Jump to content

Life beyond the leak for ESA’s CryoSat


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      From the Mission Control Center to community celebrations, Kenneth Attocknie blends safety expertise with a commitment to cultural connection. 

      For the past 25 years at NASA, Attocknie has dedicated his career to safeguarding the International Space Station and supporting real-time mission operations at Johnson Space Center in Houston.  

      As a principal safety engineer in the Safety and Mission Assurance Directorate, Attocknie ensures the safe operation of the space station’s environmental control and life support system. This system is vital for maintaining the life-sustaining environment aboard the orbiting laboratory— a critical foundation for similar systems planned for future Artemis missions. 
      Official portrait of Kenneth Attocknie.NASA/Bill Stafford As a contractor with SAIC, Attocknie has served as a flight controller, astronaut crew office engineer, and astronaut crew instructor. He joined NASA just as the first two modules of the space station, Zarya and Unity, connected in space on Dec. 6, 1998.  

      “I’ve supported the space station ever since and have been blessed to witness the remarkable progression of this amazing orbiting experiment,” he said. “I feel I have found a way to contribute positively to NASA’s mission: to improve life for all people on our planet.” 

      He also contributed to closing out the Space Shuttle Program and worked in system safety for the Constellation program. 

      As part of SAIC’s Employee Resource Group, Attocknie supports the Mathematics, Engineering, Science Achievement project, which uses project-based learning to inspire high school students from underrepresented communities to pursue careers in science, technology, engineering, and mathematics. He continues to advocate for Native Americans as a member of the American Indian Science and Engineering Society, helping NASA engage with college students across Indian Country. 
      Flight controller Kenneth Attocknie on console in the Blue Flight Control Room during Expedition 11. NASA/Mark Sowa Attocknie strives to contribute to a space exploration legacy that uplifts and unites cultures, paving the way for a future in human spaceflight that honors and empowers all. 

      A member of the Comanche and Caddo tribes of Oklahoma, he has made it his mission to create a cross-cultural exchange between NASA and Native communities to provide opportunities for Natives to visit Johnson.  

      One of his proudest moments was organizing a Native American Heritage Month event with NASA’s Equal Opportunity and Diversity Office. The celebration brought together Native dancers and singers from Oklahoma and Texas to honor their heritage at Johnson.  

      “Seeing the Johnson community rally around this event was amazing,” said Attocknie. “It was a profound experience to share and celebrate my culture here.” 
      A traditional dance exhibition during a Native American cultural celebration at NASA’s Johnson Space Center in Houston. NASA/Allison Bills Overcoming challenges and setbacks has been part of his NASA experience as well. “Finding and achieving my purpose is always an ongoing journey,” he said. “Accepting what might seem like a regression is the first step of growth. There’s always a lesson to be found, and every disappointment can fuel a new ambition and direction. Ride the waves, be humble, learn lessons, and above all, always keep going.” 

      He believes that NASA’s mission is deeply connected to diversity and inclusion. “You can’t truly benefit humankind if you don’t represent humankind,” said Attocknie. “The status quo may feel comfortable, but it leads to stagnation and is the antithesis of innovation.” 
      Kenneth Attocknie (middle) celebrates his Native American culture with the Caddo tribe of Oklahoma.NASA/Allison Bills Attocknie’s hope for the Artemis Generation? “A healthier planet, society, and the desire to pass on lessons of stewardship for our environment. All life is precious.” 

      He sees NASA as a gateway to a brighter future: “NASA can truly harness its influence to be an example for our planet, not only in the new heavenly bodies we journey to but also in the new human spirits we touch.” 
      View the full article
    • By Amazing Space
      Lets Talk Space - The Search For Intelligent Life.
    • By NASA
      Learn Home Watch How Students Help NASA… Citizen Science Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   2 min read
      Watch How Students Help NASA Grow Plants in Space: Growing Beyond Earth
      Since 2015, students from across the USA have been partnering with scientists at NASA to advance research on growing plants in space, ultimately to feed astronauts on long-distance space missions, as part of Fairchild Tropical Botanic Garden’s Growing Beyond Earth project, which is now in its 9th year. This classroom-based citizen science project for 6th-12th grade students includes a series of plant experiments conducted by students in a Fairchild-designed plant habitat similar to the Vegetable Production System (VEGGIE) on the International Space Station.
      This year, 8000+ students from 400+ schools are testing new edible plant varieties, studying radiation effects on growth, exploring the perfect light spectrum for super-sized space radishes, and experimenting with cosmic soil alternatives.
      Watch these South Florida students show us how it’s done.
      NASA citizen science projects are open to everyone around the world, not limited to U.S. citizens or residents. They are collaborations between scientists and interested members of the public. Through these collaborations, volunteers (known as citizen scientists) have helped make thousands of important scientific discoveries. More than 450 NASA citizen scientists have been named as co-authors on refereed scientific publications. Explore opportunities for you to get involved and do NASA science: https://science.nasa.gov/citizen-science/
      The Growing Beyond Earth project is supported by NASA under cooperative agreement award number 80NSSC22MO125 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      Niki Jose Share








      Details
      Last Updated Oct 28, 2024 Editor NASA Science Editorial Team Related Terms
      Citizen Science Opportunities For Students to Get Involved Plant Biology Science Activation Vegetable Production System (VEGGIE) Explore More
      3 min read Kites in the Classroom: Training Teachers to Conduct Remote Sensing Missions


      Article


      3 days ago
      2 min read Educator Night at the Museum of the North: Activating Science in Fairbanks Classrooms


      Article


      4 days ago
      3 min read Europa Trek: NASA Offers a New Guided Tour of Jupiter’s Ocean Moon


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      Teams from NASA and ESA (European Space Agency), including NASA astronaut Stan Love (far right) and ESA astronaut Luca Parmitano (far left) help conduct human factors testing inside a mockup for the Gateway lunar space station. Thales Alenia Space Teams at NASA, ESA (European Space Agency), and Thales Alenia Space, including astronauts Stan Love and Luca Parmitano, came together in Turin, Italy, this summer for a test run of Gateway, humanity’s first space station to orbit the Moon.
      The group conducted what is known as human factors testing inside a mockup of Lunar I-Hab, one of four Gateway modules where astronauts will live, conduct science, and prepare for missions to the Moon’s South Pole region. The testing is an important step on the path to launch by helping refine the design of spacecraft for comfort and safety.
      Lunar I-Hab is provided by ESA and Thales Alenia Space and is slated to launch on Artemis IV. During that mission, four astronauts will launch inside the Orion spacecraft atop an upgraded version of the SLS (Space Launch System) rocket and deliver Lunar I-Hab to Gateway in orbit around the Moon.
      ESA, CSA (Canadian Space Agency), JAXA (Japan Aerospace Exploration Agency), and the Mohammad Bin Rashid Space Centre of the United Arab Emirates are providing major hardware for Gateway, including science experiments, the modules where astronauts will live and work, robotics, and life support systems.
      International teams of astronauts will explore the scientific mysteries of deep space with Gateway as part of the Artemis campaign to return to the Moon for scientific discovery and chart a path for the first human missions to Mars and beyond.
      A mockup of ESA’s Lunar I-Hab module, one of four elements of the Gateway space station where astronauts will live, conduct science, and prepare for missions to the lunar South Pole Region.Thales Alenia Space An artist’s rendering of ESA’s Lunar I-Hab module in orbit around the Moon, one of four elements of the Gateway space station where astronauts will live, conduct science, and prepare for missions to the lunar South Pole Region.NASA/Alberto Bertolin, Bradley Reynolds Learn More About Gateway Share
      Details
      Last Updated Oct 22, 2024 EditorBriana R. ZamoraContactDylan Connelldylan.b.connell@nasa.govLocationJohnson Space Center Related Terms
      Gateway Space Station Artemis Artemis 4 Earth's Moon Exploration Systems Development Mission Directorate Gateway Program Humans in Space Johnson Space Center Explore More
      1 min read Gateway Stands Tall for Stress Test
      The Gateway space station’s Habitation and Logistics Outpost has successfully completed static load testing in…
      Article 3 weeks ago 6 min read NASA’s Artemis IV: Building First Lunar Space Station
      Article 7 months ago 2 min read Gateway: Energizing Exploration
      Discover the cutting-edge technology powering Gateway, humanity's first lunar space station.
      Article 2 months ago
      Keep Exploring Discover More Topics From NASA
      Space Launch System (SLS)
      Orion Spacecraft
      Gateway
      Human Landing System
      View the full article
    • By NASA
      3 min read
      NASA Selects Two Teams to Advance Life Sciences Research in Space 
      NASA announced two awards Thursday to establish scientific consortia – multi-institutional coalitions to conduct ground-based studies that help address the agency’s goals of maintaining a sustained human presence in space. These consortia will focus on biological systems research in the areas of animal and human models, plants, and microbiology. When fully implemented, the awards for these consortia will total about $5 million. 
      Space biology efforts at NASA use the unique environment of space to conduct experiments impossible to do on Earth. Such research not only supports the health and welfare of astronauts, but results in breakthroughs on diseases such as cancer and neurodegenerative disorders to help protect humanity down on the ground.  
      The awards for the two consortia are for the following areas:  
      Studying space biosphere. The Biology in Space: Establishing Networks for DUrable & REsilient Systems consortium involves a collaborative effort between human/animal, plant, and microbial biologists to ensure an integrated view of the space flight biosphere by enhancing data acquisition, modeling, and testing. It will include participation of more than thirty scientists and professionals working together from at least three institutions. Led by Kristi Morgansen at the University of Washington in Seattle, Washington.    Converting human waste into materials for in-space biomanufacturing. The Integrative Anaerobic Digestion and Phototrophic Biosystem for Sustainable Space Habitats and Life Supports consortium will develop an anaerobic digestion process that converts human waste into organic acids and materials that can be used for downstream biomanufacturing applications in space. It will include eight scientists from six different institutions in three different states, including Delaware and Florida. The consortium is led by Yinjie Tang at Washington University in St. Louis, Missouri.    Proposals for these consortia were submitted in response to ROSES 2024 Program Element E.11 Consortium in Biological Sciences for a consortium with biological sciences expertise to carry out research investigations and conduct activities that address NASA’s established interests in space life sciences.  
      NASA’s Space Biology Program within the agency’s Biological and Physical Sciences division conducts research across a wide spectrum of biological organization and model systems to probe underlying mechanisms by which organisms acclimate to stressors encountered during space exploration (including microgravity, ionizing radiation, and elevated concentrations of carbon dioxide). This research informs how biological systems regulate and sustain growth, metabolism, reproduction, and development in space and how they repair damage and protect themselves from infection and disease. 
      For more information about NASA’s fundamental space-based research, visit https://science.nasa.gov/biological-physical
      Share








      Details
      Last Updated Oct 17, 2024 Contact NASA Science Editorial Team Location NASA Headquarters Related Terms
      Biological & Physical Sciences For Researchers Research Opportunities in Space and Earth Sciences (ROSES) Science & Research View the full article
  • Check out these Videos

×
×
  • Create New...