Members Can Post Anonymously On This Site
Cassini Top 10 Images of 2013
-
Similar Topics
-
By European Space Agency
Week in images: 18-22 November 2024
Discover our week through the lens
View the full article
-
By NASA
Following eight months of intense research, design, and prototyping, six university teams presented their “Inflatable Systems for Lunar Operations” concepts to a panel of judges at NASA’s 2024 Breakthrough, Innovative and Game-Changing (BIG) Idea Challenge forum.
The challenge, funded by NASA’s Space Technology Mission Directorate and Office of STEM Engagement, seeks novel ideas from higher education on a new topic each year and supports the agency’s Lunar Surface Innovation Initiative in developing new approaches and innovative technologies to pave the way for successful exploration on the surface of the Moon. This year, teams were asked to develop low Size, Weight, and Power inflatable technologies, structures and systems that could benefit future Artemis missions to the Moon and beyond.
Taking top honors at this year’s forum receiving the Artemis Award was Northwestern University with National Aerospace Corporation & IMS Engineered Products, with their concept titled METALS: Metallic Expandable Technology for Artemis Lunar Structures. The Artemis Award is given to the team whose concept has the best potential to contribute to and be integrated into an Artemis mission.
The Northwestern University BIG Idea Challenge team developed METALS, an inflatable metal concept for long-term storage of cryogenic fluid on the Moon. The concept earned the Artemis Award, top honors in NASA’s 2024 BIG Idea Challenge.Credit: National Institute of Aerospace The Artemis Award is a generous recognition of the potential impact that our work can have. We hope it can be a critical part of the Artemis Program moving forward. We’re exceptionally grateful to have the opportunity to engage directly with NASA in research for the Artemis Program in such a direct way while we’re still students.”
Julian Rocher
Team co-lead for Northwestern University
METALS is an inflatable system for long term cryogenic fluid storage on the Moon. Stacked layers of sheet metal are welded along their aligned edges, stacked inside a rocket, and inflated once on the lunar surface. The manufacturing process is scalable, reliable, and simple. Notably, METALS boasts superior performance in the harsh lunar environment, including resistance against radiation, abrasion, micrometeorites, gas permeability, and temperature extremes.
Northwestern University team members pose with lunar inflatable prototypes from their METALS project in NASA’s 2024 BIG Idea Challenge. Credit: Northwestern University We learned to ask the right questions, and we learned to question what is the status quo and to go above and beyond and think outside the box. It’s a special mindset for everyone to have on this team… it’s what forces us to innovate.”
Trevor Abbott
Team co-lead for Northwestern University
Arizona State University took home the 2024 BIG Idea Challenge Systems Engineering prize for their project, AEGIS: Inflatable Lunar Landing Pad System. The AEGIS system is designed to deflect the exhaust gasses of lunar landers thereby reducing regolith disturbances generated during landing. The system is deployed on the lunar surface where it uses 6 anchors in its base to secure itself to the ground. Once inflated to its deployed size of 14 m in diameter, AEGIS provides a reusable precision landing zone for incoming landers.
Arizona State University earned the Systems Engineering prize for their BIG Idea Challenge project: AEGIS: Inflatable Lunar Landing Pad System. Arizona State University
This year’s forum was held in tandem with the Lunar Surface Innovation Consortium’s (LSIC) Fall Meeting at the University of Nevada, Las Vegas, where students had the opportunity to network with NASA and industry experts, attend LSIC panels and presentations, and participate in the technical poster session. The consortium provides a forum for NASA to communicate technological requirements, needs, and opportunities, and for the community to share with NASA existing capabilities and critical gaps.
We felt that hosting this year’s BIG Idea Forum in conjunction with the LSIC Fall Meeting would be an exciting opportunity for these incredibly talented students to network with today’s aerospace leaders in government, industry, and academia. Their innovative thinking and novel contributions are critical skills required for the successful development of the technologies that will drive exploration on the Moon and beyond.”
Niki Werkheiser
Director of Technology Maturation in NASA’s Space Technology Mission Directorate
In February, teams submitted proposal packages, from which six finalists were selected for funding of up to $150,000 depending on each team’s prototype and budget. The finalists then worked for eight months designing, developing, and demonstrating their concepts. The 2024 BIG Idea program concluded at its annual forum, where teams presented their results and answered questions from judges. Experts from NASA, Johns Hopkins Applied Physics Laboratory, and other aerospace companies evaluated the student concepts based on technical innovation, credibility, management, and the teams’ verification testing. In addition to the presentation, the teams provided a technical paper and poster detailing their proposed inflatable system for lunar operations.
Year after year, BIG Idea student teams spend countless hours working on tough engineering design challenges. Their dedication and ‘game-changing’ ideas never cease to amaze me. They all have bright futures ahead of them.”
David Moore
Program Director for NASA’s Game Changing Development program
Second-year mechanical engineering student Connor Owens, left, and electrical engineering graduate student Sarwan Shah run through how they’ll test the sheath-and-auger anchor for the axial vertical pull test of the base anchor in a former shower room in Sun Devil Hall. Image credit: Charlie Leight/ASU News The University of Maryland BIG Idea Challenge team’s Auxiliary Inflatable Wheels for Lunar Rover project in a testing environment University of Maryland Students from University of Michigan and a component of their Cargo-BEEP (Cargo Balancing Expandable Exploration Platform) projectUniversity of Michigan Northwestern University welders prepare to work on their 2024 BIG Idea Challenge prototype, a metal inflatable designed for deployment on the Moon.Northwestern University Brigham Young University’s Untethered and Modular Inflatable Robots for Lunar Operations projectBrigham Young University California Institute of Technology’s PILLARS: Plume-deployed Inflatable for Launch and Landing Abrasive Regolith Shielding projectCalifornia Institute of Technology The Inflatable Systems for Lunar Operations theme allowed teams to submit various technology concepts such as soft robotics, deployable infrastructure components, emergency shelters or other devices for extended extravehicular activities, pressurized tunnels and airlocks, and debris shields and dust protection systems. National Institute of Aerospace NASA’s Space Technology Mission Directorate sponsors the BIG Idea Challenge through a collaboration between its Game Changing Development program and the agency’s Office of STEM Engagement. It is managed by a partnership between the National Institute of Aerospace and Johns Hopkins Applied Physics Laboratory.
Team presentations, technical papers, and digital posters are available on the BIG Idea website.
For full competition details, visit: https://bigidea.nianet.org/2024-challenge
Keep Exploring Discover More Topics From NASA
Space Technology Mission Directorate
Game Changing Development Projects
Game Changing Development projects aim to advance space technologies, focusing on advancing capabilities for going to and living in space.
NASA’s Lunar Surface Innovation Initiative
Get Involved
View the full article
-
By NASA
Anthocyanins protect seeds in space
After exposure to space outside the International Space Station, purple-pigmented rice seeds rich in anthocyanin had higher germination rates than non-pigmented white rice seeds. This result suggests that anthocyanin, a flavonoid known to protect plants from UV irradiation, could help preserve seed viability on future space missions.
Plants are key components for systems being designed to produce nutrients and recycle carbon for future sustained space habitation, but space has been shown to reduce seed viability. Tanpopo-3, part of a series of investigations from JAXA (Japan Aerospace Exploration Agency), examined the role of anthocyanins in maintaining seed viability. Results of this and previous experiments suggest that solar light in space is more detrimental to seeds than radiation.
Preflight image of the Tanpopo panel used to expose seeds and other samples to space. Tanpopo-3 team Low-cost, autonomous technology validated for space research
Researchers verified a pair of devices for conducting experiments in space that have multi-step reactions and require automatic mixing of solutions. This type of low-cost, autonomous technology expands the possibilities for space-based research, including work by commercial entities.
Ice Cubes #6- Kirara, an investigation from ESA (European Space Agency) developed by the Japan Manned Space Systems Corporation, used a temperature-controlled incubator to crystallize proteins in microgravity. The Kirara facility also enables production of polymers, including cellulose, which have different uses than protein crystals. This experiment synthesized and decomposed cellulose.
The Kirara incubator used for experiments in microgravity. United Arab Emirates/Sultan Alneyadi Insights from observations of an X-ray binary star
Researchers used Neutron star Interior Composition Explorer (NICER) to observe the timing of 15 X-ray bursts from 4U 1820–30, an ultracompact X-ray binary (UCXB) star. An X-ray binary is a neutron star orbiting a companion from which it takes matter. If confirmed with future observations, this result makes 4U 1820–30 the fastest-spinning neutron star known in an X-ray binary system and provides insights into the physics of neutron stars.
NICER makes high-precision measurements of neutron stars (the ultra-dense matter created when massive stars explode as supernovas) and other phenomena to increase our understanding of the universe. NICER has monitored 4U 1820–30 since its launch in June 2017. A short orbital period indicates a relatively small binary system, and 4U 1820–30 has the shortest known orbital period among low-mass X-ray binaries.
Animated image of a binary star system,NASA’s Goddard Space Flight Center/Chris SmithView the full article
-
By European Space Agency
Week in images: 11-15 November 2024
Discover our week through the lens
View the full article
-
By NASA
Researchers demonstrated the feasibility of 3D bioprinting a meniscus or knee cartilage tissue in microgravity. This successful result advances technology for bioprinting tissue to treat musculoskeletal injuries on long-term spaceflight or in extraterrestrial settings where resources and supply capacities are limited.
BFF Meniscus-2 evaluated using the BioFabrication Facility to 3D print knee cartilage tissue using bioinks and cells. The meniscus is the first engineered tissue of an anatomically relevant shape printed on the station. Manufactured human tissues have potential as alternatives to donor organs, which are in short supply. Bioprinting in microgravity overcomes some of the challenges present in Earth’s gravity, such as deformation or collapse of tissue structures.
A human knee meniscus 3D bioprinted in space using the International Space Station’s BioFabrication Facility.Redwire Complex cultures of central nervous system cells known as brain organoids can be maintained in microgravity for long periods of time and show faster development of neurons than cultures on Earth. These findings could help researchers develop treatments for neurodegenerative diseases on Earth and address potential adverse neurological effects of spaceflight.
Cosmic Brain Organoids examined growth and gene expression in 3D organoids created with neural stem cells from individuals with primary progressive multiple sclerosis and Parkinson’s disease. Results could improve understanding of these neurological diseases and support development of new treatments. Researchers plan additional studies on the underlying causes of the accelerated neuron maturation.
Neural growth in brain organoids that spent more than a month in space. Jeanne Frances Loring, National Stem Cell Foundation Researchers demonstrated that induced pluripotent stem cells (iPSCs) can be processed in microgravity using off the-shelf cell culture materials. Using standard laboratory equipment and protocols could reduce costs and make space-based biomedical research accessible to a broader range of scientists and institutions.
Stellar Stem Cells Ax-2 evaluated how microgravity affects methods used to generate and grow stem cells into a variety of tissue types on the ground. iPSCs can give rise to any type of cell or tissue in the human body, and insight into processing in space could support their use in regenerative medicine and future large-scale biomanufacturing of cellular therapeutics in space.
NASA astronaut Peggy Whitson, an Axiom Mission 2 crew member, works on stem cell research on a previous mission. NASA/Shane KimbroughView the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.