Jump to content

Recommended Posts

  • Publishers
Posted

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Lucy spacecraft has its next flyby target, the small main belt asteroid  Donaldjohanson, in its sights. By blinking between images captured by Lucy on Feb. 20 and 22, this animation shows the perceived motion of Donaldjohanson relative to the background stars as the spacecraft rapidly approaches the asteroid.
      NASA’s Lucy spacecraft’s first views of the asteroid Donaldjohanson. The asteroid is circled on the left to guide the eye.NASA/Goddard/SwRI/Johns Hopkins APL Lucy will pass within 596 miles (960 km) of the 2-mile-wide asteroid on April 20. This second asteroid encounter for the Lucy spacecraft will serve as a dress-rehearsal for the spacecraft’s main targets, the never-before-explored Jupiter Trojan asteroids. Lucy already successfully observed the tiny main belt asteroid Dinkinesh and its contact-binary moon, Selam, in November 2023. Lucy will continue to image Donaldjohanson over the next two months as part of its optical navigation program, which uses the asteroid’s apparent position against the star background to ensure an accurate flyby.
      Donaldjohanson will remain an unresolved point of light during the spacecraft’s long approach and won’t start to show surface detail until the day of the encounter.
      From a distance of 45 million miles (70 million km), Donaldjohanson is still dim, though it stands out clearly in this field of relatively faint stars in the constellation of Sextans. Celestial north is to the right of the frame, and the 0.11-degree field of view would correspond to 85,500 miles (140,000 km) at the distance of the asteroid. In the first of the two images, another dim asteroid can be seen photobombing in the lower right quadrant of the image. However, just as the headlights of an approaching car often appear relatively stationary, Donaldjohanson’s apparent motion between these two images is much smaller than that of this interloper, which has moved out of the field of view in the second image.
      These observations were made by Lucy’s high-resolution camera, the L’LORRI instrument — short for Lucy LOng Range Reconnaissance Imager — provided by the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland.
      Asteroid Donaldjohanson is named for anthropologist Donald Johanson, who discovered the fossilized skeleton — called “Lucy” — of a human ancestor. NASA’s Lucy mission is named for the fossil.
      Lucy’s principal investigator, Hal Levison, is based out of the Boulder, Colorado, branch of Southwest Research Institute, headquartered in San Antonio. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering, and safety and mission assurance. Lockheed Martin Space in Littleton, Colorado, built the spacecraft. Lucy is the 13th mission in NASA’s Discovery Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Discovery Program for the Science Mission Directorate at NASA Headquarters in Washington.
      For more information about NASA’s Lucy mission, visit: https://www.nasa.gov/lucy
      By Katherine Kretke
      Southwest Research Institute
      Media Contact:
      Nancy N. Jones
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Feb 25, 2025 Related Terms
      Lucy General Goddard Space Flight Center Planetary Science The Solar System Trojan Asteroids View the full article
    • By NASA
      Improving space-based pharmaceutical research
      View of the Ice Cubes experiment #6 (Kirara) floating in the Columbus European Laboratory module aboard the International Space Station.UAE (United Arab Emirates)/Sultan Alneyadi Researchers found differences in the stability and degradation of the anti-Covid drug Remdesivir in space and on Earth on its first research flight, but not on a second. This highlights the need for more standardized procedures for pharmaceutical research in space.

      Long-term stability of drugs is critical for future space missions. Because multiple characteristics of spaceflight could influence chemical stability, the scientists repeated their experiment under circumstances as nearly identical as possible. This research used Kirara, a temperature-controlled incubator developed by JAXA (Japan Aerospace Exploration Agency) for crystallizing proteins in microgravity. Results also confirmed that a solubility enhancer used in the drug is radiation resistant and its quality was not affected by microgravity and launch conditions.

      Evaluating postflight task performance
      A test subject performing a sensorimotor field test on the ground.NASA/Lauren Harnett Immediately after returning from the International Space Station and for up to one week, astronauts perform functional tasks in ways similar to patients on Earth who have a loss of inner ear function. This finding suggests that comparing data from these patients and astronauts could provide insight into the role of the balance and sensory systems in task performance during critical parts of a mission such as landing on the Moon or Mars.   

      Spaceflight causes changes to the balance (vestibular) and sensory systems that can lead to symptoms such as disorientation and impaired locomotion. Standard Measures collects a set of data, including tests of sensorimotor function, related to human spaceflight risks from astronauts before, during, and after missions to help characterize how people adapt to living and working in space.

      View the full article
    • By European Space Agency
      Week in images: 17-21 February 2025
      Discover our week through the lens
      View the full article
    • By NASA
      Modeling properties of thunderstorm discharges

      Researchers report detailed physical properties of different types of corona discharges, including single- and multi-pulse blue discharges linked to powerful but short-lived electrical bursts near the tops of clouds. These details provide a reference for further investigation into the physical mechanisms behind these discharges and their role in the initiation of lightning, an important problem in lightning physics.

      An ESA (European Space Agency) instrument used to study thunderstorms, Atmosphere-Space Interactions Monitor (ASIM) provides insights into their role in Earth’s atmosphere and climate, including mechanisms behind the creation of lightning. Understanding how thunderstorms and lightning disturb the upper atmosphere could improve atmospheric models along with climate and weather predictions. These high-altitude discharges also affect aircraft and spacecraft safety.

      An artist’s impression of a blue jet as observed from the International Space Station.Mount Visual/University of Bergen/DTU Space Evaluating effects of climate change on oceans

      Researchers conclude that the space station’s ECOSTRESS instrument yields highly accurate sea surface temperature data. Given the instrument’s global coverage and high spatial resolution, these data have potential use in studies of biological and physical oceanography to evaluate regional and local effects of climate change.

      ECOSTRESS resolves oceanographic features not detectable in imagery from NOAA’s Visible Infrared Imaging Radiometer Suite satellite, and has open-ocean coverage, unlike Landsat. Satellites are a fundamental tool to measure sea surface temperatures, which are rising across all oceans due to atmospheric warming induced by climate change.

      The ECOSTRESS instrument, the white box in the center, is visible on the outside of the station.NASA Describing a gamma ray burst

      Researchers report detailed observations and analysis of emissions from an exceptionally bright gamma ray burst (GRB), 210619B, detected by the station’s ASIM and other satellite and ground-based instruments. These observations could be useful in determining various properties of GRBs and how they change during different phases.

      Believed to be generated by the collapse of massive stars, GRBs are the brightest, most explosive transient electromagnetic events in the universe. ASIM can observe thunderstorm discharges difficult to observe from the ground. It has a mode where a detected event triggers observation and onboard storage of data.

      A view of ASIM mounted on the outside of the space station. NASAView the full article
    • By European Space Agency
      Week in images: 10-14 February 2025
      Discover our week through the lens
      View the full article
  • Check out these Videos

×
×
  • Create New...