Jump to content

Cassini Top 10 Images – 2015


NASA

Recommended Posts

  • Publishers

1 min read

Cassini Top 10 Images – 2015

As the Cassini science team members look forward to a great 2016 and beyond, here’s a look back at their top 10 images of 2015.

IMG005290.jpg?w=1250

Enceladus North Pole Montage

PIA20016-1.jpg?w=2002

Peering Through Titan’s Haze

PIA18343.jpg?w=1019

Water World

PIA17204.jpg?w=510
Created with GIMP

Enceladus Up-Close

PIA20011.jpg?w=1020

Saturnian Snowman

PIA19660-3.jpg?w=1024

A Fractured Pole

PIA19650.jpg?w=2048

Imminent Approach to Dione

PIA19637.jpg?w=2048

Red Arcs on Tethys

PIA17194.jpg?w=1024

Spongy Surface

PIA18314.jpg?w=1024

Serene Saturn

IMG005182.jpg?w=1024

Simulations of the Tendrils

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Week in images: 02-06 September 2024
      Discover our week through the lens
      View the full article
    • By European Space Agency
      The ESA/JAXA BepiColombo mission has successfully completed its fourth of six gravity assist flybys at Mercury, capturing images of two special impact craters as it uses the little planet’s gravity to steer itself on course to enter orbit around Mercury in November 2026.
      The closest approach took place at 23:48 CEST (21:48 UTC) on 4 September 2024, with BepiColombo coming down to around 165 km above the planet’s surface. For the first time, the spacecraft had a clear view of Mercury’s south pole.
      View the full article
    • By Space Force
      Suicide prevention is a top military priority every day, but takes on even greater focus each September, designated since 2008 as National Suicide Prevention month.

      View the full article
    • By NASA
      Researchers used an interferometer that can precisely measure gravity, magnetic fields, and other forces to study the influence of International Space Station vibrations. Results revealed that matter-wave interference of rubidium gases is robust and repeatable over a period spanning months. Atom interferometry experiments could help create high-precision measurement capabilities for gravitational, Earth, and planetary sciences.

      Using ultracold rubidium atoms, Cold Atom Lab researchers examined a three-pulse Mach–Zehnder interferometer, a device that determines phase shift variations between two parallel beams, to understand the influence of space station vibrations. Researchers note that atom sensitivities and visibility degrade due to the vibration environment of the International Space Station. The Cold Atom Lab’s interferometer uses light pulses to create a readout of accelerations, rotations, gravity, and subtle forces that could signify new physics acting on matter. Cold Atom Lab experiments serve as pathfinders for proposed space missions relying on the sustained measurement of wave-matter interference, including gravitational wave detection, dark matter detection, seismology mapping, and advanced satellite navigation. 

      Read more here.

      Researchers developed a novel method to categorize and assess the fitness of each gene in one species of bacteria, N. aromaticavorans. Results published in BMC Genomics state that core metabolic processes and growth-promoting genes have high fitness during spaceflight, likely as an adaptive response to stress in microgravity. Future comprehensive studies of the entire genome of other species could help guide the development of strategies to enhance or diminish microorganism resilience in space missions.

      The Bacterial Genome Fitness investigation grows multiple types of bacteria in space to learn more about important processes for their growth. Previous studies of microorganism communities have shown that spaceflight can induce resistance to antibiotics, lead to changes in biofilm formation, and boost cell growth in various species. N. aromaticivorans can degrade certain compounds, potentially providing benefits in composting and biofuel production during deep space missions.

      Read more here.

      Researchers burned large, isolated droplets of the hydrocarbon n-dodecane, a component of kerosene and some jet fuels, in microgravity and found that hot flames were followed by a prolonged period of cool flames at lower pressures. Results showed that hot flames were more likely to unpredictably reignite at higher pressures. Studying the burn behavior of hydrocarbons assists researchers in the development of more efficient engines and fuels that reduce fire hazards to ensure crew safety in future long-distance missions.

      The Cool Flames investigation studies the low-temperature combustion of various isolated fuel droplets. Cool flames happen in microgravity when certain fuel types burn very hot and then quickly drop to a much lower temperature with no visible flames. This investigation studies several fuels such as pure hydrocarbons, biofuels, and mixtures of pure hydrocarbons to enhance understanding of low-temperature chemistry. Improved knowledge of low-temperature burning could benefit next-generation fuels and engines.

      Read more here.
      NASA astronaut Shane Kimbrough completing the Multi-user Droplet Combustion Apparatus reconfiguration to the Cool Flames Investigation setup.NASAView the full article
    • By European Space Agency
      Week in images: 26-30 August 2024
      Discover our week through the lens
      View the full article
  • Check out these Videos

×
×
  • Create New...