Members Can Post Anonymously On This Site
Spacelab 1: A Model for International Cooperation
-
Similar Topics
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A SWOT data visualization shows water on the northern side of Greenland’s Dickson Fjord at higher levels than on the southern side on Sept. 17, 2023. A huge rockslide into the fjord the previous day led to a tsunami lasting nine days that caused seismic rumbling around the world. NASA Earth Observatory Data from space shows water tilting up toward the north side of the Dickson Fjord as it sloshed from south to north and back every 90 seconds for nine days after a 2023 rockslide.
The international Surface Water and Ocean Topography (SWOT) satellite mission, a collaboration between NASA and France’s CNES (Centre National d’Études Spatiales), detected the unique contours of a tsunami that sloshed within the steep walls of a fjord in Greenland in September 2023. Triggered by a massive rockslide, the tsunami generated a seismic rumble that reverberated around the world for nine days. An international research team that included seismologists, geophysicists, and oceanographers recently reported on the event after a year of analyzing data.
The SWOT satellite collected water elevation measurements in Dickson Fjord on Sept. 17, 2023, the day after the initial rockslide and tsunami. The data was compared with measurements made under normal conditions a few weeks prior, on Aug. 6, 2023.
In the data visualization (above), colors toward the red end of the scale indicate higher water levels, and blue colors indicate lower-than-normal levels. The data suggests that water levels at some points along the north side of the fjord were as much as 4 feet (1.2 meters) higher than on the south.
“SWOT happened to fly over at a time when the water had piled up pretty high against the north wall of the fjord,” said Josh Willis, a sea level researcher at NASA’s Jet Propulsion Laboratory in Southern California. “Seeing the shape of the wave — that’s something we could never do before SWOT.”
In a paper published recently in Science, researchers traced a seismic signal back to a tsunami that began when more than 880 million cubic feet of rock and ice (25 million cubic meters) fell into Dickson Fjord. Part of a network of channels on Greenland’s eastern coast, the fjord is about 1,772 feet (540 meters) deep and 1.7 miles (2.7 kilometers) wide, with walls taller than 6,000 feet (1,830 meters).
Far from the open ocean, in a confined space, the energy of the tsunami’s motion had limited opportunity to dissipate, so the wave moved back and forth about every 90 seconds for nine days. It caused tremors recorded on seismic instruments thousands of miles away.
From about 560 miles (900 kilometers) above, SWOT uses its sophisticated Ka-band Radar Interferometer (KaRIn) instrument to measure the height of nearly all water on Earth’s surface, including the ocean and freshwater lakes, reservoirs, and rivers.
“This observation also shows SWOT’s ability to monitor hazards, potentially helping in disaster preparedness and risk reduction,” said SWOT program scientist Nadya Vinogradova Shiffer at NASA Headquarters in Washington.
It can also see into fjords, as it turns out.
“The KaRIn radar’s resolution was fine enough to make observations between the relatively narrow walls of the fjord,” said Lee-Lueng Fu, the SWOT project scientist. “The footprint of the conventional altimeters used to measure ocean height is too large to resolve such a small body of water.”
More About SWOT
Launched in December 2022 from Vandenberg Space Force Base in California, SWOT is now in its operations phase, collecting data that will be used for research and other purposes.
The SWOT satellite was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. NASA’s Jet Propulsion Laboratory, managed for the agency by Caltech in Pasadena, California, leads the U.S. component of the project. For the flight system payload, NASA provided the KaRIn instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations. CNES provided the Doppler Orbitography and Radioposition Integrated by Satellite (DORIS) system, the dual frequency Poseidon altimeter (developed by Thales Alenia Space), the KaRIn radio-frequency subsystem (together with Thales Alenia Space and with support from the UK Space Agency), the satellite platform, and ground operations. CSA provided the KaRIn high-power transmitter assembly. NASA provided the launch vehicle and the agency’s Launch Services Program, based at Kennedy Space Center in Florida, managed the associated launch services.
To learn more about SWOT, visit:
https://swot.jpl.nasa.gov
News Media Contacts
Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
2024-153
Share
Details
Last Updated Oct 31, 2024 Related Terms
SWOT (Surface Water and Ocean Topography) Earth Earth Science Earth Science Division Jet Propulsion Laboratory Explore More
6 min read Why NASA’s SPHEREx Mission Will Make ‘Most Colorful’ Cosmic Map Ever
Article 7 hours ago 4 min read NASA’s Perseverance Captures ‘Googly Eye’ During Solar Eclipse
Article 1 day ago 2 min read NASA Brings Drone and Space Rover to Air Show
Article 1 day ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Although no ghouls or goblins or trick-or-treaters come knocking at the International Space Station’s front hatch, crew members aboard the orbiting facility still like to get in the Halloween spirit. Whether individually or as an entire crew, they dress up in sometimes spooky, sometimes scary, but always creative costumes, often designed from materials available aboard the space station. Please enjoy the following scenes from Halloweens past even as we anticipate the costumes of the future.
Left: Wearing a black cape, Expedition 16 NASA astronaut Clayton C. Anderson channels his inner vampire for Halloween 2007. Image credit: courtesy Clayton C. Anderson. Middle: For Halloween 2009, the Expedition 21 crew shows off its costumes. Right: Expedition 21 NASA astronaut Nicole P. Stott shows off her Halloween costume.
Left: An orange dressed as a pumpkin for Halloween, courtesy of Expedition 21 NASA astronaut Nicole P. Stott. Middle: Italian Space Agency astronaut Luca S. Parmitano finally gets his wish to fly like Superman during Expedition 37. Right: Who’s that behind the scary mask? None other than NASA astronaut Scott J. Kelly celebrating Halloween in 2015 during his one-year mission.
Left: Expedition 53 Commander NASA astronaut Randolph J. “Randy” Bresnik showing off his costume. Middle: Expedition 53 NASA astronaut Joseph M. Acaba wearing Halloween colors. Right: Expedition 53 European Space Agency astronaut Paolo A. Nespoli showing off his Spiderman skills.
Left: Expedition 57 crewmembers in their Halloween best – European Space Agency astronaut and Commander Alexander Gerst, left, and NASA astronaut Serena M. Auñón-Chancellor. Right: Members of Expedition 61, NASA astronaut Christina H. Koch, top left, European Space Agency astronaut Luca S. Parmitano, NASA astronaut Andrew R. “Drew” Morgan, and NASA astronaut Jessica U. Meir, show off their Halloween spirit in 2019.
Left: Expedition 66 crewmembers NASA astronaut R. Shane Kimbrough, left, Thomas G. Pesquet of the European Space Agency, Akihiko Hoshide of the Japan Aerospace Exploration Agency, and NASA astronaut Mark T. Vande Hei showing off their Halloween cards. Right: A hand rising from the grave?
In October 2021, Crew-3 NASA astronauts Raja J. Chari, Thomas H. Marshburn, Kayla S. Barron, and Matthias J. Maurer of the European Space Agency (ESA), had some undisclosed plans for when they reached the space station just before Halloween. However, bad weather at NASA’s Kennedy Space Center in Florida thwarted those super-secret spooky Halloween plans, delaying their launch until Nov. 11. Undeterred, Expedition 66 crewmembers who awaited them aboard the station held their own Halloween shenanigans. ESA astronaut Thomas G. Pesquet posted on social media that “Strange things were happening on ISS for Halloween. Aki rising from the dead (or is it from our observation window?),” referring to fellow crew member Akihiko Hoshide of the Japan Aerospace Exploration Agency.
Left: In 2022, Expedition 68 astronauts Koichi Wakata of the Japan Aerospace Exploration Agency, left, and NASA astronauts Francisco “Frank” C. Rubio, Nicole A. Mann, and Josh A. Cassada dressed as popular video game and cartoon characters, using stowage containers in their Halloween costumes and holding improvised trick-or-treat bags. Middle: Expedition 70 astronauts Jasmin Moghbeli of NASA, left, Satoshi Furakawa of the Japan Aerospace Exploration Agency, NASA astronaut Loral A. O’Hara, and European Space Agency astronaut Andreas E. Mogensen celebrate Halloween 2023. Right: The Expedition 72 crew has decorated the Node 1 galley with a pumpkin in preparation for Halloween 2024.
The spookiness will continue …
Explore More
9 min read 60 Years Ago: The First Flight of the Lunar Landing Research Vehicle
Article 1 day ago 11 min read 35 Years Ago: STS-34 Sends Galileo on its Way to Jupiter
Article 1 week ago 12 min read Five Years Ago: First All Woman Spacewalk
Article 2 weeks ago View the full article
-
By NASA
At any given time, crew members are conducting dozens of scientific investigations and technology demonstrations on the International Space Station. If you’re curious about this work, the Space Station Research Xplorer (SSRX) mobile application provides information on these experiments, special facilities on the station, research benefits, and published results. The app includes summaries of each investigation along with photos, videos, interactive media, and additional reference links.
Screenshot from the Space Station Research Xplorer (SSRX) mobile app
Other sections include:
Facilities – brief descriptions of research facilities browsable by research category, with images and information on sponsoring agency and organization, research manager, results publications, and media links when available. Benefits – information on how the research benefits space exploration and people on Earth, with sections offering more in-depth understanding of the types of benefits, access to the latest ISS Benefits for Humanity publication, and relevant videos and audio podcasts. Results – listings of peer-reviewed scientific publications in which papers related to station research appeared in a given fiscal year and summaries of recent and especially compelling findings that advance science, technology, and education, as well as promote the commercialization of space and benefit humankind. This section also provides access to the latest Annual Highlights of Results publication. LabTour – exploration of the interior of the station’s Columbus, Kibo, and Destiny modules, including tapping on any of the research racks to learn more information and an experiment description when available. Media – a variety of imagery, videos, fact sheets, and social media posts on space station research. Links – related space station research and technology demonstration opportunities, mobile apps, web landing pages, podcasts, social media, images, videos, educational resources, and more. The SSRX app is updated each month and available for iPhone, iPad, and Android platforms. The app is even available to the astronauts currently in space.
Download the Space Station Research Xplorer (SSRX) mobile app from:
Apple Google Play
NASA also offers apps that provide interactive experiences with two major areas of space station research: plant growth and human health.
Screenshot from the NASA Science Investigations: Plant Growth app On the NASA Science Investigations: Plant Growth app, your task as the newest member of the crew is to familiarize yourself with the interior of the station, which is the size of a five-bedroom house and contains a wide variety of equipment and tools. Once you are ready, help with a plant growth experiment, conducting tasks such as watering, trimming, and analyzing plant growth. Future missions need the ability to grow plants in space to provide fresh food for crew members and to contribute to life support systems, and the space station has hosted multiple experiments working toward this goal. Researchers have grown lettuces, Chinese cabbage, mustard greens, kale, tomatoes, radishes, and chile peppers on orbit. Now it’s your turn!
Download the NASA Science Investigations: Plant Growth mobile app from:
App Store Google Play
Screenshot from the NASA Science Investigations: Humans in Space app Your job on the NASA Science Investigations: Humans in Space app is to follow instructions provided and make sure the H-II Transfer Vehicle is successfully berthed to the station. This uncrewed spacecraft from JAXA (Japan Aerospace Exploration Agency) is one of several that make regular visits from Earth, bringing supplies, scientific experiments, and treats for the crew such as fresh fruit. You perform this task while experiencing the effects of microgravity, including adjusting to being nearly weightless, the lack of references such as up or down, and tools that float away.
Download the NASA Science Investigations: Humans in Space mobile app from:
App Store Google Play
Keep Exploring Discover More Topics
Opportunities and Information for Researchers
Latest News from Space Station Research
Station Benefits for Humanity
Biological & Physical Science Stories
View the full article
-
By NASA
NASA astronaut Jessica Meir conducts cardiac research using tissue chip platforms in the Life Sciences Glovebox aboard space station in March of 2022.NASA The International Space Station offers a unique microgravity environment where cells outside the human body behave similarly to how they do inside the human body. Tissue chips are small devices containing living cells that mimic complex functions of specific human tissues and organs. Researchers can run experiments using tissue chips aboard space station to understand disease progression and provide faster and safer alternatives for preparing medicine for clinical trials.
Researchers placed engineered heart tissues on tissue chips sent to study how microgravity impacts cardiac functions in space. Data collected by the chips showed these heart tissues experienced impaired contractions, subcellular structural changes, and increased stress, which can lead to tissue damage and disease. Previous studies conducted on human subjects have displayed similar outcomes. In the future, engineered heart tissues could accurately model the effects of spaceflight on cardiac function.
Another investigation used muscle-on-a-chip technology to evaluate whether engineered muscle tissues can mimic the characteristics of reduced muscle regeneration in microgravity. Researchers found that engineered muscle-on-a-chip platforms are viable for studying muscle-related bioprocesses in space. In addition, samples treated with drugs known to stimulate muscle regeneration showed partial prevention of the effects of microgravity. These results demonstrate that muscle-on-chip can also be used to study and identify drugs that may prevent muscle decline in space and age-related muscle decline on Earth.
NASA astronaut Megan McArthur works on the Cardinal Muscle investigation in the Life Sciences Glovebox aboard the space station in August of 2021.NASA Keep Exploring Discover More Topics From NASA
Benefits to Humanity
Humans In Space
International Space Station
Space Station Research and Technology
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.