Jump to content

SaSa Learning Activities


NASA

Recommended Posts

  • Publishers

1 min read

SaSa Learning Activities

Students of the 2022 SaSa class stand in a cockpit, learning from a NASA airman as part of a training module.
Students of the 2022 SaSa class stand in a cockpit, learning from a NASA airman as part of a training module.

Module 1

  • The first module starts with a two-week introductory summer workshop at the University of Maryland, Baltimore County (UMBC) and Howard University Beltsville Campus research facility in Beltsville, Maryland
  • Immediately after the workshop, there is a one-week, hands-on training on remote sensing/satellite application to disaster monitoring (ex. smoke from forest fires, volcanic plumes, desert dust storms, chemical spills, tornadoes and hurricanes, etc.) using the Direct Broadcast System Antenna Receiving and Data Analyses System at Hampton University.

Module 2

  • Students participate in a three-week field deployment based out of the NASA Wallops Flight Facility, where participants will be involved in all aspects of a scientific field campaign; from detailed planning for achieving mission objectives to flying on NASA aircraft and assisting in instrument operation and field validation at selected sites.

Module 3

  • The final module is focused on processing and analyzing the collected field data and presenting early results to peers, mentors, and other stakeholders based at UMBC.
  • Participants are provided academic advisement and mentorship support until graduation, to help improve student retention and assure timely progress to graduation.

Share

Details

Last Updated
Nov 22, 2023

Related Terms

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Learn Home Co-creating authentic STEM… Community Partners Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Stories Science Activation Highlights Citizen Science   2 min read
      Co-creating authentic STEM learning experiences with Latino communities
      Led by Arizona State University, the NASA Science Activation Program’s “Engaging Hispanic Communities in Authentic NASA Science” project advances NASA’s vision for science, technology, engineering, and mathematics (STEM) education by co-creating learning experiences with Latino communities in six locations in California, Arizona, New Mexico, and Texas. Partners at each site – including educational organizations, community groups, and subject matter experts – are collaborating to offer culturally sustaining learning experiences that reflect the people, priorities, and assets of each community.
      In the San Francisco Bay area, the University of California Berkeley’s Lawrence Hall of Science is working with Bay Area Community Resources to offer hands-on Earth and space activities at hundreds of out-of-school-time programs. In San Diego, the Fleet Science Center and the San Ysidro STEM Committee are planning an annual STEM festival. In the Phoenix/Mesa metro area, Arizona State University and RAIL Community Development Corporation are working with community members and local artists to create STEAM (STEM + art) experiences that will be embedded in Hispanic neighborhoods. In Albuquerque, Explora and Horizons Albuquerque are hosting a teen summit to co-create a new futures-oriented exhibition for the science center. The Brownsville Children’s Museum in Texas is working with a variety of partners to engage families in STEM learning at community events across the area. Finally, in Houston, the Children’s Museum of Houston and Community Family Centers are offering STEM summer camp experiences in underserved Hispanic neighborhoods.
      These activities have spanned across Spring and Summer 2024 and engaged over 10,000 learners in authentic STEM learning experiences. Looking ahead to the future, team members will continue to deepen their relationships among organizations and broaden participation across their local communities. The six sites also convene regularly as a community of practice, sharing insights, strategies, and practices. Learnings from the project and professional resources will also be shared widely across the STEM engagement and education professionals.
      The Engaging Hispanic Communities in Authentic NASA Science project is supported by NASA under cooperative agreement award number 80NSSC22M0122 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      Family doing a hands-on activity at a science center. NISE Network/Guillermo Delgado Share








      Details
      Last Updated Aug 30, 2024 Editor NASA Science Editorial Team Related Terms
      Community Partners Opportunities For Educators to Get Involved Science Activation Explore More
      3 min read Eclipse Soundscapes AudioMoth Donations Will Study Nature at Night


      Article


      2 days ago
      2 min read Solar Eclipse Data Story Helps the Public Visualize the April 2024 Total Eclipse


      Article


      2 weeks ago
      3 min read New TEMPO Cosmic Data Story Makes Air Quality Data Publicly Available


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      4 Min Read How Do I Navigate NASA Learning Resources and Opportunities?
      NASA offers a variety of platforms and resources to support kindergarten through college educators in bringing the excitement of exploration and discovery to students in the classroom and beyond. From in-depth lesson plans to supplemental videos and activities, the resources below can help educators develop an out-of-this world curriculum and create unforgettable experiences for their students.
      Where Can I Find NASA STEM Learning Resources for My Classroom?
      NASA’s website has a dedicated section for the agency’s learning resources: nasa.gov/learning-resources. Using the navigation bar, educators can click through to find dedicated pages with STEM resources for K-4, 5-8, and 9-12 grade bands.
      Looking for something in particular for your curriculum? Try the NASA STEM Resource Search tool to explore hands-on activities, interactive features, videos, lesson plans, educator guides, and more. Browse the nearly 2,000 resources or search by grade level, subject, or keywords.
      NASA also offers a range of resources and community-based projects that invite learners of all ages to participate in authentic science across the U.S. and the world through the Science Activation (SciAct) program. In addition to traditional classroom resources, NASA has a webpage dedicated to citizen science opportunities around the globe, which can be fun to participate in as a class.
      How Do I Connect My Classroom With a NASA Expert?
      NASA has several pathways for getting a NASA expert involved with your classroom. 
      Students can get questions answered by astronauts living and working aboard the International Space Station through In-Flight Education Downlinks. These twenty-minute live Q&A sessions are available to U.S.-based education organizations. Applications are accepted during several proposal periods each year. 
      Educators can also request classroom engagements with NASA engineers, scientists, and other professionals through the NASA Engages program. The program connects NASA experts with U.S. students ranging from preschool to college, through formal or informal education groups such as libraries, museums, professional and technical organizations, afterschool programs, and other non-profit organizations. Requests can be made in the NASA STEM Gateway platform after creating an account.
      NASA STEM Gateway is also the portal where educators and students can sign up for other NASA opportunities, such as internships, student challenges, and more.
      How Can I Obtain an Authentic Space Program Artifact for Use in My Classroom?
      U.S. K-12 schools, universities, and other organizations may be eligible to request an authentic NASA artifact to help bring STEM lessons to life in the classroom. NASA considers an “artifact” to be an object representing historically significant or innovative achievements in spaceflight, aviation, technology, or science. Through NASA’s Artifact Module, browse through the agency’s trove of objects and request an item that will spark inspiration or understanding among students in the Artemis Generation.
      How Can I Find Out About New NASA STEM Resources and Opportunities?
      To learn about the latest NASA STEM resources and opportunities, follow NASA STEM on X, Facebook, Pinterest, and YouTube. NASA also publishes a weekly e-newsletter for teachers, parents, caregivers, and students. Sign up for the NASA EXPRESS newsletter to get the latest NASA STEM opportunities delivered to your inbox every Thursday. It’s an easy way to stay up to date on internships, challenges, professional development, and more.
      NASA also has an online community of practice for formal and informal educators called CONNECTS (Connecting Our NASA Network of Educators for Collaborating Together in STEM). On the CONNECTS platform, new and experienced professionals in STEM education can join discussions, share best practices, learn about the latest events and opportunities at NASA, participate in professional development opportunities, and download free STEM products available by topic or grade level. Registered community members can chat with other members who are interested in similar fields and can find nearby members with whom they can collaborate.
      More About STEM Learning Resources and Opportunities at NASA

      About NASA STEM Engagement NASA Kids’ Club NASA Citizen Science NASA Science Activation (SciAct) program NASA Artifacts Keep Exploring Discover More STEM Topics at NASA
      Learning Resources
      For Educators
      Outside the Classroom
      Get Involved
      View the full article
    • By NASA
      6 Min Read NASA Trains Machine Learning Algorithm for Mars Sample Analysis
      The Mars Organic Molecule Analyzer, aboard the ExoMars mission's Rosalind Franklin rover, will employ a machine learning algorithm to speed up specimen analysis. Credits: ESA When the ESA (European Space Agency)-led Rosalind Franklin rover heads to Mars no earlier than 2028, a NASA machine learning algorithm gets its first chance to shine after more than a decade of data training in the lab. The Mars Organic Molecule Analyzer (MOMA), a mass spectrometer instrument aboard the rover, will analyze samples collected by a coring drill and send the results back to Earth, where they will be fed into the algorithm to identify organic compounds found in the samples. If any organic compounds are detected by the rover, the algorithm could greatly speed up the process of identifying them, saving scientists time as they decide the most efficient uses of the rover’s time on the Red Planet. When a robotic rover lands on another world, scientists have a limited amount of time to collect data from the troves of explorable material, because of short mission durations and the length of time to complete complex experiments.
      That’s why researchers at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, are investigating the use of machine learning to assist in the rapid analysis of data from rover samples and help scientists back on Earth strategize the most efficient use of a rover’s time on a planet.
      “This machine learning algorithm can help us by quickly filtering the data and pointing out which data are likely to be the most interesting or important for us to examine,” said Xiang “Shawn” Li, a mass spectrometry scientist in the Planetary Environments lab at NASA Goddard.
      The algorithm will first be put to the test with data from Mars, by operating on an Earth-bound computer using data collected by the Mars Organic Molecule Analyzer (MOMA) instrument.
      The analyzer is one of the main science instruments on the upcoming ExoMars mission Rosalind Franklin Rover, led by ESA (European Space Agency). The rover, which is scheduled to launch no earlier than 2028, seeks to determine if life ever existed on the Red Planet.
      Related: NASA, ESA to Land Europe’s Rover on Mars After Rosalind Franklin collects a sample and analyzes it with MOMA, data will be sent back to Earth, where scientists will use the findings to decide the best next course of action.
      “For example, if we measure a sample that shows signs of large, complex organic compounds mixed into particular minerals, we may want to do more analysis on that sample, or even recommend that the rover collect another sample with its coring drill,” Li said.
      Algorithm May Help Identify Chemical Composition Beneath Surface of Mars
      In artificial intelligence, machine learning is a way that computers learn from data — lots of data — to identify patterns and make decisions or draw conclusions.
      This automated process can be powerful when the patterns might not be obvious to human researchers looking at the same data, which is typical for large, complex data sets such as those involved in imaging and spectral analysis.
      In MOMA’s case, researchers have been collecting laboratory data for more than a decade, according to Victoria Da Poian, a data scientist at NASA Goddard who co-leads development of the machine learning algorithm. The scientists train the algorithm by feeding it examples of substances that may be found on Mars and labeling what they are. The algorithm will then use the MOMA data as input and output predictions of the chemical composition of the studied sample, based on its training.
      NASA data scientist Victoria Da Poian presents on the MOMA’s machine learning algorithm at the Supercomputing 2023 conference in Denver, Colorado.NASA/Donovan Mathias “The more we do to optimize the data analysis, the more information and time scientists will have to interpret the data,” Da Poian said. “This way, we can react quickly to results and plan next steps as if we are there with the rover, much faster than we previously would have.”
      The MOMA employs laser desorption to identify specimens, while preserving larger molecules that may be broken down by gas chromatography.
      Credit: NASA’s Goddard Space Flight Center/Conceptual Image Lab
      Download this video and related multimedia in HD formats Drilling Down for Signs of Past Life
      What makes the Rosalind Franklin rover unique — and what scientists hope will lead to new discoveries — is that it will be able to drill down about 6.6 feet (2 meters) into the surface of Mars. Previous rovers have only reached about 2.8 inches (7 centimeters) below the surface.
      “Organic materials on Mars’ surface are more likely to be destroyed by exposure to the radiation at the surface and cosmic rays that penetrate into the subsurface,” said Li, “but two meters of depth should be enough to shield most organic matter. MOMA therefore has the potential to detect preserved ancient organics, which would be an important step in looking for past life.”
      Future Explorations Across the Solar System Could be More Autonomous
      Searching for signs of life, past or present, on worlds beyond Earth is a major effort for NASA and the greater scientific community. Li and Da Poian see potential for their algorithm as an asset for future exploration of tantalizing targets like Saturn’s moons Titan and Enceladus, and Jupiter’s moon Europa.
      Li and Da Poian’s long-term goal is to achieve even more powerful “science autonomy,” where the mass spectrometer will analyze its own data and even help make operational decisions autonomously, dramatically increasing science and mission efficiency.
      This will be crucial as space exploration missions target more distant planetary bodies. Science autonomy would help prioritize data collection and communication, ultimately achieving much more science than currently possible on such remote missions.
      “The long-term dream is a highly autonomous mission,” said Da Poian. “For now, MOMA’s machine learning algorithm is a tool to help scientists on Earth more easily study these crucial data.”
      The MOMA project is led by the Max Planck Institute for Solar System Research (MPS) in Germany, with principal investigator Dr. Fred Goesmann. NASA Goddard developed and built the MOMA mass spectrometer subsystem, which will measure the molecular weights of chemical compounds in collected Martian samples.
      Development of the machine learning algorithm was funded by NASA Goddard’s Internal Research and Development program.
      By Matthew Kaufman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Aug 05, 2024 EditorRob GarnerContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      Technology Artificial Intelligence (AI) ExoMars Goddard Space Flight Center Goddard Technology Mars Planetary Science The Solar System Explore More
      6 min read Here’s How AI Is Changing NASA’s Mars Rover Science
      Article 3 weeks ago 7 min read NASA’s Perseverance Rover Scientists Find Intriguing Mars Rock
      Article 2 weeks ago 5 min read NASA: Life Signs Could Survive Near Surfaces of Enceladus and Europa
      Europa, a moon of Jupiter, and Enceladus, a moon of Saturn, have evidence of oceans…
      Article 3 weeks ago View the full article
    • By NASA
      Northrop Grumman’s Cygnus space freighter is pictured attached to the Canadarm2 robotic arm ahead of its release from the International Space Station’s Unity module on Tuesday, July 12, 2024. Photo credit: NASA NASA invites the public to participate in virtual activities ahead of the launch of Northrop Grumman’s 21st commercial resupply services mission for the agency. 
      Mission teams are targeting 11:28 a.m. EDT Saturday, Aug. 3, for the launch of the company’s Cygnus cargo spacecraft on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. Cygnus will deliver new scientific investigations, food, supplies, and equipment to the crew aboard the International Space Station. 
      Members of the public can register to attend the launch virtually. As a virtual guest, you’ll gain access to curated resources, receive schedule changes, and mission-specific information delivered straight to your inbox. Following each activity, virtual guests will receive a commemorative stamp for their virtual guest passport. 
      NASA’s live launch coverage will begin at 11:10 a.m. EDT on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. Learn how to stream NASA TV through a variety of platforms, including social media. 
      Learn more about the commercial resupply mission at:
      View the full article
    • By NASA
      3 Min Read NASA Awards Launch Excitement for STEM Learning Nationwide
      Southwest Girl Scout Council Leaders test out their “cereal box” pin-hole viewers to study the sun during educator training program. NASA awards inspire the next generation of explorers by helping community institutions like museums, science centers, libraries, and other informal education institutions and their partners bring science, technology, engineering, and mathematics (STEM) content to their communities. NASA’s Next Generation STEM project has expanded the Teams Engaging Affiliated Museums and Informal Institutions (TEAM II) program to include a new tier of funding and provide even more opportunities to informal educational institutions across the country.
      The new STEM Innovator tier will fund awards of approximately $250,000, the Community Anchor tier will continue to offer awards up to $50,000, and the highest award level will be designated the National Connector and fund initiatives up to $900,000. Fiscal year 2024 solicitations will target the Community Anchor and the new STEM Innovator award levels. Community Anchor and National Connector awards will be the focus for the fiscal year 2025 solicitation.
      The TEAM II program was first expanded to include Community Anchors in 2022. Since then, the program has designated over 50 institutions across 29 states as NASA Community Anchors. These awards support proposals that strengthen the STEM impact of many community organizations, including:
      5th-8th Graders from Whiting Village School join Flight Director Tyson as they embark on a Destination Mars Virtual Mission from their two-room schoolhouse in rural Maine.NASA The Challenger Learning Center of Maine reached more than 960 K-8 students statewide through 58 virtual programs touching 27 mainland schools and four island schools, hosted a STEM community night for residents of rural Whiting, Maine, and held two virtual programs featuring NASA women engineers for girls across the state.
      “NASA’s funding allowed Challenger Maine to provide this Mars mission experience for free to schools, no matter their size,” said Kirsten Hibbard, executive director of the Challenger Learning Center of Maine. “We’ve connected with new schools and become this resource, literally a community anchor of STEM, for these schools.”
      Youth at the Standing Arrow Powwow on the Flathead Reservation experience remote sensing content with virtual reality.NASA The University of Montana spectrUM Discovery Area engaged western Montana’s rural and tribal communities in understanding the role NASA and its partners play in sensing and responding to fire. SpectrUM developed the Montana Virtual Reality Fire Sensing Experience. Using ClassVR headsets, visitors learned about NOAA’s (National Oceanic and Atmospheric Administration) Joint Polar Satellite System satellites, JPSS-1 and JPSS-2, and how they are used to remotely sense the Earth.
      SpectrUM collaborated with its community advisory group, SciNation on the Flathead Reservation, to incorporate fire and Earth science curricula developed by the Confederated Salish and Kootenai Tribes into their field trip and educational programs, impacting hundreds of students.
      A student from Barksdale Air Force Base in Louisiana is excited to complete an activity in the “Aeronautics Museum in a Box” kit developed by NASA’s Aeronautics Research Mission Directorate; Community Anchor grantee Sci-Port Discovery Center in Shreveport, Louisiana; and Central Creativity, an education center in Laurel, Mississippi.NASA Sci-Port Discovery Center Shreveport, Louisiana introduced middle and high school students to NASA aeronautics content through their Aeronautics Museum in a Box kits. The kits were developed in collaboration with NASA’s Aeronautics Research Mission Directorate, Sci-Port, and Central Creativity. The kits include fun, hands-on activities focusing on the parts of an airplane, principles of flight, airplane structure and materials, propulsion, future of flight, careers, and more. Students and families from underserved communities across Northwest Louisiana tested the kits and shared feedback with developers.
      “Museum in a Box brought our participants to new heights beyond their imagination. They see themselves as teachers for their children, as a source of guidance for STEM careers instead of gangs,” said Dr. Heather Kleiner, director, Northwest LaSTEM Innovation Center, Sci-Port Discovery Center.
      U.S. informal education institutions interested in proposing for these awards are invited to attend an optional pre-proposal webinar Thursday, July 25, or Tuesday, August 13. Event times and connection details are available here.
      More information about funding opportunities can be found on NASA’s TEAM II Grant Forecasting webpage.
      To learn more about TEAM II Community Anchors, visit:TEAM II Community Anchors – NASA
      Keep Exploring Discover More Topics From NASA
      Outside the Classroom
      About STEM Engagement at NASA
      For Educators
      Learning Resources
      View the full article
  • Check out these Videos

×
×
  • Create New...