Jump to content

Astronomers Find Highly Elliptical Disk Around Young Star


HubbleSite

Recommended Posts

low_STSCI-H-p0728a-k-1340x520.png

Dust and debris parade in an extremely misshapen ring around the young star, HD 15115. The disk, seen edge-on with NASA's Hubble Space Telescope, is the dense blue line extending from the star to the upper right and lower left of the image. The disk appears thicker at upper right than at lower left, evidence of its lopsided structure. Astronomers think the disk's needle-like look is caused by dust particles following a highly elliptical orbit around the star. The lopsidedness may have been caused by planets sweeping up debris in the disk or by the gravity of a nearby star. An occulting mask on Hubble's Advanced Camera for Surveys was used to block out the bright starlight in order to see the dim disk. The occulting masks can be seen in the image as the dark circle in the center and the dark bar on the left. The star is behind the central mask. The Hubble image was taken on July 17, 2006. Follow-up observations in 2006 and 2007 with the W.M. Keck Observatory investigated the odd disk further.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Hubble Space Telescope Home NASA’s Hubble, Webb… Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   6 Min Read NASA’s Hubble, Webb Probe Surprisingly Smooth Disk Around Vega
      Teams of astronomers used the combined power of NASA’s Hubble and James Webb space telescopes to revisit the legendary Vega disk. Credits:
      NASA, ESA, CSA, STScI, S. Wolff (University of Arizona), K. Su (University of Arizona), A. Gáspár (University of Arizona) In the 1997 movie “Contact,” adapted from Carl Sagan’s 1985 novel, the lead character scientist Ellie Arroway (played by actor Jodi Foster) takes a space-alien-built wormhole ride to the star Vega. She emerges inside a snowstorm of debris encircling the star — but no obvious planets are visible.
      It looks like the filmmakers got it right.
      A team of astronomers at the University of Arizona, Tucson used NASA’s Hubble and James Webb space telescopes for an unprecedented in-depth look at the nearly 100-billion-mile-diameter debris disk encircling Vega. “Between the Hubble and Webb telescopes, you get this very clear view of Vega. It’s a mysterious system because it’s unlike other circumstellar disks we’ve looked at,” said Andras Gáspár of the University of Arizona, a member of the research team. “The Vega disk is smooth, ridiculously smooth.”
      The big surprise to the research team is that there is no obvious evidence for one or more large planets plowing through the face-on disk like snow tractors. “It’s making us rethink the range and variety among exoplanet systems,” said Kate Su of the University of Arizona, lead author of the paper presenting the Webb findings.
      [left] A Hubble Space Telescope false-color view of a 100-billion-mile-wide disk of dust around the summer star Vega. Hubble detects reflected light from dust that is the size of smoke particles largely in a halo on the periphery of the disk. The disk is very smooth, with no evidence of embedded large planets. The black spot at the center blocks out the bright glow of the hot young star.
      [right] The James Webb Space Telescope resolves the glow of warm dust in a disk halo, at 23 billion miles out. The outer disk (analogous to the solar system’s Kuiper Belt) extends from 7 billion miles to 15 billion miles. The inner disk extends from the inner edge of the outer disk down to close proximity to the star. There is a notable dip in surface brightness of the inner disk from approximately 3.7 to 7.2 billion miles. The black spot at the center is due to lack of data from saturation. NASA, ESA, CSA, STScI, S. Wolff (University of Arizona), K. Su (University of Arizona), A. Gáspár (University of Arizona)
      Download this image

      Webb sees the infrared glow from a disk of particles the size of sand swirling around the sizzling blue-white star that is 40 times brighter than our Sun. Hubble captures an outer halo of this disk, with particles no bigger than the consistency of smoke that are reflecting starlight.
      The distribution of dust in the Vega debris disk is layered because the pressure of starlight pushes out the smaller grains faster than larger grains. “Different types of physics will locate different-sized particles at different locations,” said Schuyler Wolff of the University of Arizona team, lead author of the paper presenting the Hubble findings. “The fact that we’re seeing dust particle sizes sorted out can help us understand the underlying dynamics in circumstellar disks.”
      The Vega disk does have a subtle gap, around 60 AU (astronomical units) from the star (twice the distance of Neptune from the Sun), but otherwise is very smooth all the way in until it is lost in the glare of the star. This shows that there are no planets down at least to Neptune-mass circulating in large orbits, as in our solar system, say the researchers.
      Hubble acquired this image of the circumstellar disk around the star Vega using the Space Telescope Imaging Spectrograph (STIS). NASA, ESA, CSA, STScI, S. Wolff (University of Arizona), K. Su (University of Arizona), A. Gáspár (University of Arizona)
      Download this image

      “We’re seeing in detail how much variety there is among circumstellar disks, and how that variety is tied into the underlying planetary systems. We’re finding a lot out about the planetary systems — even when we can’t see what might be hidden planets,” added Su. “There’s still a lot of unknowns in the planet-formation process, and I think these new observations of Vega are going to help constrain models of planet formation.”
      Disk Diversity
      Newly forming stars accrete material from a disk of dust and gas that is the flattened remnant of the cloud from which they are forming. In the mid-1990s Hubble found disks around many newly forming stars. The disks are likely sites of planet formation, migration, and sometimes destruction. Fully matured stars like Vega have dusty disks enriched by ongoing “bumper car” collisions among orbiting asteroids and debris from evaporating comets. These are primordial bodies that can survive up to the present 450-million-year age of Vega (our Sun is approximately ten times older than Vega). Dust within our solar system (seen as the Zodiacal light) is also replenished by minor bodies ejecting dust at a rate of about 10 tons per second. This dust is shoved around by planets. This provides a strategy for detecting planets around other stars without seeing them directly – just by witnessing the effects they have on the dust.
      “Vega continues to be unusual,” said Wolff. “The architecture of the Vega system is markedly different from our own solar system where giant planets like Jupiter and Saturn are keeping the dust from spreading the way it does with Vega.”
      Webb acquired this image of the circumstellar disk around the star Vega using the Mid-Infrared Instrument (MIRI). NASA, ESA, CSA, STScI, S. Wolff (University of Arizona), K. Su (University of Arizona), A. Gáspár (University of Arizona)
      Download this image

      For comparison, there is a nearby star, Fomalhaut, which is about the same distance, age and temperature as Vega. But Fomalhaut’s circumstellar architecture is greatly different from Vega’s. Fomalhaut has three nested debris belts.
      Planets are suggested as shepherding bodies around Fomalhaut that gravitationally constrict the dust into rings, though no planets have been positively identified yet. “Given the physical similarity between the stars of Vega and Fomalhaut, why does Fomalhaut seem to have been able to form planets and Vega didn’t?” said team member George Rieke of the University of Arizona, a member of the research team. “What’s the difference? Did the circumstellar environment, or the star itself, create that difference? What’s puzzling is that the same physics is at work in both,” added Wolff.
      First Clue to Possible Planetary Construction Yards
      Located in the summer constellation Lyra, Vega is one of the brightest stars in the northern sky. Vega is legendary because it offered the first evidence for material orbiting a star — presumably the stuff for making planets — as potential abodes of life. This was first hypothesized by Immanuel Kant in 1775. But it took over 200 years before the first observational evidence was collected in 1984. A puzzling excess of infrared light from warm dust was detected by NASA’s IRAS (Infrared Astronomy Satellite). It was interpreted as a shell or disk of dust extending twice the orbital radius of Pluto from the star.
      In 2005, NASA’s infrared Spitzer Space Telescope mapped out a ring of dust around Vega. This was further confirmed by observations using submillimeter telescopes including Caltech’s Submillimeter Observatory on Mauna Kea, Hawaii, and also the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, and ESA’s (European Space Agency’s) Herschel Space Telescope, but none of these telescopes could see much detail. “The Hubble and Webb observations together provide so much more detail that they are telling us something completely new about the Vega system that nobody knew before,” said Rieke.
      Two papers (Wolff et al. and Su et. al.) from the Arizona team will be published in The Astrophysical Journal.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Explore More:

      Finding Planetary Construction Zones


      The science paper by Schuyler Wolff et al., PDF (3.24 MB)


      The science paper by Kate Su et al., PDF (2.10 MB)

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Facebook logo @NASAWebb @NASAWebb Instagram logo @NASAWebb Media Contacts:
      Claire Andreoli (claire.andreoli@nasa.gov), Laura Betz (laura.e.betz@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Ray Villard, Christine Pulliam
      Space Telescope Science Institute, Baltimore, MD
      Share








      Details
      Last Updated Nov 01, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Goddard Space Flight Center Hubble Space Telescope James Webb Space Telescope (JWST) Stars Keep Exploring Discover More Topics From Hubble and Webb
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      James Webb Space Telescope


      Space Telescope


      Hubble vs. Webb



      Hubble Focus: Strange New Worlds


      NASA’s Hubble Space Telescope team has released a new edition in the Hubble Focus e-book series, called “Hubble Focus: Strange…

      View the full article
    • By NASA
      23 Min Read The Marshall Star for October 30, 2024
      Editor’s Note: Starting Nov. 4, the Office of Communications at NASA’s Marshall Space Flight Center will no longer publish the Marshall Star on nasa.gov. The last public issue will be Oct. 30. To continue reading Marshall news, visit nasa.gov/marshall.
      Marshall Team Members View Progress Toward Future Artemis Flights
      Blake Stewart, lead of the Thrust Vector Control Test Laboratory inside Building 4205 at NASA’s Marshall Space Flight Center, explains how his team tests the mechanisms that steer engine and booster nozzles of NASA’s SLS (Space Launch System) rocket to a group of Marshall team members Oct. 24. The employees were some of the more than 500 team members who viewed progress toward future Artemis flights on bus tours offered by the SLS Program. Building 4205 is also home to the Propulsion Research and Development Laboratory that includes 26 world-class labs and support areas that help the agency’s ambitious goals for space exploration. The Software Integration Lab and the Software Integration Test Facility are among the labs inside supporting SLS that employees visited on the tour. (NASA/Sam Lott)
      A group of Marshall team members gather below the development test article for the universal stage adapter that will be used on the second variant of SLS, called Block 1B. The universal stage adapter is located inside one of the high bays in building 4619. The universal stage adapter will connect the Orion spacecraft to the SLS exploration upper stage. With the exploration upper stage, which will be powered by four RL10-C3 engines, SLS will be capable of lifting more than 105 metric tons (231,000 pounds) from Earth’s surface. This extra mass capability enables SLS to send multiple large payloads to the Moon on the same launch. (NASA/Sam Lott)
      Marshall team members view the Orion Stage Adapters for the Artemis II and Artemis III test flights inside Building 4708. The Orion Stage Adapter, built at Marshall, connects the rocket’s interim cryogenic propulsion stage to the Orion spacecraft. The Orion Stage Adapter for Artemis II is complete and ready to be shipped to Kennedy Space Center. The Oct. 24 tours featured four stops that also included opportunities to see the Artemis III launch vehicle stage adapter, and the development test article for the SLS Block 1B universal stage adapter that will begin flying on Artemis IV. Additionally, programs and offices such as the Human Landing Systems Development Office and the Science and Technology Office hosted exhibits in the lobby of Building 4220, where employees gathered for the tours. (NASA/Jonathan Deal)
      › Back to Top
      Center Commemorates National Disability Employment Awareness Month
      By Serena Whitfield
      In conjunction with National Disability Employment Awareness Month, NASA’s Marshall Space Flight Center held anagencywide virtual event hosted by the Office of Diversity and Equal Opportunity on Oct. 24.
      Marshall team members watched the Webex event in Building 4221.
      From left, Tora Henry, director of the Office of Diversity and Equal Opportunity at Marshall, Chip Dobbs, supply management specialist at Marshall, and Marshall Associate Director Roger Baird pause for a photo following the Oct. 24 virtual event the center hosted as part of National Disability Awareness Month. NASA/Serena Whitfield In alignment with the month’s national theme, “Access to Good Jobs for All,” the program highlighted the perspectives of people with disabilities in the workplace as they navigate the work lifecycle – from applying, to onboarding, career growth and advancement, and day-to-day engagements.
      The event began with Marshall Associate Director Roger Baird welcoming NASA team members.
      “NASA is dedicated to inclusive hiring practices and providing pathways for good jobs and career success for all employees, including workers with disabilities,” Baird said. “Some ways we do this is through targeted recruitment of qualified individuals with disabilities through accessible vacancy announcements, outreach to students with disabilities, and community partnerships.”
      NASA also utilizes Schedule A Authority, a non-competitive Direct Hiring Authority to hire people with disabilities without competition.
      Baird introduced event moderator Joyce Meier, logistics manager at Marshall, who welcomed panelists Casey Denham, Kathy Clark, Paul Spann, and Paul Sullivan, all NASA team members. The panelists from the disability community discussed their work lifecycles, lessons learned in the workplace, and shared a demonstration on colorblindness and its impact.
      Denham discussed some of the best practices for onboarding employees with neurodiversity, a term used to describe people whose brains develop or work differently than the typical brain.
      Marshall team members watch the agencywide virtual event commemorating National Disability Employment Awareness Month. NASA/Serena Whitfield Clark talked about what can be done to continue raising awareness and advocating for disability rights. She said NASA empowers its workforce with knowledge so they can be informed allies to team members with disabilities and foster a safe and inclusive working environment. 
      Spann gave insight into practical steps employers can take to accommodate candidates with deafness, and Sullivan spoke about some key considerations NASA managers should keep in mind to make the job application process more accessible to candidates with low vision.
      Guest speaker Chip Dobbs, supply management specialist at Marshall, talked about his personal experiences with being deaf. Dobbs has worked at NASA for 29 years and said he has never let his disability hold him back, but instead uses it as a gateway to inspire and connect with others.
      The event ended with closing remarks from Tora Henry, director of the Office of Diversity and Equal Opportunity at Marshall. The virtual event placed importance on planning for NASA’s future by promoting equality and addressing the barriers people with disabilities face in the workplace. 
      “As we celebrate National Disability Employment Awareness Month, keep in mind that NASA’s mission of exploring the unknown and pushing the boundaries of human potential requires the contributions of every mind, skill set, and perspective,” Baird said. “Our commitment to inclusivity ensures that no talent goes untapped, and no idea goes unheard because together, we’re not just reaching for the stars, we’re showing the world what’s possible when everyone has a seat at the table.”
      A recording of the event is available here. Learn more about NASA’s agencywide resources for individuals with disabilities as well as the agency’s Disability Employment Program.
      Whitfield is an intern supporting the Marshall Office of Communications.
      › Back to Top
      Farley Davis Receives NASA’s Blue Marble Award
      By Wayne Smith
      Farley Davis, manager of the Environmental Engineering and Occupational Health Office at NASA’s Marshall Space Flight Center, has received a 2024 Blue Marble Award from the agency.
      NASA’s Office of Strategic Infrastructure, Environmental Management Division presented the 2024 Blue Marble Awards on Oct. 8 at the agency’s Johnson Space Center. The Blue Marble Awards Program recognizes teams and individuals demonstrating exceptional environmental leadership in support of NASA’s missions and goals. In 2024, the awards included five categories: the Director’s Award, Environmental Quality, Excellence in Energy and Water Management, Excellence in Resilience or Climate Change Adaptation, and new this year: Excellence in Site Remediation. 
      Farley Davis, center, manager of the Environmental Engineering and Occupational Health Office at NASA’s Marshall Space Flight Center, with his NASA Blue Marble Award. Joining him, from left, are Joel Carney, assistant administrator, Strategic Infrastructure; Denise Thaller, deputy assistant administrator, Strategic Infrastructure; Charlotte Betrand, director, Environmental Management; and June Malone, director, Office of Center Operations at Marshall. NASA Davis was recognized for “exceptional leadership and outstanding commitment above and beyond individual job responsibilities, to assist Marshall and the agency in enabling environmentally sound mission success.”
      “The award was unexpected, and I am very thankful to receive the Environmental Management Director’s Blue Marble Award,” said Davis, who has been at Marshall for 33 years. “Collectively, Marshall’s environmental engineering team has made this award possible with their diligent support for many years keeping the center’s environmental compliance at the forefront. I will cherish the award for the rest of my life.”
      June Malone, director of the Office of Center Operations at Marshall, credited Davis for his environmental leadership and mentoring team members.
      “Farley’s attitude of professionalism and personal responsibility for the development and implementation of well-grounded environmental programs has increased Marshall’s sustainability and prevented pollution,” Malone said. “His tireless leadership has resulted in compliance with federal, state, and local environmental laws and regulations, and his creative solution-oriented approaches to environmental stewardship have restored contaminated areas.”
      Charlotte Bertrand, director of the Environmental Management Division at NASA Headquarters, said it was an honor to select Davis for the 2024 Blue Marble Director’s Award.
      “Farley’s incredibly distinguished career with NASA reflects the award’s intention to recognize exceptional leadership by an individual in assisting the agency in enabling environmentally sound mission success,” Bertrand said.
      Please see the awards program for additional information.
      Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.
      › Back to Top
      Take 5 with Brooke Rhodes
      By Wayne Smith
      When human exploration of Mars becomes a reality and more than just the stuff of science fiction, Brooke Rhodes will be eager to investigate what astronauts discover on the Red Planet.
      From listening to her talk about her work as an engineer at NASA’s Marshall Space Flight Center, it’s easy to grasp her excitement about the future of human space exploration and NASA’s Moon to Mars architecture.
      Brooke Rhodes is currently on detail as the branch chief of the Avionics and Software Ground Systems Test Branch at NASA’s Marshall Space Flight Center. Working in the Instrument Development, Integration and Test Branch for the past seven years, she’s been responsible for the integration and testing of International Space Station payloads. NASA “I can’t wait for the Mars rovers to have some human company,” said Rhodes, who recently began a detail as the chief of Marshall’s Avionics and Software Ground Systems Test Branch. “I need to know if we can grow Mark Watney (of The Martian movie fame) quantities of potatoes up there. Everything we do to prepare to return humans to the Moon and establish a presence in deep space is building toward putting boots on Mars. It’s an honor and a privilege to be even a small part of it.”
      Rhodes also appreciates the responsibility she takes on in any form in NASA’s exploration missions to benefit humanity. After all, she has worked on hardware for the International Space Station and has had supporting roles for the Mars Ascent Vehicle and Artemis missions.
      “We at Marshall hold an incredible amount of responsibility: responsibility for the welfare of the crew on the space station, responsibility for the welfare of the crew on the Artemis missions, and even the welfare of humanity through the responsibility we have for science on the station and elsewhere,” said Rhodes, who is from Petal, Mississippi, and has worked at Marshall for seven years. “When your missions are as critical as ours, it’s nearly impossible to not be motivated.”
      Now, on to Mars.
      Question: What is your position and what are your primary responsibilities?
      Rhodes: I recently began the detail as the branch chief of the Avionics and Software Ground Systems Test Branch, ES53. Our branch is primarily responsible for the development of hardware-in-the-loop and software development facilities for the Artemis and MAV (Mars Ascent Vehicle) missions. My home organization is ES61, the Instrument Development, Integration and Test Branch, where I’ve been responsible for the integration and testing of International Space Station payloads for the past several years.
      Rhodes with a box of sample cartridge assemblies (SCAs) headed for the International Space Station. Photo courtesy of Brooke Rhodes Question: What has been the proudest moment of your career and why?
      Rhodes: One really cool moment that sticks out was the first time I saw hardware I had been responsible for being used in space. I spent several years as the integration and test lead of the Materials Science Research Rack (MSRR) Sample Cartridge Assemblies (SCAs) and we shipped our first batch of SCAs to the space station in 2018. That shipment was the culmination of years of intense effort and teamwork, so to see them onboard and about to enable materials science was an incredible feeling. There was a moment in particular that felt a bit surreal: prior to our SCA shipment the crew discovered they were missing a couple of fasteners from the onboard furnace, so we had those shipped to us from Europe and I packed them into the SCA flight foam before they shipped to the launch site. The next time I saw those fasteners they were being held up to a camera by one of the crew members, asking if those were the ones they needed for the furnace. Putting fasteners into foam didn’t take much effort, but what it represented was much bigger: being a small part of an international effort to enable science off the Earth, for the Earth, was an incredible moment I’ll carry with me for the rest of my career.
      Question: Who or what inspired you to pursue an education/career that led you to NASA and Marshall?
      Rhodes: I had a couple of lightbulb moments my junior year of high school that eventually set me on my current career path. I very specifically recall sitting in my physics I class and learning how to calculate the planetary motion of Jupiter and thinking I had never learned about anything cooler. Even then, though, NASA didn’t really enter my thoughts. Growing up, working for NASA didn’t even occur to me as something people could actually do – being a “rocket scientist” was just an abstract concept people threw around to indicate something was difficult.
      That changed later when the same teacher who had been teaching us planetary motion took us on a field trip to Kennedy Space Center. The tour guide showing us around the Vehicle Assembly Building was a young employee who said he had majored in aerospace engineering at the University of Tennessee. That was the second lightbulb moment: here was a young person from the Southeast, just like me, who had done something tangible in order to work for NASA. That seemed easy enough, so I decided to major in aerospace engineering at Mississippi State and one day work for NASA. That turned out to not be easy, but definitely doable.
      While at Mississippi State, I was able to complete three NASA internships, one at the Jet Propulsion Laboratory and two at Marshall. Eventually, I was hired on full-time at NASA’s Johnson Space Center, but wound up making my way back to Marshall, where I’ve been ever since. There’s no place on the planet better for enthusiasts of both aerospace engineering and football.
      NASA astronaut Ricky Arnold, a space station crew member for Expedition 56, holds up a fastener for the Materials Science Laboratory, which Rhodes packed for shipment to the orbiting laboratory in 2018. “Putting fasteners into foam didn’t take much effort, but what it represented was much bigger: being a small part of an international effort to enable science off the Earth, for the Earth, was an incredible moment I’ll carry with me for the rest of my career.” Photo courtesy of Brooke Rhodes Interestingly, my physics I teacher’s name was Mrs. Rhodes, and I used to joke with my classmates that I wanted to be Mrs. Rhodes when I grew up. I didn’t actually mean that literally, but then I married Matthew Rhodes and did, indeed, become Mrs. Rhodes.
      Question: What advice do you have for employees early in their NASA career or those in new leadership roles?
      Rhodes: Scary is good. If you aren’t stepping out of your comfort zone you probably aren’t growing, and if you’re experiencing imposter syndrome, you’re probably the right person for the job.
      Question: What do you enjoy doing with your time while away from work?
      Rhodes: While away from work I tend to invest too much of my mental wellbeing into football. To recover from the stresses of work and my football teams being terrible, I like to explore National Parks. The U.S. has some of the most diverse scenery anywhere in the world, and I love getting outside and exploring it.
      Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.
      › Back to Top
      Planets Beware: NASA Unburies Danger Zones of Star Cluster
      Most stars form in collections, called clusters or associations, that include very massive stars. These giant stars send out large amounts of high-energy radiation, which can disrupt relatively fragile disks of dust and gas that are in the process of coalescing to form new planets.
      A team of astronomers used NASA’s Chandra X-ray Observatory, in combination with ultraviolet, optical, and infrared data, to show where some of the most treacherous places in a star cluster may be, where planets’ chances to form are diminished.
      In this new composite image, Chandra data (purple) shows the diffuse X-ray emission and young stars in Cygnus OB2, and infrared data from NASA’s now-retired Spitzer Space Telescope (red, green, blue, and cyan) reveals young stars and the cooler dust and gas throughout the region.X-ray: NASA/CXC/SAO/J. Drake et al, IR: NASA/JPL-Caltech/Spitzer; Image Processing: NASA/CXC/SAO/N. Wolk The target of the observations was Cygnus OB2, which is the nearest large cluster of stars to our Sun – at a distance of about 4,600 light-years. The cluster contains hundreds of massive stars as well as thousands of lower-mass stars. The team used long Chandra observations pointing at different regions of Cygnus OB2, and the resulting set of images were then stitched together into one large image.
      The deep Chandra observations mapped out the diffuse X-ray glow in between the stars, and they also provided an inventory of the young stars in the cluster. This inventory was combined with others using optical and infrared data to create the best census of young stars in the cluster.
      In a new composite image, the Chandra data (purple) shows the diffuse X-ray emission and young stars in Cygnus OB2, and infrared data from NASA’s now-retired Spitzer Space Telescope (red, green, blue, and cyan) reveals young stars and the cooler dust and gas throughout the region.
      In these crowded stellar environments, copious amounts of high-energy radiation produced by stars and planets are present. Together, X-rays and intense ultraviolet light can have a devastating impact on planetary disks and systems in the process of forming.
      Planet-forming disks around stars naturally fade away over time. Some of the disk falls onto the star and some is heated up by X-ray and ultraviolet radiation from the star and evaporates in a wind. The latter process, known as “photoevaporation,” usually takes between five and 10 million years with average-sized stars before the disk disappears. If massive stars, which produce the most X-ray and ultraviolet radiation, are nearby, this process can be accelerated.
      The researchers using this data found clear evidence that planet-forming disks around stars indeed disappear much faster when they are close to massive stars producing a lot of high-energy radiation. The disks also disappear more quickly in regions where the stars are more closely packed together.
      For regions of Cygnus OB2 with less high-energy radiation and lower numbers of stars, the fraction of young stars with disks is about 40%. For regions with more high-energy radiation and higher numbers of stars, the fraction is about 18%. The strongest effect – meaning the worst place to be for a would-be planetary system – is within about 1.6 light-years of the most massive stars in the cluster.
      A separate study by the same team examined the properties of the diffuse X-ray emission in the cluster. They found that the higher-energy diffuse emission comes from areas where winds of gas blowing away from massive stars have collided with each other. This causes the gas to become hotter and produce X-rays. The less energetic emission probably comes from gas in the cluster colliding with gas surrounding the cluster.
      Two separate papers describing the Chandra data of Cygnus OB2 are available. The paper about the planetary danger zones, led by Mario Giuseppe Guarcello (National Institute for Astrophysics in Palermo, Italy), appeared in the November 2023 issue of the Astrophysical Journal Supplement Series, and is available here. The paper about the diffuse emission, led by Juan Facundo Albacete-Colombo (University of Rio Negro in Argentina) was published in the same issue of Astrophysical Journal Supplement, and is available here.
      NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      NASA’s Jet Propulsion Laboratory (JPL) managed the Spitzer Space Telescope mission for the agency’s Science Mission Directorate until the mission was retired in January 2020. Science operations were conducted at the Spitzer Science Center at Caltech. Spacecraft operations were based at Lockheed Martin Space in Littleton, Colorado. Data are archived at the Infrared Science Archive operated by IPAC at Caltech. Caltech manages JPL for NASA.
      › Back to Top
      NASA Begins New Deployable Solar Array Tech Demo on Pathfinder Spacecraft
      NASA recently evaluated initial flight data and imagery from Pathfinder Technology Demonstrator-4 (PTD-4), confirming proper checkout of the spacecraft’s systems including its on-board electronics as well as the payload’s support systems such as the small onboard camera. Shown is a test image of Earth taken by the payload camera, shortly after PTD-4 reached orbit. This camera will continue photographing the technology demonstration during the mission. 
      A test image of Earth taken by NASA’s Pathfinder Technology Demonstrator-4’s onboard camera. The camera will capture images of the Lightweight Integrated Solar Array and anTenna upon deployment.NASA Payload operations are now underway for the primary objective of the PTD-4 mission – the demonstration of a new power and communications technology for future spacecraft. The payload, a deployable solar array with an integrated antenna called the Lightweight Integrated Solar Array and anTenna, or LISA-T, has initiated deployment of its central boom structure. The boom supports four solar power and communication arrays, also called petals. Releasing the central boom pushes the still-stowed petals nearly three feet away from the spacecraft bus. The mission team currently is working through an initial challenge to get LISA-T’s central boom to fully extend before unfolding the petals and beginning its power generation and communication operations.
      Small spacecraft on deep space missions require more electrical power than what is currently offered by existing technology. The four-petal solar array of LISA-T is a thin-film solar array that offers lower mass, lower stowed volume, and three times more power per mass and volume allocation than current solar arrays. The in-orbit technology demonstration includes deployment, operation, and environmental survivability of the thin-film solar array.  
      “The LISA-T experiment is an opportunity for NASA and the small spacecraft community to advance the packaging, deployment, and operation of thin-film, fully flexible solar and antenna arrays in space. The thin-film arrays will vastly improve power generation and communication capabilities throughout many different mission applications,” said John Carr, deputy center chief technologist at NASA’s Marshall Space Flight Center. “These capabilities are critical for achieving higher value science alongside the exploration of deep space with small spacecraft.”
      NASA teams are testing a key technology demonstration known as LISA-T, short for the Lightweight Integrated Solar Array and anTenna. It’s a super compact, stowable, thin-film solar array that when fully deployed in space, offers both a power generation and communication capability for small spacecraft. LISA-T’s orbital flight test is part of the Pathfinder Technology Demonstrator series of missions. (NASA) The Pathfinder Technology Demonstration series of missions leverages a commercial platform which serves to test innovative technologies to increase the capability of small spacecraft. Deploying LISA-T’s thin solar array in the harsh environment of space presents inherent challenges such as deploying large highly flexible non-metallic structures with high area to mass ratios. Performing experiments such as LISA-T on a smaller, lower-cost spacecraft allows NASA the opportunity to take manageable risk with high probability of great return. The LISA-T experiment aims to enable future deep space missions with the ability to acquire and communicate data through improved power generation and communication capabilities on the same integrated array.
      The PTD-4 small spacecraft is hosting the in-orbit technology demonstration called LISA-T. The PTD-4 spacecraft deployed into low Earth orbit from SpaceX’s Transporter-11 rocket, which launched from Space Launch Complex 4E at Vandenberg Space Force Base in California on Aug. 16. Marshall designed and built the LISA-T technology as well as LISA-T’s supporting avionics system. NASA’s Small Spacecraft Technology program, based at NASA’s Ames Research Center and led by the agency’s Space Technology Mission Directorate, funds and manages the PTD-4 mission as well as the overall Pathfinder Technology Demonstration mission series. Terran Orbital Corporation of Irvine, California, developed and built the PTD-4 spacecraft bus, named Triumph.
      › Back to Top
      NASA SPoRT’s Streamflow-AI Helps with Flood Preparedness in Texas
      By Paola Pinto
      For more than two decades, the NASA Short-term Prediction Research and Transition Center (SPoRT) within the NASA Earth Science Office at Marshall Space Flight Center has been at the forefront of developing and maintaining decision-making tools for meteorological predictions.
      This image represents the first instance of predictions getting into moderate flooding in Pine Island Bayou. At 14 feet (start of the moderate flooding category), Cooks Lake Road becomes unsafe for most vehicles. NASA Jonathan Brazzell, a service hydrologist at the National Weather Service (NWS) office in Lake Charles, Louisiana, highlighted a recent example of SPoRT’s impact while he was doing forecasting for Texas streams.
      Brazzell, who manages the South Texas and South Louisiana regions, emphasized the practical applications and significant impacts of the Machine Learning model developed by NASA SPoRT to predict future stream heights, known as the SPoRT Streamflow A.I. During a heavy rainfall event this past spring, he noted the challenge of forecasting flooding beyond 48 hours. SPoRT has worked closely with the NWS offices to develop a machine learning tool capable of predicting river flooding beyond two days and powered by the SPoRT Land Information System.
      “Previously, we relied on actual gauge information and risk assessments based on predicted precipitation,” Brazzell said. “Now, with this machine learning, we have a modeling tool that provides a much-needed predictive capability.”
      During forecasted periods of heavy precipitation from early to mid-May, Brazzell monitored potential flooding events and their magnitude using NASA SPoRT’s Streamflow-AI, which provided essential support to the Pine Island Bayou and Big Cow Creek communities in south Texas.
      Streamflow A.I. enabled local authorities to provide advance notice, allowing residents to prepare adequately for the event. Due to the benefit of three to seven-day flood stage predictions, the accurate forecasts helped county officials decide on road closures and evacuation advisories; community officials advised residents to gather a seven-day supply of necessities and relocate their vehicles, minimizing disruption and potential damage.
      Brazzell highlighted specific instances where the machine learning outputs were critical. For example, during the event that peaked around May 6, Streamflow A.I. accurately predicted the rise in stream height, allowing for timely road closures and advisories. These predictions were shared with county officials and were pivotal in their decision-making process.
      This image shows the water levels after rainfall and predicts a moderate stream height in Pine Island Bayou. NASA Brazzell shared that integrating SPoRT’s machine learning capabilities with their existing tools, such as flood risk mapping, proved invaluable. Although the machine learning outputs had been operational for almost two years after Hurricane Harvey, this season has provided their first significant applications in real-time scenarios due to persistent conditions of below-normal precipitation and ongoing drought.
      He also mentioned the broader applications of Streamflow A.I., including its potential use in other sites beyond those currently being monitored. He expressed interest in expanding the use of machine learning stream height outputs to additional locations, citing the successful application in current sites as a compelling reason for broader implementation.
      NASA SPoRT users’ experiences emphasize how crucial advanced prediction technologies are in hydrometeorology and emergency management operations. Based on Brazzell’s example, it is reasonable to say that the product’s ability to provide accurate, timely data greatly improves decision-making processes and ensures public safety. The partnership between NASA SPoRT and operational agencies like NOAA/NWS and county response teams demonstrates how research and operations can be seamlessly integrated into everyday practices, making a tangible difference in communities vulnerable to high-impact events.
      As the Streamflow A.I. product continues to evolve and expand its applications, it holds significant promise for improving disaster preparedness and response efforts across various regions that experience different types of flooding events.
      The Streamflow-AI product provides a 7-day river height or stage forecasts at select gauges across the south/eastern U.S. You can find the SPoRT training item on Streamflow-AI here.
      Pinto is a research associate at the University of Alabama in Huntsville, specializing in communications and user engagement for NASA SPoRT.
      › Back to Top
      Agency Awards Custodial, Refuse Collection Contract
      NASA has selected All Native Synergies Company of Winnebego, Nebraska, to provide custodial and refuse collection services at the agency’s Marshall Space Flight Center.
      The Custodial and Refuse Collection Services III contract is a firm-fixed-price contract with an indefinite-delivery/indefinite-quantity provision. Its maximum potential value is approximately $33.5 million. The performance period began Oct. 23 and will extend four and a half years, with a one-year base period, four one-year options, and a six-month extension.
      This critical service contract provides custodial and refuse collection services for all Marshall facilities. Work under the contract includes floor maintenance, including elevators; trash removal; cleaning drinking fountains and restrooms; sweeping, mopping, and cleaning building entrances and stairways.
      › Back to Top
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Permafrost Tunnel north of Fairbanks, Alaska, was dug in the 1960s and is run by the U.S. Army’s Cold Regions Research and Engineering Laboratory. It is the site of much research into permafrost — ground that stays frozen throughout the year, for multiple years.NASA/Kate Ramsayer Earth’s far northern reaches have locked carbon underground for millennia. New research paints a picture of a landscape in change.
      A new study, co-authored by NASA scientists, details where and how greenhouse gases are escaping from the Earth’s vast northern permafrost region as the Arctic warms. The frozen soils encircling the Arctic from Alaska to Canada to Siberia store twice as much carbon as currently resides in the atmosphere — hundreds of billions of tons — and most of it has been buried for centuries.
      An international team, led by researchers at Stockholm University, found that from 2000 to 2020, carbon dioxide uptake by the land was largely offset by emissions from it. Overall, they concluded that the region has been a net contributor to global warming in recent decades in large part because of another greenhouse gas, methane, that is shorter-lived but traps significantly more heat per molecule than carbon dioxide.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Greenhouse gases shroud the globe in this animation showing data from 2021. Carbon dioxide is shown in orange; methane is shown in purple. Methane traps heat 28 times more effectively than carbon dioxide over a 100-year timescale. Wetlands are a significant source of such emissions.NASA’s Scientific Visualization Studio The findings reveal a landscape in flux, said Abhishek Chatterjee, a co-author and scientist at NASA’s Jet Propulsion Laboratory in Southern California. “We know that the permafrost region has captured and stored carbon for tens of thousands of years,” he said. “But what we are finding now is that climate-driven changes are tipping the balance toward permafrost being a net source of greenhouse gas emissions.”
      Carbon Stockpile
      Permafrost is ground that has been permanently frozen for anywhere from two years to hundreds of thousands of years. A core of it reveals thick layers of icy soils enriched with dead plant and animal matter that can be dated using radiocarbon and other techniques. When permafrost thaws and decomposes, microbes feed on this organic carbon, releasing some of it as greenhouse gases.
      Unlocking a fraction of the carbon stored in permafrost could further fuel climate change. Temperatures in the Arctic are already warming two to four times faster than the global average, and scientists are learning how thawing permafrost is shifting the region from being a net sink for greenhouse gases to becoming a net source of warming.
      They’ve tracked emissions using ground-based instruments, aircraft, and satellites. One such campaign, NASA’s Arctic-Boreal Vulnerability Experiment (ABoVE), is focused on Alaska and western Canada. Yet locating and measuring emissions across the far northern fringes of Earth remains challenging. One obstacle is the vast scale and diversity of the environment, composed of evergreen forests, sprawling tundra, and waterways.
      This map, based on data provided by the National Snow and Ice Data Center, shows the extent of Arctic permafrost. The amount of permafrost underlying the surface ranges from continuous — in the coldest areas — to more isolated and sporadic patches.NASA Earth Observatory Cracks in the Sink
      The new study was undertaken as part of the Global Carbon Project’s RECCAP-2 effort, which brings together different science teams, tools, and datasets to assess regional carbon balances every few years. The authors followed the trail of three greenhouse gases — carbon dioxide, methane, and nitrous oxide — across 7 million square miles (18 million square kilometers) of permafrost terrain from 2000 to 2020.
      Researchers found the region, especially the forests, took up a fraction more carbon dioxide than it released. This uptake was largely offset by carbon dioxide emitted from lakes and rivers, as well as from fires that burned both forest and tundra.
      They also found that the region’s lakes and wetlands were strong sources of methane during those two decades. Their waterlogged soils are low in oxygen while containing large volumes of dead vegetation and animal matter — ripe conditions for hungry microbes. Compared to carbon dioxide, methane can drive significant climate warming in short timescales before breaking down relatively quickly. Methane’s lifespan in the atmosphere is about 10 years, whereas carbon dioxide can last hundreds of years.
      The findings suggest the net change in greenhouse gases helped warm the planet over the 20-year period. But over a 100-year period, emissions and absorptions would mostly cancel each other out. In other words, the region teeters from carbon source to weak sink. The authors noted that events such as extreme wildfires and heat waves are major sources of uncertainty when projecting into the future.
      Bottom Up, Top Down
      The scientists used two main strategies to tally greenhouse gas emissions from the region. “Bottom-up” methods estimate emissions from ground- and air-based measurements and ecosystem models. Top-down methods use atmospheric measurements taken directly from satellite sensors, including those on NASA’s Orbiting Carbon Observatory-2 (OCO-2) and JAXA’s (Japan Aerospace Exploration Agency)Greenhouse Gases Observing Satellite.
      Regarding near-term, 20-year, global warming potential, both scientific approaches aligned on the big picture but differed in magnitude: The bottom-up calculations indicated significantly more warming.
      “This study is one of the first where we are able to integrate different methods and datasets to put together this very comprehensive greenhouse gas budget into one report,” Chatterjee said. “It reveals a very complex picture.”
      News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
      Written by Sally Younger
      2024-147
      Share
      Details
      Last Updated Oct 29, 2024 Related Terms
      Earth Carbon Cycle Climate Change Greenhouse Gases Jet Propulsion Laboratory Explore More
      6 min read NASA’s Perseverance Rover Looks Back While Climbing Slippery Slope
      Article 22 hours ago 6 min read NASA Successfully Integrates Coronagraph for Roman Space Telescope
      Article 1 day ago 3 min read High-Altitude ER-2 Flights Get Down-to-Earth Data
      Article 4 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      X-ray: NASA/CXC/SAO/J. Drake et al, IR: NASA/JPL-Caltech/Spitzer; Image Processing: NASA/CXC/SAO/N. Wolk Most stars form in collections, called clusters or associations, that include very massive stars. These giant stars send out large amounts of high-energy radiation, which can disrupt relatively fragile disks of dust and gas that are in the process of coalescing to form new planets.
      A team of astronomers used NASA’s Chandra X-ray Observatory, in combination with ultraviolet, optical, and infrared data, to show where some of the most treacherous places in a star cluster may be, where planets’ chances to form are diminished.
      The target of the observations was Cygnus OB2, which is the nearest large cluster of stars to our Sun — at a distance of about 4,600 light-years. The cluster contains hundreds of massive stars as well as thousands of lower-mass stars. The team used long Chandra observations pointing at different regions of Cygnus OB2, and the resulting set of images were then stitched together into one large image.
      The deep Chandra observations mapped out the diffuse X-ray glow in between the stars, and they also provided an inventory of the young stars in the cluster. This inventory was combined with others using optical and infrared data to create the best census of young stars in the cluster.
      In this new composite image, the Chandra data (purple) shows the diffuse X-ray emission and young stars in Cygnus OB2, and infrared data from NASA’s now-retired Spitzer Space Telescope (red, green, blue, and cyan) reveals young stars and the cooler dust and gas throughout the region.
      In these crowded stellar environments, copious amounts of high-energy radiation produced by stars and planets are present. Together, X-rays and intense ultraviolet light can have a devastating impact on planetary disks and systems in the process of forming.
      Planet-forming disks around stars naturally fade away over time. Some of the disk falls onto the star and some is heated up by X-ray and ultraviolet radiation from the star and evaporates in a wind. The latter process, known as “photoevaporation,” usually takes between 5 and 10 million years with average-sized stars before the disk disappears. If massive stars, which produce the most X-ray and ultraviolet radiation, are nearby, this process can be accelerated.
      The researchers using this data found clear evidence that planet-forming disks around stars indeed disappear much faster when they are close to massive stars producing a lot of high-energy radiation. The disks also disappear more quickly in regions where the stars are more closely packed together.
      For regions of Cygnus OB2 with less high-energy radiation and lower numbers of stars, the fraction of young stars with disks is about 40%. For regions with more high-energy radiation and higher numbers of stars, the fraction is about 18%. The strongest effect — meaning the worst place to be for a would-be planetary system — is within about 1.6 light-years of the most massive stars in the cluster.
      A separate study by the same team examined the properties of the diffuse X-ray emission in the cluster. They found that the higher-energy diffuse emission comes from areas where winds of gas blowing away from massive stars have collided with each other. This causes the gas to become hotter and produce X-rays. The less energetic emission probably comes from gas in the cluster colliding with gas surrounding the cluster.
      Two separate papers describing the Chandra data of Cygnus OB2 are available. The paper about the planetary danger zones, led by Mario Giuseppe Guarcello (National Institute for Astrophysics in Palermo, Italy), appeared in the November 2023 issue of the Astrophysical Journal Supplement Series, and is available here. The paper about the diffuse emission, led by Juan Facundo Albacete-Colombo (University of Rio Negro in Argentina) was published in the same issue of Astrophysical Journal Supplement, and is available here.
      NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      JPL managed the Spitzer Space Telescope mission for NASA’s Science Mission Directorate in Washington until the mission was retired in January 2020. Science operations were conducted at the Spitzer Science Center at Caltech. Spacecraft operations were based at Lockheed Martin Space in Littleton, Colorado. Data are archived at the Infrared Science Archive operated by IPAC at Caltech. Caltech manages JPL for NASA.
      Read more from NASA’s Chandra X-ray Observatory.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description
      This release features a composite image of the Cygnus OB2 star cluster, which resembles a night sky blanketed in orange, purple, and grey clouds.
      The center of the square image is dominated by purple haze. This haze represents diffuse X-ray emissions, and young stars, detected by the Chandra X-ray observatory. Surrounding the purple haze is a mottled, streaky, brick orange cloud. Another cloud resembling a tendril of grey smoke stretches from our lower left to the center of the image. These clouds represent relatively cool dust and gas observed by the Spitzer Space Telescope.
      Although the interwoven clouds cover most of the image, the thousands of stars within the cluster shine through. The lower-mass stars present as tiny specks of light. The massive stars gleam, some with long refraction spikes.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      View the full article
    • By NASA
      19 Min Read The Marshall Star for October 23, 2024
      Editor’s Note: Starting Nov. 4, the Office of Communications at NASA’s Marshall Space Flight Center will no longer publish the Marshall Star on nasa.gov. The last public issue will be Oct. 30. To continue reading Marshall news, visit nasa.gov/marshall.
      Habitation Systems Business Unit Spotlight: Living and Working in Space
      For centuries, humans have dreamed of the ability to live safely on the Moon and Mars. At NASA’s Marshall Space Flight Center, team members supporting habitation systems development bring that dream closer to reality by envisioning and shaping humanity’s future in deep space and on the surface of other worlds.
      Marshall’s Habitation Systems business unit – the center’s featured organization for October – develops the next generation of habitation systems to make living and working in space and on planetary bodies possible. These efforts are carried out through the Habitation Systems Development Office, in which the team works across programmatic and engineering organizations to support formulation activities for planetary surface habitation (Moon and Mars), transit habitats for deep space exploration, and the Gateway program. In addition, the Marshall team collaborates with commercial partners on future habitation concept development and risk reduction activities through NextSTEP Appendix A: Habitation Systems and Reimbursable Space Act Agreements.   
      Seth BellNASA Seth Bell is currently the technical monitor for NASA’s commercial partner Sierra Space. Sierra has executed both full scale and subscale inflatable habitat burst tests at Marshall’s East Test Area. Bell has worked as a subsystem manager for the Mars Ascent Vehicle and as a system’s engineer and Engineering Directorate integrator.
      “I am excited to eventually see softgood inflatables in low Earth orbit,” Bell said. “Seeing the success of the many teams working in this office is exciting, especially after developing so many lasting relationships and putting so much time and energy into this work.”
      Yancy YoungNASA Since joining NASA in 2008, Yancy Young has served in multiple positions, including manager of several International Space Station research projects and Launch Package manager for Gateway Co-manifested Payloads. Currently, Young is the technical monitor for Boeing efforts under NASA’s NextSTEP Appendix A Broad Agency Announcement (BAA) for the development of deep space habitation concepts.
      “I love being a part of laying the foundation for long term deep space exploration,” Young said.
      Boeing’s current focus is a Design Analysis Cycle investigating the benefits and challenges of using composite materials in a pressurized Lunar Surface Habitat.
      Brooke ThorntonNASA In her 25-plus years at NASA, Brooke Thornton has worked on everything from ionized space radiation analysis to Earth observing satellites. Currently, Thornton is the industry engagement manager for the Habitation Systems Development Office and Strategy and Architecture Office. Thornton manages NextSTEP-2 Appendix A-Habitation Systems and Appendix R-Logistics and Mobility Systems BAA. In addition, Thornton fosters collaboration between industry and NASA for the Moon to Mars mission.
      “I am excited about working with industry to develop the elements and concepts of operations for humans to live on the Moon and beyond,” Thornton said.
      › Back to Top
      Team Members Enjoy Marshall Exchange BBQ Fest
      Joseph Pelfrey, center, director of NASA’s Marshall Space Flight Center, talks with team members during the BBQ Fest hosted by the Marshall Exchange on Oct. 21. The event was held on the walking trail behind the Wellness Center and was open to team members, their family members, and retirees. “My thanks to those who came out to this year’s BBQ – and especially to those who helped make it happen,” Pelfrey said. “I could not have asked for better weather or a better group of people to spend the afternoon with. It was great to see everyone’s families join us on site to celebrate the hard work our teams have put in this year.” (NASA/Charles Beason)
      Children play on an inflatable at the BBQ Fest with a space shuttle inflatable in the background. (NASA/Charles Beason)
      Marshall team members participate in Bingo during the BBQ hosted by the Marshall Exchange. (NASA/Charles Beason)
      › Back to Top
      Tony Clark Named Deputy Director of Marshall’s Engineering Directorate
      Tony Clark has been named to the Senior Executive Service position of deputy director of the Engineering Directorate at NASA’s Marshall Space Flight Center, effective immediately. In this role, Clark will be help lead the center’s largest organization, comprised of more than 2,500 civil service and contractor personnel, who design, test, evaluate, and operate flight hardware and software associated with Marshall-developed space transportation and spacecraft systems, science instruments, and payloads.
      Tony Clark has been named to the Senior Executive Service position of deputy director of the Engineering Directorate at NASA’s Marshall Space Flight Center.NASA Clark previously served as deputy director of the Space Systems Department at Marshall from 2021-2024 and served as acting director in 2024. In this role, Clark led the design, development, assembly, integration, testing, and delivery of flight, ground, prototype, and development products for NASA human spaceflight programs, science investigations, and exploration initiatives. He aided in the oversight of an annual budget of approximately $70 million and helped manage a diverse, highly technical workforce of approximately 660 civil service employees and contractors.
      Over his three decades of service to NASA, Clark has held numerous key leadership roles, bringing a wealth of technical and supervisory experience to Marshall’s broad range of engineering endeavors. He served as manager of the vehicle equipment area in Johnson Space Center’s Vehicle Systems Integration Office of the Gateway Program from 2018-2021. He was also manager of the Engineering Resource Management Office in Marshall’s Engineering Directorate from 2014-2018, tasked with leading and coordinating resources among eight engineering departments, laboratories and offices staffed by more than 2,300 civil service and contract personnel.
      He was acting deputy manager of the Engineering Directorate’s Spacecraft and Vehicle Systems Department from February 2014 to October 2014. Prior to that, Clark was chief of the directorate’s Electrical Integration and Fabrication Division from 2007-2014, and chief of the Electromagnetic Environmental Effects and Electrical Integration Branch from 2004-2007. He joined Marshall in September 1991 as an electromagnetic environmental effects engineer.
      Clark earned a bachelor’s degree in electrical engineering from Tennessee Technological University in Cookeville in 1989 and a master’s degree in electrical engineering from The Ohio State University in Columbus in 1991.
      Among his many professional awards and honors, Clark received the NASA Exceptional Achievement Medal in 2010 for his work on the Ares IX, the launch vehicle which informed development of NASA’s new rocket, the Space Launch System. He also received a Silver Snoopy award in 1999, reflecting outstanding service and the highest dedication to safe human spaceflight.
      Clark was a founding member in 2004 of the Huntsville Chapter of the Institute of Electrical and Electronic Engineers’ Electromagnetic Compatibility Society.
      › Back to Top
      I Am Artemis: Sarah Ryan
      A passion for puzzles, problem-solving, and propulsion led Sarah Ryan – a native of Columbus, Ohio – to her current position as Raptor engine lead for NASA’s HLS (Human Landing System) insight team at NASA’s Marshall Space Flight Center. The SpaceX Raptor rocket engine powers the company’s Starship and Super Heavy rocket. SpaceX will land astronauts on the Moon for NASA’s Artemis III and Artemis IV missions using the Starship HLS. NASA’s Artemis campaign aims to land the first woman, first person of color, and first international partner astronaut on the Moon.
      NASA’s Sarah Ryan is the Raptor engine lead for NASA’s HLS (Human Landing System) Program at NASA’s Marshall Space Flight Center. “With Artemis, we’re moving beyond what NASA did with Apollo and that’s really inspiring, especially to our younger workforce. We’re trying to push farther and it’s really going to drive a lot of technology development on the way there,” Ryan said. “This is a dream come true to be working on Artemis and solving problems so humanity can get back to the Moon then on to Mars.”NASA/Ken Hall “My team looks at how the components of the Raptor engine work together. Then, we evaluate the performance of the full system to make sure it will accomplish the NASA HLS and Artemis missions,” Ryan said. “I get to see lots of pieces and parts of the puzzle and then look at the system as a whole to make sure it meets NASA’s needs.”
      While earning a bachelor’s degree from Case Western Reserve University in Cleveland with a dual major in aerospace engineering and mechanical engineering, Ryan had an internship at Marshall, working on a payload for a science mission onboard the International Space Station.
      After working for a year on satellite design, Ryan returned to Marshall. She noted that the opportunity to work in Marshall’s Engine Systems branch, to be involved with pushing technology forward, and to work on Artemis, really drew her back to NASA. Ryan later earned a master’s degree in aerospace systems from the University of Alabama in Huntsville.
      When not occupied with rocket engine development, Ryan likes to work on quieter hobbies in her free time, including reading, board games, crocheting, and solving all manner of puzzles – crosswords, number games, word games, and more. Her interest for solving puzzles carries over into her work on the Raptor rocket engines for HLS.
      “My favorite tasks are the ones that most resemble a puzzle,” Ryan said. “If we’re investigating an issue and have a lot of information to assess, I love putting all the pieces together and figuring out what happened, why, and the path forward. I enjoy digging into the data and solving those puzzles.”
      With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the HLS, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      › Back to Top
      I Am Artemis: Casey Wolfe
      While precision, perseverance, and engineering are necessary skills in building a Moon rocket, Casey Wolfe knows that one of the most important aspects for the job is teamwork.
      “Engineering is vital, but to get this type of work done, you need to take care of the human element,” said Wolfe, the assistant branch chief of the advanced manufacturing branch in the Materials and Processes Laboratory at NASA’s Marshall Space Flight Center.
      Casey Wolfe is developing and producing the next generation payload adapter for NASA’s SLS (Space Launch System) super-heavy lift rocket. The adapter is made with some of the world’s most advanced composite manufacturing techniques.NASA/Sam Lott Together with her team, Wolfe is developing and producing the next generation payload adapter for NASA’s SLS (Space Launch System) super-heavy lift rocket. The adapter is made with some of the world’s most advanced composite manufacturing techniques.
      Wolfe’s work integrates the technical day-to-day operations and personnel management of the composites manufacturing team and additive manufacturing team, balancing production of SLS hardware with the creation of new engines using the latest manufacturing technologies. 
      “A lot of my day to day is in managing our two teams, making connections, building relationships, and making sure people feel supported,” Wolfe said. “I conduct individual tag ups with each team member so we can be proactive about anticipating and addressing problems.”
      Wolfe grew up in Huntsville, a place known as the “Rocket City,” but it wasn’t until she visited a job fair while studying at Auburn University for a polymer and fiber engineering degree that she began to consider a career at Marshall. Wolfe applied for and was selected to be a NASA intern through the Pathways Program, working in the non-metallic materials branch of the Materials and Processes Laboratory.
      Wolfe supported a coating system for electrostatic discharge on the first uncrewed test flight of the Orion spacecraft. Launching Dec. 5, 2014, Orion traveled to an altitude of 3,600 miles, orbited Earth twice, and splashed down in the Pacific Ocean. It was during her internship that Wolfe realized how inspirational it felt to be treated like a vital part of a team.
      “The SLS program gave everyone permission to sign the hardware, even me – even though I was just an intern,” Wolfe said. “It was impactful to me, knowing that something I had worked on had my name on it and went to space.” 
      Since being hired by NASA, Wolfe’s work has supported development of the Orion stage adapter diaphragms for Artemis II and Artemis III, and the payload adapters for Artemis IV and beyond. The first three Artemis flights use the SLS Block 1 rocket variant, which can send more than 27 metric tons (59,500 pounds) to the Moon in a single launch. Beginning with Artemis IV, the SLS Block 1B variant will use the new, more powerful exploration upper stage to enable more ambitious missions to deep space, with the cone-shaped payload adapter situated atop the rocket’s exploration upper stage. The new variant will be capable of launching more than 38 metric tons (84,000 pounds) to the Moon in a single launch.
      “While the engineering development unit of the payload adapter is undergoing large-scale testing, our team is working on the production of the qualification article, which will also be tested,” Wolfe said. “Flight components should be starting fabrication in the next six months.”
      When Wolfe isn’t working, she enjoys hiking, gardening, and hanging out with her dogs and large family. Recently, she signed another piece of SLS hardware headed to space: the Orion stage adapter for the second Artemis mission.
      With as many responsibilities as Wolfe juggles, it’s easy to lose sight of her work’s impact. “I work in the lab around the hardware all the time, and in many ways, it can become very rote,” she said.
      But Wolfe won’t forget what she saw one evening when she worked late: “Everybody was gone, and as I walked past the launch vehicle stage adapter, there were two security guards taking pictures of each other in front of it. It was one of those things that made me step back and reflect on what my team accomplishes every day: making history happen.”
      NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.
      › Back to Top
      NASA’s IXPE Helps Researchers Determine Shape of Black Hole Corona
      By Rick Smith
      New findings using data from NASA’s IXPE (Imaging X-ray Polarimetry Explorer) mission offer unprecedented insight into the shape and nature of a structure important to black holes called a corona.
      A corona is a shifting plasma region that is part of the flow of matter onto a black hole, about which scientists have only a theoretical understanding. The new results reveal the corona’s shape for the first time, and may aid scientists’ understanding of the corona’s role in feeding and sustaining black holes.
      This illustration of material swirling around a black hole highlights a particular feature, called the “corona,” which can be seen as a purple haze floating above the underlying accretion disk and extending slightly inside its inner edge. The material within the inner accretion disk is incredibly hot and would glow with a blinding blue-white light, but here has been reduced in brightness to make the corona stand out with better contrast. Its purple color is purely illustrative, standing in for the X-ray glow that would not be obvious in visible light. The warp in the disk is a realistic representation of how the black hole’s immense gravity acts like an optical lens, distorting our view of the flat disk that encircles it.NASA/Caltech-IPAC/Robert Hurt Many black holes, so named because not even light can escape their titanic gravity, are surrounded by accretion disks, debris-cluttered whirlpools of gas. Some black holes also have relativistic jets – ultra-powerful outbursts of matter hurled into space at high speed by black holes that are actively eating material in their surroundings.
      Less well known, perhaps, is that snacking black holes, much like Earth’s Sun and other stars, also possess a superheated corona. While the Sun’s corona, which is the star’s outermost atmosphere, burns at roughly 1.8 million degrees Fahrenheit, the temperature of a black hole corona is estimated at billions of degrees.
      Astrophysicists previously identified coronae among stellar-mass black holes – those formed by a star’s collapse – and supermassive black holes such as the one at the heart of the Milky Way galaxy.
      “Scientists have long speculated on the makeup and geometry of the corona,” said Lynne Saade, a postdoctoral researcher at NASA’s Marshall Space Flight Center and lead author of the new findings. “Is it a sphere above and below the black hole, or an atmosphere generated by the accretion disk, or perhaps plasma located at the base of the jets?”
      Enter IXPE, which specializes in X-ray polarization, the characteristic of light that helps map the shape and structure of even the most powerful energy sources, illuminating their inner workings even when the objects are too small, bright, or distant to see directly. Just as we can safely observe the Sun’s corona during a total solar eclipse, IXPE provides the means to clearly study the black hole’s accretion geometry, or the shape and structure of its accretion disk and related structures, including the corona.
      “X-ray polarization provides a new way to examine black hole accretion geometry,” Saade said. “If the accretion geometry of black holes is similar regardless of mass, we expect the same to be true of their polarization properties.”
      IXPE demonstrated that, among all black holes for which coronal properties could be directly measured via polarization, the corona was found to be extended in the same direction as the accretion disk – providing, for the first time, clues to the corona’s shape and clear evidence of its relationship to the accretion disk. The results rule out the possibility that the corona is shaped like a lamppost hovering over the disk. 
      The research team studied data from IXPE’s observations of 12 black holes, among them Cygnus X-1 and Cygnus X-3, stellar-mass binary black hole systems about 7,000 and 37,000 light-years from Earth, respectively, and LMC X-1 and LMC X-3, stellar-mass black holes in the Large Magellanic Cloud more than 165,000 light-years away. IXPE also observed a number of supermassive black holes, including the one at the center of the Circinus galaxy, 13 million light-years from Earth, and those in galaxies NGC 1068 and NGC 4151, 47 million light-years away and nearly 62 million light-years away, respectively.
      Stellar mass black holes typically have a mass roughly 10 to 30 times that of Earth’s Sun, whereas supermassive black holes may have a mass that is millions to tens of billions of times larger. Despite these vast differences in scale, IXPE data suggests both types of black holes create accretion disks of similar geometry.
      That’s surprising, said Marshall astrophysicist Philip Kaaret, principal investigator for the IXPE mission, because the way the two types are fed is completely different.
      “Stellar-mass black holes rip mass from their companion stars, whereas supermassive black holes devour everything around them,” he said. “Yet the accretion mechanism functions much the same way.”
      That’s an exciting prospect, Saade said, because it suggests that studies of stellar-mass black holes – typically much closer to Earth than their much more massive cousins – can help shed new light on properties of supermassive black holes as well. The team next hopes to make additional examinations of both types.
      Saade anticipates there’s much more to glean from X-ray studies of these behemoths. “IXPE has provided the first opportunity in a long time for X-ray astronomy to reveal the underlying processes of accretion and unlock new findings about black holes,” she said.
      The complete findings are available in the latest issue of The Astrophysical Journal.
      Smith, an Aeyon employee, supports the Marshall Office of Communications.
      › Back to Top
      Michoud Gets a Rare Visitor
      The Oort Cloud comet, called C/2023 A3 Tsuchinshan-ATLAS, passes over Southeast Louisiana near New Orleans, home of NASA’s Michoud Assembly Facility on Oct. 13. The comet is making its first appearance in documented human history; it was last seen in the night sky 80,000 years ago. The Tsuchinshan-ATLAS comet made its first close pass by Earth in mid-October and will remain visible to viewers in the Northern Hemisphere just between the star Arcturus and planet Venus through early November. Eric Bordelon, a photographer for Michoud, captured the image, which was featured as NASA’s image of the day. “On Sunday evening I decided to head out to find the comet I’ve read so much about,” Bordelon said. “Struggling at first to see it, once my eyes adjusted to the darkness I could faintly see it. I pulled my camera out and set up a tripod, with a longer exposure around six seconds I was able to capture this shot with a single frame. The far off setting sun made a beautiful color gradient in the dark sky with the other stars just beginning to appear.” Read more about the comet. (NASA/Eric Bordelon)
      › Back to Top
      Hubble Captures New View of Galaxy M90
      A new NASA/ESA Hubble Space Telescope image features the striking spiral galaxy Messier 90 (M90, also NGC 4569), located in the constellation Virgo. In 2019, Hubble released an image of M90 created with Wide Field and Planetary Camera 2 (WFPC2) data taken in 1994, soon after its installation. That WFPC2 image has a distinctive stair-step pattern due to the layout of its sensors. Wide Field Camera 3 (WFC3) replaced WFPC2 in 2009 and Hubble used WFC3 when it turned its aperture to Messier 90 again in 2019 and 2023. That data resulted in this stunning new image, providing a much fuller view of the galaxy’s dusty disk, its gaseous halo, and its bright core.
      This eye-catching image offers us a new view of the spiral galaxy Messier 90 from the NASA/ESA Hubble Space Telescope. ESA/Hubble & NASA, D. Thilker, J. Lee and the PHANGS-HST Team The inner regions of M90’s disk are sites of star formation, seen here in red H-alpha light from nebulae. M90 sits among the galaxies of the relatively nearby Virgo Cluster, and its orbit took M90 on a path near the cluster’s center about three hundred million years ago. The density of gas in the inner cluster weighed on M90 like a strong headwind, stripping enormous quantities of gas from the galaxy and creating the diffuse halo we see around it. This gas is no longer available to form new stars in M90, with the spiral galaxy eventually fading as a result.
      M90 is located 55 million light-years from Earth, but it’s one of the very few galaxies getting closer to us. Its orbit through the Virgo cluster has accelerated so much that M90 is in the process of escaping the cluster entirely. By happenstance, it’s moving in our direction. Astronomers have measured other galaxies in the Virgo cluster at similar speeds, but in the opposite direction. As M90 continues to move toward us over billions of years, it will also be evolving into a lenticular galaxy.
      › Back to Top
      View the full article
  • Check out these Videos

×
×
  • Create New...