Jump to content

SaSa Learning Activities


NASA

Recommended Posts

  • Publishers

1 min read

SaSa Learning Activities

Students of the 2022 SaSa class stand in a cockpit, learning from a NASA airman as part of a training module.
Students of the 2022 SaSa class stand in a cockpit, learning from a NASA airman as part of a training module.

Module 1

  • The first module starts with a two-week introductory summer workshop at the University of Maryland, Baltimore County (UMBC) and Howard University Beltsville Campus research facility in Beltsville, Maryland
  • Immediately after the workshop, there is a one-week, hands-on training on remote sensing/satellite application to disaster monitoring (ex. smoke from forest fires, volcanic plumes, desert dust storms, chemical spills, tornadoes and hurricanes, etc.) using the Direct Broadcast System Antenna Receiving and Data Analyses System at Hampton University.

Module 2

  • Students participate in a three-week field deployment based out of the NASA Wallops Flight Facility, where participants will be involved in all aspects of a scientific field campaign; from detailed planning for achieving mission objectives to flying on NASA aircraft and assisting in instrument operation and field validation at selected sites.

Module 3

  • The final module is focused on processing and analyzing the collected field data and presenting early results to peers, mentors, and other stakeholders based at UMBC.
  • Participants are provided academic advisement and mentorship support until graduation, to help improve student retention and assure timely progress to graduation.

Share

Details

Last Updated
Nov 22, 2023

Related Terms

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Learn Home Connected Learning Ecosystems:… Earth Science Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   3 min read
      Connected Learning Ecosystems: Educators Learning and Growing Together
      On August 19-20, 53 educators from a diverse set of learning contexts (libraries, K-12 classrooms, 4-H afterschool clubs, outdoor education centers, and more) gathered in Orono, Maine for the Learning Ecosystems Northeast (LENE) biannual Connect, Reflect, & Plan Connected Learning Ecosystems (CLEs) Gathering. These gatherings are meant to foster meaningful connections and collaborations and shared knowledge and confidence building amongst educators within the LENE network.
      NASA Science Activation’s Learning Ecosystems Northeast (LENE) is a network of education partners across the Northeastern United States, led by the Gulf of Maine Research Institute. These partners are dedicated to creating and linking communities of in and out of school educators, Connected Learning Ecosystems (CLEs), who are committed to empowering the next generation of climate stewards.
      The focus of this gathering was to provide educators the time, experiences, connections, and space to explore ways they can prepare the youth and communities they work with to build resilience in the face of climate change. Educators participated in sessions around local asset mapping, climate mental health, positive youth development, building STEM skills through games and fieldwork, and planning forward around coastal flooding and sea level rise. Each session was followed by time to debrief, reflect, and plan both in their regional CLEs as well as with statewide partners. The value of NASA assets and connection to local issues was woven throughout many experiences during this gathering. LENE’s CLE Resource Drive has a growing list of phenomena-based NASA assets that has been curated based on the interests of their network over time. The Global Learning and Observations to Benefit the Environment (GLOBE) program’s GLOBE Observer tree height app was part of the Ash Protection community science protocol and many NASA assets enhance the educator-guided planning forward experience guide that youth practice the difficult, real-life conversations about the
      consequences of sea level rise as they think about ways they can plan for a resilient future in the face of rising seas and coastal flooding.
      Sara King from the Rural Aspirations Project (Hancock/Midcoast CLE) had this to say: “Before I first joined the CLE, I viewed STEM professionals to be separate from myself for the most part because I did not feel very confident in my abilities in all parts of STEM. I feel more comfortable with data and technology, engineering, and science practices now.”
      One educator said that their highlight from the gathering was, “[o]pportunities to meet with other teachers and educators and librarians to share ideas about how we can pool our resources and reach more students.” These educators left with draft learning projects ready for refinement and review, renewed dedication and motivation for the school year, and new perspectives to lead them into continued conversations and partnership with their CLE peers as they meet throughout the year.
      Learn more about Learning Ecosystem Northeast’s efforts to empower the next generation of environmental stewards at https://www.learningecosystemsnortheast.org. The Learning Ecosystems Northeast project is supported by NASA under cooperative agreement award number NNX16AB94A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      The August 2024 Connect, Reflect & Plan Connected Learning Ecosystem Gathering crew (educators and project partners from across Maine and even one California partner). Share








      Details
      Last Updated Oct 08, 2024 Editor NASA Science Editorial Team Related Terms
      Earth Science Opportunities For Educators to Get Involved Science Activation Explore More
      3 min read GLOBE Eclipse and Civil Air Patrol: An Astronomical Collaboration


      Article


      1 day ago
      5 min read Science Activation’s PLACES Team Facilitates Third Professional Learning Institute


      Article


      4 days ago
      2 min read Culturally Inclusive Planetary Engagement in Colorado


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This low-angle self-portrait of NASA’s Curiosity Mars rover shows the vehicle at the site from which it reached down to drill into a rock target called “Buckskin” on lower Mount Sharp. When NASA conducts research beyond our world, scientists on Earth prepare as much as possible before sending instruments on extraterrestrial journeys. One way to prepare for these exploration missions is by using machine learning techniques to develop algorithms with data from commercial instruments or from flight instruments on planetary missions.
      For example, NASA uses mass spectrometer instruments on Mars missions to analyze surface samples and identify organic molecules. Developing machine learning algorithms before missions can help make the process of analyzing planetary data faster and more efficient during time-limited space operations.
      In 2022, Victoria Da Poian, a data scientist supporting machine learning research at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, collaborated with NASA’s Center of Excellence for Collaborative Innovation to run two machine learning-based open science challenges, which sought ideas and solutions from the public. Solvers worldwide were invited to analyze chemical data sampled from commercial instruments located at NASA centers and data from the Sample Analysis at Mars (SAM) testbed, which is a replica of the instrument suite onboard the Curiosity rover. The challenges encouraged participants to be creative in their approaches and to provide detailed descriptions of their method and code.
      Da Poian said her team decided to use public competitions for this project to gain new perspectives: “We were really interested in hearing from people who aren’t in our field and weren’t biased by the data’s meaning or our scientific rules.”
      As a result, more than 1150 unique participants from all over the world participated in the competitions, and more than 600 solutions contributing models to analyze rock and soil samples relevant to planetary science were submitted. The challenges served as proof-of-concept projects to analyze the feasibility of combining data from multiple sources in a single machine learning application.
      In addition to benefitting from the variety of perspectives offered by challenge participants, Da Poian says the challenges were both time- and cost-efficient methods for discovering solutions. At the same time, the challenges invited the global community to participate in NASA research in support of future space exploration missions, and winners received $60,000 in total prizes across the two opportunities.
      Da Poian used lessons learned to develop a new challenge with Frontier Development Lab , an international research collaboration that brings together researchers and domain experts to tackle complex problems using machine learning technologies.
      The competition, titled “Stay Curious: Leveraging Machine Learning to Analyze & Interpret the Measurements of Mars Planetary Instruments,” ran from June to August 2024. Results included cleaning SAM data collected on Mars, processing data for a consistent, machine learning-ready dataset combining commercial and flight instrument data, investigating data augmentation techniques to increase the limited data volume available for the challenge, and exploring machine learning techniques to help predict the chemical composition of Martian terrain.
      “The machine learning challenges opened the door to how we can use laboratory data to train algorithms and then use that to train flight data,” said Da Poian. “Being able to use laboratory data that we’ve collected for many years is a huge opportunity for us, and the results so far are extremely encouraging.”
      Find more opportunities: https://www.nasa.gov/get-involved/
      View the full article
    • By NASA
      Learn Home Science Activation’s PLACES… Earth Science Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   5 min read
      Science Activation’s PLACES Team Facilitates Third Professional Learning Institute
      The NASA Science Activation program’s Place-Based Learning to Advance Connections, Education, and Stewardship (PLACES) project supports middle and high school educators to engage students in data-rich Earth science learning through the integration of NASA data sets, images, classroom lessons, and other assets. This project draws on a place-based approach as a means to increase “data fluency” — the ability and confidence to make sense of and use data. This means knowing when, how, and why to use data for a specific purpose, such as solving problems and communicating ideas grounded in evidence.
      As part of this effort, PLACES facilitated its third Professional Learning (PL) Summer Institute (SI) for 22 educators at the Gulf of Maine Research Institute (GMRI) in Portland, Maine the week of August 12th, 2024. This is the third PL Summer Institute the PLACES team has facilitated, each focusing on engaging educators in place-based, data-rich teaching and learning with NASA data and resources.
      The GMRI PL development and facilitation was a collaborative co-design effort between two NASA Science Activation projects (PLACES led by WestEd and the Learning Ecosystems Northeast project led by GMRI) and colleagues from the Concord Consortium and NASA Langley Research Center. During this PL, teachers took part in community science projects developed by GMRI to incorporate youth in ongoing research projects, including a mix of field- and classroom-based experiences that explored the phenomena of Hemlock Woolly Adelgid (HWA) and the changes to intertidal crab populations – two invasive species that are proliferating as a result of climate change. During two field-based experiences, teachers gathered primary data using protocols from GMRI’s Ecosystem Investigation Network and the NASA-sponsored program, GLOBE (Global Learning and Observations to Benefit the Environment). Teachers then explored these primary data using Concord Consortium’s Common Online Data Analysis Platform (CODAP) to better understand the geographic and temporal spread of these species. To connect their local experiences to global happenings, teachers then explored secondary data sets, including those sourced from the My NASA Data (MND – also supported by NASA Science Activation as part of the GLOBE Mission Earth project) Earth System Explorer (e.g., Normalized Difference Vegetation Index, salinity, sea surface temperature). The facilitation team also used the MND Data Literacy Cubes to encourage teachers to consider a multitude of diverse questions about place, data, and the phenomena. The GLOBE protocols supplemented existing GMRI data collection protocols, presenting new opportunities for teachers already experienced with HWA and Green Crabs. The MND data and Data Literacy Cubes moved teachers from questions they generated as part of their primary data collection towards new knowledge.
      Daily feedback from teachers highlighted their appreciation for the responsiveness of the facilitation team, as well as a growing curiosity and desire for using NASA resources such as protocols from GLOBE and data from MND’s Earth System Explorer. This is exciting to see as the teachers transition from the Summer Institute into a virtual Community of Practice during the school year. The Community of Practice engages them in peer-to-peer collaboration and dialogue as they develop, test, and give feedback on their own place-based, data-rich experiences using NASA data and resources. So far, teachers are planning to tackle a variety of topics ranging from ocean chemistry to human connections to the environment. Teachers indicated their interest in “making place-based experiences meaningful to our unique populations of students and having cultural representation in the classroom,” and focusing on “cross-school collaboration.” Preliminary evaluation data indicated that 76% of teachers thought their experiences with NASA resources during the SI helped them identify ways to bring data into their classroom. 85% of teachers indicated they feel a greater connection to NASA and knowledge of NASA resources for enhancing student understanding and engagement in science. Moving into the fall, teachers will take part in a Community of Practice, where they will work to implement a place-based, data-rich moment in their individual classrooms. In the summer of 2025, teachers will take part in a second summer institute where they will continue to learn more about implementing place-based, data-rich instruction.
      The PLACES GMRI Summer Institute was made possible by a large co-design, collaborative effort across our partner organizations. This included:
      Facilitation Team: Catherine Bursk (GMRI), Meggie Harvey (GMRI), Sara Salisbury (GMRI), Daniel Damelin (Concord Consortium) In-person Facilitation Support Team: Leigh Peake (GMRI), Karen Lionberger (WestEd), Kristin Hunter-Thomson (Dataspire), Angela Rizzi (NASA Langley) In-Person Team Member Participants: Janet Struble and Kevin Czaikowski (GLOBE, University of Toledo), Svetlana Darche (WestEd) Virtual Observers: Kirsten Daehler, Nicole Wong, Leticia Perez (WestEd), Tracy Ostrom (GLOBE, UC Berkeley), Lori Rubino-Hare (NAU) Additional support: Frieda Reichsman (Concord Consortium), Barbie Buckner and Jessia Taylor (NASA Langley), Sean Ryan (NAU), Lauren Shollenberger (NAU) PLACES is supported by NASA under cooperative agreement award number 80NSSC22M0005 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      Teachers at the GMRI summer institute review NDVI data ranging from 2002 to 2022 and identify patterns and trends. Share








      Details
      Last Updated Oct 04, 2024 Editor NASA Science Editorial Team Location NASA Langley Research Center Related Terms
      Earth Science Grades 5 – 8 for Educators Grades 9-12 for Educators Opportunities For Educators to Get Involved Science Activation Explore More
      2 min read Culturally Inclusive Planetary Engagement in Colorado


      Article


      21 hours ago
      40 min read GPM Celebrates Ten Years of Observing Precipitation for Science and Society


      Article


      1 day ago
      2 min read New NASA eClips VALUE Bundles for Learners with Varied Needs


      Article


      2 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By USH
      Where do asteroids get all those craters? Countless small circular craters, plus almost always a few that look like massive killers. Even more confusing is that these craters are at a perfect 90º angle, as if an electric arc had run across the surface. 

      According to ThunderboltsProject, the Electric Universe (EU) model, the scars observed on asteroids are caused by electric arcs which cut surface depressions, scoop out material, accelerate it into space, then leave behind clean-cut geological relief. 
      This theory is supported by Electric Discharge Machining (EDM), a process we use every day to shape materials with electric arcs, producing similar clean-cut effects. 
      This brings us to the following hypothesis: Could it be that, instead of craters on asteroids being formed solely by natural space phenomena, that all these craters at a perfect 90º angle with clean-cut geological relief are the result of asteroid mining originated by alien races who use advanced electric arc/laser technology by extracting raw minerals they urgently need for use on their planet or for in-space manufacturing? 
      Asteroids vary greatly in composition, ranging from those rich in volatile substances to those composed of metals like gold, silver, platinum, cobalt, and palladium, alongside more common elements such as iron and nickel. This makes them potential treasure troves of valuable resources. 
      For us as Earthlings, asteroid mining is a technology in its earliest stages and requires significant advances in robotic technology before asteroid mining becomes a reality, however, if more advanced civilizations exist elsewhere in the universe, it's quite plausible that some of them have already turned to asteroid mining long ago. 
      Could their efforts be leaving behind the very craters on asteroids we observe today?
        View the full article
    • By NASA
      4 Min Read Unique NASA Partnerships Spark STEM Learning on Global Scale
      NASA astronaut Thomas Marshburn reading “Goodnight Moon” aboard station for Crayola’s “Read Along, Draw Along” Credits: NASA NASA offers a world of experiences and opportunities to engage young explorers around the globe in the excitement of science, technology, engineering, and mathematics (STEM). NASA’s Office of STEM Engagement collaborates with experts throughout the agency, the U.S. government, and a variety of global partners to spark inspiration in Artemis Generation students everywhere.
      Partnerships with the agency reach new audiences. Here are some of the ways NASA and its partners are making exciting STEM learning resources and opportunities available globally.
      NASA and Minecraft collaborated to bring NASA missions to life. NASA and Crayola partnered on a series of virtual engagements to encourage students and families to participate in science, technology, engineering, art, and mathematics (STEAM) content – for example, the annual Crayola Creativity Week. NASA partnered with LEGO Education on educational resources to introduce STEAM concepts and careers with students, teachers, and families. NASA joined forces with Discovery Education to provide curriculum support resources, videos, and events through their online platform. NASA recently signed an agreement with Arizona State University’s Milo Space Science Institute to create new opportunities for students to engage in STEM workforce development through 12-week academies using NASA data sets, information from NASA subject matter experts as well as information on the agency’s missions and careers.  NASA partnered with Code.org on the development of computer science and coding resources for teachers and students. NASA collaborated with LabXchange to develop free online resources for teachers and students on topics such as solar eclipses, Mars, astrobiology, and Artemis missions, with more than 700 resources available to date. Representative LEGO minifigures in front of European Service Module that will power the Orion spacecraft on Artemis II. Four LEGO minifigures will fly on Artemis I as part of the official flight kit, which carries mementos for educational outreach and posterity.
      Credit: NASA/Radislav Sinyak There’s More to Explore With NASA
      International educators and students can find even more ways to engage with NASA’s missions and content through these resources, available online to all.
      For the youngest explorers, NASA Kids Club offers STEM-based games for students ages 3-9. The agency’s Artemis Camp Experience features hands-on activities designed to introduce K-12 students to the systems that will enable NASA astronauts to return to the Moon with Artemis. NASA’s “First Woman” graphic novel series tells the fictional story of Callie Rodriguez, the first woman to explore the Moon. Created for students in grades 5-12, “First Woman” includes graphic novels in English and Spanish along with accompanying videos, activities, and more. Through the agency’s internship opportunities, students gain authentic experience while being part of the agency’s work. Student challenges available internationally include the Human Exploration Rover Challenge, in which student teams create and test human-powered rovers, and the Space Apps Challenge, a hackathon that aims to solve real-world challenges on Earth and in space. NASA’s ASTRO CAMP Community Partners Program shares NASA STEM content and experiences through youth organizations and informal learning institutions such as museums and libraries, including nearly 30 international partner sites. Citizen scientists anywhere can contribute their local observations through the Global Learning and Observations to Benefit the Environment (GLOBE) Observer app, part of the GLOBE program sponsored by NASA, the National Oceanic and Atmospheric Administration, National Science Foundation, and Youth Learning as Citizen Environmental Scientists. Look up! Use the Spot the Station mobile app and website to know when the International Space Station will pass overhead. NASA is much more than astronauts and rocket scientists. The Surprisingly STEM video series highlights unexpected careers with linked hands-on activities. STEM resources for educators and students can be found anytime on NASA’s Learning Resources website. The agency offers video on demand through NASA+ with unique STEM programming, live coverage of NASA missions, and more. Students put their human-powered rover to the test in NASA’s Human Exploration Rover Challenge.
      Credit: NASA Get NASA STEM Updates via Email
      NASA STEM’s e-newsletters deliver the latest updates to email inboxes around the world. The NASA EXPRESS weekly e-newsletter offers the latest NASA STEM content and opportunities, while the monthly Earthrise e-newsletter offers themed resources to elevate Earth and climate science in the classroom.

      Learn more about how NASA’s Office of STEM Engagement is inspiring Artemis Generation explorers at: https://www.nasa.gov/stem
      Share
      Details
      Last Updated Oct 02, 2024 Related Terms
      Learning Resources Partner with NASA STEM STEM Engagement at NASA Keep Exploring Discover More Topics From NASA
      Partnering with NASA STEM Engagement
      NASA Internship Programs
      Join Artemis
      Get Involved
      View the full article
  • Check out these Videos

×
×
  • Create New...