an area 75 times smaller (1/600th the size of the full area). This simulation showcases the cosmos as NASA’s Nancy Grace Roman Space Telescope could see it. Roman will expand on the largest space-based galaxy survey like it – the Hubble Space Telescope’s COSMOS survey – which imaged two square degrees of sky over the course of 42 days. In only 250 days, Roman will view more than a thousand times more of the sky with the same resolution. The project’s immense space-time coverage shows scientists how the telescopes will help them explore some of the biggest cosmic mysteries. They will be able to study how dark energy (the mysterious force thought to be accelerating the universe’s expansion) and dark matter (invisible matter, seen only through its gravitational influence on regular matter) shape the cosmos and affect its fate. Scientists will get closer to understanding dark matter by studying its gravitational effects on visible matter. And by studying the simulation’s 100 million synthetic galaxies, they will see how galaxies and galaxy clusters evolved over eons.
      Repeated mock observations of a particular slice of the universe enabled the team to stitch together movies that unveil exploding stars crackling across the synthetic cosmos like fireworks. These starbursts allow scientists to map the expansion of the simulated universe.
      This simulation showcases the dynamic universe as NASA’s Nancy Grace Roman Space Telescope could see it over the course of its five-year primary mission. The video sparkles with synthetic supernovae from observations of the OpenUniverse simulated universe taken every five days (similar to the expected cadence of Roman’s High-Latitude Time-Domain Survey, which OpenUniverse simulates in its entirety). On top of the static sky of stars in the Milky Way and other galaxies, more than a million exploding stars flare into visibility and then slowly fade away. To highlight the dynamic physics happening and for visibility at this scale, the true brightness of each transient event has been magnified by a factor of 10,000 and no background light has been added to the simulated images. The video begins with Roman’s full field of view, which represents a single pointing of Roman’s camera, and then zooms into one square.NASA’s Goddard Space Flight Center and M. Troxel Scientists are now using OpenUniverse data as a testbed for creating an alert system to notify astronomers when Roman sees such phenomena. The system will flag these events and track the light they generate so astronomers can study them.
      That’s critical because Roman will send back far too much data for scientists to comb through themselves. Teams are developing machine-learning algorithms to determine how best to filter through all the data to find and differentiate cosmic phenomena, like various types of exploding stars.
      “Most of the difficulty is in figuring out whether what you saw was a special type of supernova that we can use to map how the universe is expanding, or something that is almost identical but useless for that goal,” said Alina Kiessling, a research scientist at NASA’s Jet Propulsion Laboratory (JPL) in Southern California and the principal investigator of OpenUniverse.
      While Euclid is already actively scanning the cosmos, Rubin is set to begin operations late this year and Roman will launch by May 2027. Scientists can use the synthetic images to plan the upcoming telescopes’ observations and prepare to handle their data. This prep time is crucial because of the flood of data these telescopes will provide.
      In terms of data volume, “Roman is going to blow away everything that’s been done from space in infrared and optical wavelengths before,” Troxel said. “For one of Roman’s surveys, it will take less than a year to do observations that would take the Hubble or James Webb space telescopes around a thousand years. The sheer number of objects Roman will sharply image will be transformative.”
      This synthetic OpenUniverse animation shows the type of science that astronomers will be able to do with future Roman deep-field observations. The gravity of intervening galaxy clusters and dark matter can lens the light from farther objects, warping their appearance as shown in the animation. By studying the distorted light, astronomers can study elusive dark matter, which can only be measured indirectly through its gravitational effects on visible matter. As a bonus, this lensing also makes it easier to see the most distant galaxies whose light the dark matter magnifies. Caltech-IPAC/R. Hurt “We can expect an incredible array of exciting, potentially Nobel Prize-winning science to stem from Roman’s observations,” Kiessling said. “The mission will do things like unveil how the universe expanded over time, make 3D maps of galaxies and galaxy clusters, reveal new details about star formation and evolution — all things we simulated. So now we get to practice on the synthetic data so we can get right to the science when real observations begin.”
      Astronomers will continue using the simulations after Roman launches for a cosmic game of spot the differences. Comparing real observations with synthetic ones will help scientists see how accurately their simulation predicts reality. Any discrepancies could hint at different physics at play in the universe than expected.
      “If we see something that doesn’t quite agree with the standard model of cosmology, it will be extremely important to confirm that we’re really seeing new physics and not just misunderstanding something in the data,” said Katrin Heitmann, a cosmologist and deputy director of Argonne’s High Energy Physics division who managed the project’s supercomputer time. “Simulations are super useful for figuring that out.”
      OpenUniverse, along with other simulation tools being developed by Roman’s Science Operations and Science Support centers, will prepare astronomers for the large datasets expected from Roman. The project brings together dozens of experts from NASA’s JPL, DOE’s Argonne, IPAC, and several U.S. universities to coordinate with the Roman Project Infrastructure Teams, SLAC, and the Rubin LSST DESC (Legacy Survey of Space and Time Dark Energy Science Collaboration). The Theta supercomputer was operated by the Argonne Leadership Computing Facility, a DOE Office of Science user facility.
      The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      Download high-resolution video and images from NASA’s Scientific Visualization Studio
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      301-286-1940
      Share
      Details
      Last Updated Jan 14, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
      Nancy Grace Roman Space Telescope Astrophysics Dark Energy Dark Matter Galaxies Galaxies, Stars, & Black Holes Galaxies, Stars, & Black Holes Research Galaxy clusters Goddard Space Flight Center High-Tech Computing Science & Research Stars Supernovae Technology The Universe Explore More
      6 min read How NASA’s Roman Space Telescope Will Illuminate Cosmic Dawn
      Article 6 months ago 6 min read Why NASA’s Roman Mission Will Study Milky Way’s Flickering Lights
      Article 1 year ago 7 min read Simulated Image Shows How NASA’s Roman Could Expand on Hubble’s Deepest View
      Article 3 years ago View the full article
  • Check out these Videos

×
×
  • Create New...