Jump to content

Cassini 10 Years at Saturn Top Images


NASA

Recommended Posts

  • Publishers

1 min read

Cassini 10 Years at Saturn Top Images

The Cassini team is proud to celebrate 10 years since arriving at Saurn with this collection of images selected by members of the team.

IMG005290.jpg?w=1250

Enceladus North Pole Montage

PIA20016-1.jpg?w=2002

Peering Through Titan’s Haze

PIA18343.jpg?w=1019

Water World

PIA17204.jpg?w=510
Created with GIMP

Enceladus Up-Close

PIA20011.jpg?w=1020

Saturnian Snowman

PIA19660-3.jpg?w=1024

A Fractured Pole

PIA19650.jpg?w=2048

Imminent Approach to Dione

PIA19637.jpg?w=2048

Red Arcs on Tethys

PIA17194.jpg?w=1024

Spongy Surface

PIA18314.jpg?w=1024

Serene Saturn

IMG005182.jpg?w=1024

Simulations of the Tendrils

Keep Exploring

Discover More Topics From NASA

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Week in images: 02-06 September 2024
      Discover our week through the lens
      View the full article
    • By European Space Agency
      The ESA/JAXA BepiColombo mission has successfully completed its fourth of six gravity assist flybys at Mercury, capturing images of two special impact craters as it uses the little planet’s gravity to steer itself on course to enter orbit around Mercury in November 2026.
      The closest approach took place at 23:48 CEST (21:48 UTC) on 4 September 2024, with BepiColombo coming down to around 165 km above the planet’s surface. For the first time, the spacecraft had a clear view of Mercury’s south pole.
      View the full article
    • By Space Force
      Suicide prevention is a top military priority every day, but takes on even greater focus each September, designated since 2008 as National Suicide Prevention month.

      View the full article
    • By NASA
      On Aug. 30, 1984, space shuttle Discovery lifted off on the STS-41D mission, joining NASA’s fleet as the third space qualified orbiter. The newest shuttle incorporated newer technologies making it significantly lighter than its two predecessors. Discovery lofted the heaviest payload up to that time in shuttle history. The six-person crew included five NASA astronauts and the first commercial payload specialist. During the six-day mission, the crew deployed a then-record three commercial satellites, tested an experimental solar array, and ran a commercial biotechnology experiment. The astronauts recorded many of the activities using a large format film camera, the scenes later incorporated into a motion picture for public engagement. The mission marked the first of Discovery’s 39 trips to space, the most of any orbiter.

      Left: Space shuttle Discovery rolls out of Rockwell’s Palmdale, California, facility. Middle: Discovery atop the Shuttle Carrier Aircraft during the cross-country ferry flight. Right: Discovery arrives at NASA’s Kennedy Space Center in Florida.
      Space shuttle Discovery, the third space-qualified orbiter in NASA’s fleet and named after several historical ships of exploration, incorporated manufacturing lessons learned from the first orbiters. In addition, through the use of more advanced materials, the new vehicle weighed nearly 8,000 pounds less than its sister ship Columbia and 700 pounds less than Challenger. Discovery rolled out of Rockwell International’s plant in Palmdale, California, on Oct. 16, 1983. Five of the six crew members assigned to its first flight attended the ceremony. Workers trucked Discovery overland from Palmdale to NASA’s Dryden, now Armstrong, Flight Research Center at Edwards Air Force Base (AFB), where they mounted it atop a Shuttle Carrier Aircraft (SCA), a modified Boeing 747, for the transcontinental ferry flight to NASA’s Kennedy Space Center (KSC) in Florida. Discovery arrived at KSC on Nov. 9 following a two-day stopover at Vandenberg Air Force, now Space Force Base, in California.

      Left: STS-41D crew patch. Middle: Official photograph of the STS-41D crew of R. Michael “Mike” Mullane, front row left, Steven A. Hawley, Henry “Hank” W. Hartsfield, and Michael L. Coats; Charles D. Walker, back row left, and Judith A. Resnik. Right: Payloads installed in Discovery’s payload bay for the STS-41D mission include OAST-1, top, SBS-4, Telstar 3C, and Leasat-2.
      To fly Discovery’s first flight, originally designated STS-12 and later renamed STS-41D, in February 1983 NASA assigned Commander Henry W. Hartsfield, a veteran of STS-4, and first-time flyers Pilot Michael L. Coats, and Mission Specialists R. Michael Mullane, Steven A. Hawley, and Judith A. Resnik, all from the 1978 class of astronauts and making their first spaceflights. In May 1983, NASA announced the addition of Charles D. Walker, an employee of the McDonnell Douglas Corporation, to the crew, flying as the first commercial payload specialist. He would operate the company’s Continuous Flow Electrophoresis System (CFES) experiment. The mission’s primary payloads included the Leasat-1 (formerly known as Syncom IV-1) commercial communications satellite and OAST-1, three experiments from NASA’s Office of Aeronautics and Space Technology, including the Solar Array Experiment, a 105-foot long lightweight deployable and retractable solar array. Following the June 1984 launch abort, NASA canceled the STS-41F mission, combining its payloads with STS-41D’s, resulting in three communications satellites – SBS-4 for Small Business Systems, Telstar 3C for AT&T, and Leasat 2 (Syncom IV-2) for the U.S. Navy – launching on the flight. The combined cargo weighed 41,184 pounds, the heaviest of the shuttle program up to that time. A large format IMAX® camera, making its second trip into space aboard the shuttle, flew in the middeck to film scenes inside the orbiter and out the windows.

      Left: First rollout of Discovery from the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. Right: The June 26 launch abort.
      The day after its arrival at KSC, workers towed Discovery to the Orbiter Processing Facility (OPF) to begin preparing it for its first space flight. They towed it to the Vehicle Assembly Building (VAB) on May 12, 1984, for mating with its External Tank (ET) and Solid Rocket Boosters (SRBs). The completed stack rolled out to Launch Pad 39A a week later. On June 2, engineers successfully completed an 18-second Flight Readiness Firing of Discovery’s main engines. Post test inspections revealed a debonding of a thermal shield in main engine number 1’s combustion chamber, requiring its replacement at the pad. The work pushed the planned launch date back three days to June 25. The failure of the shuttle’s backup General Purpose Computer (GPC) delayed the launch by one day. The June 26 launch attempt ended just four seconds before liftoff, after two of the main engines had already ignited. The GPC detected that the third engine had not started and shut all three down. It marked the first time a human spaceflight launch experienced an abort after the start of its engines since Gemini VI in October 1965. The abort necessitated a rollback to the VAB on July 14 where workers demated Discovery from the ET and SRBs. Engineers replaced the faulty engine, and Discovery rolled back out to the launch pad on Aug. 9 for another launch attempt. The six-person crew participated in the Terminal Countdown Demonstration Test, essentially a dress rehearsal for the actual countdown to launch, on Aug. 15. A software issue delayed the first launch attempt on Aug. 29 by one day.

      Left: The STS-41D crew pose at Launch Pad 39A at NASA’s Kennedy Space Center in Florida following the Terminal Countdown Demonstration Test. Right: Liftoff of Discovery on the STS-41D mission.
      Finally, on Aug. 30, 1984, Discovery roared off its launch pad on a pillar of flame and within 8 and a half minutes entered orbit around the Earth. The crew got down to work and on the first day Mullane and Hawley deployed the SBS-4 satellite. On the second day in space, they deployed Leasat, the first satellite designed specifically to be launched from the shuttle. On the third day, they deployed the Telstar satellite, completing the satellite delivery objectives of the mission. Resnik deployed the OAST-1 solar array to 70% of its length to conduct dynamic tests on the structure. On the fourth day, she deployed the solar array to its full length and successfully retracted it, completing all objectives for that experiment.

      The deployment of the SBS-4, left, Leasat-2, and Telstar 3C satellites during STS-41D.
      Walker remained busy with the CFES, operating the unit for about 100 hours, and although the experiment experienced two unexpected shutdowns, he processed about 85% of the planned samples. Hartsfield and Coats exposed two magazines and six rolls of IMAX® film, recording OAST-1 and satellite deployments as well as in-cabin crew activities. Clips from the mission appear in the 1985 IMAX® film “The Dream is Alive.” On the mission’s fifth day, concern arose over the formation of ice on the orbiter’s waste dump nozzle. The next day, Hartsfield used the shuttle’s robotic arm to dislodge the large chunk of ice.

      Left: Payload Specialist Charles D. Walker in front of the Continuous Flow Experiment System. Middle: Henry “Hank” W. Hartsfield loading film into the IMAX® camera. Right: The OAST-1 Solar Array Experiment extended from Discovery’s payload bay.
      On Sep. 5, the astronauts closed Discovery’s payload bay doors in preparation for reentry. They fired the shuttle’s Orbital Maneuvering System engines to slow their velocity and begin their descent back to Earth. Hartsfield guided Discovery to a smooth landing at Edwards AFB in California, completing a flight of 6 days and 56 minutes. The crew had traveled 2.5 million miles and orbited the Earth 97 times.

      Left: The STS-41D crew pose in Discovery’s middeck. Right: Space shuttle Discovery makes a perfect landing at Edwards Air Force Base in California to end the STS-41D mission. 
      By Sept. 10, workers had returned Discovery to KSC to prepare it for its next mission, STS-51A, in November 1984. During its lifetime, Discovery flew a fleet leading 39 missions, making its final trip to space in February 2011. It flew both return to flight missions, STS-26 in 1988 and STS-114 in 2005. It launched the Hubble Space Telescope in 1990 and flew two of the missions to service the facility. Discovery flew two mission to Mir, docking once. It completed the first docking to the International Space Station in 1999 and flew a total of 13 assembly and resupply missions to the orbiting lab. By its last mission, Discovery had traveled 149 million miles, completed 5,830 orbits of the Earth, and spent a cumulative 365 days in space in the span of 27 years. The public can view Discovery on display at the National Air and Space Museum’s Stephen F. Udvar-Hazy Center in Chantilly, Virginia.
      Read recollections of the STS-41D mission by Hartsfield, Coats, Mullane, Hawley, and Walker in their oral histories with the JSC History Office. Enjoy the crew’s narration of a video about the STS-41D mission.
      Explore More
      6 min read 235 Years Ago: Herschel Discovers Saturn’s Moon Enceladus
      Article 5 days ago 11 min read 15 Years Ago: STS-128 Delivers Cargo to Enable Six-Person Space Station Crew
      Article 6 days ago 10 min read 40 Years Ago: President Reagan Announces Teacher in Space Project
      Article 1 week ago View the full article
    • By NASA
      Researchers used an interferometer that can precisely measure gravity, magnetic fields, and other forces to study the influence of International Space Station vibrations. Results revealed that matter-wave interference of rubidium gases is robust and repeatable over a period spanning months. Atom interferometry experiments could help create high-precision measurement capabilities for gravitational, Earth, and planetary sciences.

      Using ultracold rubidium atoms, Cold Atom Lab researchers examined a three-pulse Mach–Zehnder interferometer, a device that determines phase shift variations between two parallel beams, to understand the influence of space station vibrations. Researchers note that atom sensitivities and visibility degrade due to the vibration environment of the International Space Station. The Cold Atom Lab’s interferometer uses light pulses to create a readout of accelerations, rotations, gravity, and subtle forces that could signify new physics acting on matter. Cold Atom Lab experiments serve as pathfinders for proposed space missions relying on the sustained measurement of wave-matter interference, including gravitational wave detection, dark matter detection, seismology mapping, and advanced satellite navigation. 

      Read more here.

      Researchers developed a novel method to categorize and assess the fitness of each gene in one species of bacteria, N. aromaticavorans. Results published in BMC Genomics state that core metabolic processes and growth-promoting genes have high fitness during spaceflight, likely as an adaptive response to stress in microgravity. Future comprehensive studies of the entire genome of other species could help guide the development of strategies to enhance or diminish microorganism resilience in space missions.

      The Bacterial Genome Fitness investigation grows multiple types of bacteria in space to learn more about important processes for their growth. Previous studies of microorganism communities have shown that spaceflight can induce resistance to antibiotics, lead to changes in biofilm formation, and boost cell growth in various species. N. aromaticivorans can degrade certain compounds, potentially providing benefits in composting and biofuel production during deep space missions.

      Read more here.

      Researchers burned large, isolated droplets of the hydrocarbon n-dodecane, a component of kerosene and some jet fuels, in microgravity and found that hot flames were followed by a prolonged period of cool flames at lower pressures. Results showed that hot flames were more likely to unpredictably reignite at higher pressures. Studying the burn behavior of hydrocarbons assists researchers in the development of more efficient engines and fuels that reduce fire hazards to ensure crew safety in future long-distance missions.

      The Cool Flames investigation studies the low-temperature combustion of various isolated fuel droplets. Cool flames happen in microgravity when certain fuel types burn very hot and then quickly drop to a much lower temperature with no visible flames. This investigation studies several fuels such as pure hydrocarbons, biofuels, and mixtures of pure hydrocarbons to enhance understanding of low-temperature chemistry. Improved knowledge of low-temperature burning could benefit next-generation fuels and engines.

      Read more here.
      NASA astronaut Shane Kimbrough completing the Multi-user Droplet Combustion Apparatus reconfiguration to the Cool Flames Investigation setup.NASAView the full article
  • Check out these Videos

×
×
  • Create New...