Jump to content

What Is the Artemis Program? (Grades 5-8)


NASA

Recommended Posts

  • Publishers

This article is for students grades 5-8.

sls orion em-1 block 1 night launch pad

Artemis is NASA’s new lunar exploration program, which includes sending the first woman and first person of color on the Moon. Through the Artemis missions, NASA will use new technology to study the Moon in new and better ways, and prepare for human missions to Mars.

Why Is This Program Called Artemis?

The first missions to take astronauts to the Moon were called the Apollo Program. In 1961, President John F. Kennedy challenged the nation to land astronauts on the Moon by the end of the decade. NASA met that challenge with the Apollo program, landing the first man on the Moon on July 20, 1969. That program was named after a god of Greek mythology, Apollo.
Artemis was Apollo’s twin sister and the goddess of the Moon in Greek mythology. When they land, Artemis astronauts will stand where no human has ever stood: the Moon’s South Pole.

Illustration of Orion preparing to dock at Gateway

What Spacecraft Will Be Used for the Artemis Program?

NASA’s new rocket is the Space Launch System (SLS). It is the most powerful rocket ever in the world. SLS will carry the Orion spacecraft with up to four astronauts riding aboard to lunar orbit. Then, astronauts will dock Orion at a small spaceship called the Gateway. This is where astronauts will prepare for missions to the Moon and beyond. The crew will take trips from the Gateway to the lunar surface in a new human landing system, and then return to the Gateway. When their work is finished, the crew will return to Earth aboard Orion.

NASA’s Space Launch System (SLS) rocket with the Orion spacecraft aboard is seen atop a mobile launcher in High Bay 3 of the Vehicle Assembly Building before rolling out to Launch Complex 39B for the first time, Wednesday, March 16, 2022

When Will Artemis Go to the Moon?

Before Apollo put the first human on the Moon, the first Apollo missions launched to test the rocket and equipment. Before Artemis carries a crew to the Moon, NASA will test the rocket and spacecraft in flight then send a crew for a test flight:

  • Artemis 1 will be a test flight of the SLS rocket with the Orion spacecraft with no crew.
  • Artemis 2 will fly SLS and Orion with a crew past the Moon, then circle it and return to Earth. This trip will be the farthest any human has gone into space.
  • Artemis 3 will send a crew with the first woman and the next man to land on the Moon.
the-moon-near-side.en_.jpg?w=2048

What Will Artemis Astronauts Do on the Moon?

The Artemis 3 crew will visit the Moon’s South Pole. No one has ever been there. At the Moon, astronauts will:

  • Search for the Moon’s water and use it.
  • Study the Moon to discover its mysteries.
  • Learn how to live and work on the surface of another celestial body where astronauts are just three days from home.
  • Test the technologies we need before sending astronauts on missions to Mars, which can take up to three years roundtrip.
Animated Artemis identity with the Earth and Moon
Artemis will light our way to Mars. The new Artemis identity draws bold inspiration from the Apollo program and forges its own path, showing how it will pursue lunar exploration like never before and pave the way to Mars.

Why Is the Artemis Program Important?

The Moon is a good place to learn new science. When astronauts study new places on the lunar surface, NASA will learn more about the Moon, Earth and even the Sun. The Moon is a “test bed” for Mars. A test bed is a place to prove that a technology or idea will work. The Moon is a place to demonstrate that astronauts will one day be able to work away from Earth on Mars for long periods of time.
The first missions to the Moon required NASA to develop new technology. Many of those technologies have been made into items people use on Earth in their everyday lives. NASA is working with businesses and companies to create new technology for Artemis missions. Making new technology helps businesses grow and create more jobs on Earth. Other nations will work with NASA as partners. Just as partners work together on the International Space Station, they will work on Artemis to bring the world together for a mission to Earth’s nearest neighbor in space.

 
More About Artemis
Puzzle Book
Poster: SLS: Meet the Rocket
Pencil and Paper Puzzles: Orion Activities and Coloring Sheets For Kids
Video: Rocket Science in 60 Seconds: What Is the Space Launch System?
Video: We Are Going
Article: What Is the Space Launch System?
Article: What Is Orion?
Article: What Was the Apollo Program?
Article: What Is the International Space Station?
 

Read What Is the Artemis Program? (Grades K-4)

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Credit: NASA NASA, on behalf of the National Oceanic and Atmospheric Administration (NOAA), has selected Southwest Research Institute of San Antonio to build three coronagraphs for the Lagrange 1 Series project, part of NOAA’s Space Weather Next program.
      Once operational, the coronagraphs will provide critical data to NOAA’s Space Weather Prediction Center, which issues forecasts, warnings, and alerts that help mitigate space weather impacts, including electric power outages and interruption to communications and navigation systems.
      This cost-plus-fixed-fee contract is valued at approximately $60 million, and the anticipated period of performance is from this November through January 2034, concluding after launch of the second coronagraph aboard a NOAA spacecraft. The third coronagraph will be delivered as a flight spare.
      This contract award marks a transfer of coronagraph development from the government to the U.S. commercial sector. The contract scope includes design, analysis, development, fabrication, integration, test, verification, and evaluation of the      coronagraphs; launch support; supply and maintenance of ground support equipment; and support of post-launch instrument operations at the NOAA Satellite Operations Facility. The work will take place at Southwest Research Institute’s facility in San Antonio.
      The coronagraphs will observe the density structure of the Sun’s faint outermost atmosphere — the corona — and will detect Earth-directed coronal mass ejections shortly after they erupt, providing the longest possible lead time for geomagnetic storm watches. With this forewarning, public and private organizations affected by space weather can take actions to protect their assets. The coronagraphs will also provide data continuity from the Space Weather follow-on Lagrange 1 mission.
      NASA and NOAA oversee the development, launch, testing and operation of all the satellites in the project. NOAA is the program owner providing the requirements and funding along with managing the program, operations, data products, and dissemination to users. NASA and its commercial partners develop and build the instruments, spacecraft, and provide launch services on behalf of NOAA.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Abbey Donaldson
      Headquarters, Washington
      202-358-1600
      Abbey.a.donaldson@nasa.gov
      Jeremy Eggers
      Goddard Space Flight Center, Greenbelt, Md.
      757-824-2958
      jeremy.l.eggers@nasa.gov
      View the full article
    • By NASA
      Credit: NASA Following a signing ceremony Wednesday in Denmark’s capital city, Copenhagen, NASA embraced Denmark as the 48th nation to commit to the safe and responsible exploration of space that benefits humanity.
      “We welcome Denmark’s signing of the Artemis Accords today,” said NASA Administrator Bill Nelson. “Denmark, as a founding member of the European Space Agency (ESA), has contributed to space exploration for decades, including collaborating with NASA on Mars exploration. Denmark’s signing of the Artemis Accords will further international cooperation and the peaceful exploration of space.”
      Christina Egelund, minister of higher education and science, signed the Artemis Accords on behalf of Denmark. Alan Leventhal, U.S. ambassador to the Kingdom of Denmark also participated in the ceremony, and Nelson contributed recorded remarks.
      “With the Artemis program, the United States is leading the way back to the moon, and Denmark wants to strengthen the strategic partnership with the United States and other partners for the benefit of both science and industry,” said Egelund. “The signing of the Accords is in line with the Danish government’s upcoming strategy for space research and innovation. As part of the strategy, Denmark seeks to strengthen ties with our allies such as the United States. Space holds great potential, and we want – in cooperation with other countries – to advance scientific breakthroughs and influence the development and use of the space sector in the future.”
      In 2020, the United States, led by NASA and the U.S. Department of State, and seven other initial signatory nations established the Artemis Accords, identifying a set of principles promoting the beneficial use of space for humanity. The Artemis Accords are grounded in the Outer Space Treaty and other agreements including the Registration Convention, the Rescue and Return Agreement, as well as best practices and norms of responsible behavior that NASA and its partners have supported, including the public release of scientific data. 
      The commitments to the Artemis Accords and efforts by the signatories to advance implementation of these principles support the safe and sustainable exploration of space.
      Learn more about the Artemis Accords at:
      https://www.nasa.gov/artemis-accords
      -end-
      Meira Bernstein / Elizabeth Shaw
      Headquarters, Washington
      202-358-1600
      meira.b.bernstein@nasa.gov / elizabeth.a.shaw@nasa.gov
      Share
      Details
      Last Updated Nov 13, 2024 LocationNASA Headquarters Related Terms
      Artemis Accords Office of International and Interagency Relations (OIIR) View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Note: The following article is part of a series highlighting propulsion testing at NASA’s Stennis Space Center. To access the entire series, please visit: https://www.nasa.gov/feature/propulsion-powering-space-dreams/.
      Crews at NASA’s Stennis Space Center work Jan. 21-22, 2020, to install the first flight core stage of NASA’s powerful SLS (Space Launch System) rocket on the B-2 side of the Thad Cochran Test Stand for a Green Run test series. Operations required crews to lift the massive core stage from a horizontal position into a vertical orientation, a procedure known as “break over.” Once the stage was oriented in a horizontal position on the night of Jan. 21, crews tied it in place to await favorable wind conditions. The following morning, crews began the process of raising, positioning, and securing the stage on the stand. NASA/Stennis The future is now at NASA’s Stennis Space Center near Bay St. Louis, Mississippi – at least when it comes to helping power the next great era of human space exploration.  
      NASA Stennis is contributing directly to the agency’s effort to land the first woman, the first person of color, and its first international partner astronaut on the Moon – for the benefit of all humanity. Work at the nation’s largest – and premier – propulsion test site will help power SLS (Space Launch System) rockets on future Artemis missions to enable long-term lunar exploration and prepare for the next giant leap of sending the first astronauts to Mars.  
      “We play a critical role to ensure the safety of astronauts on future Artemis missions,” NASA Stennis Space Center Director John Bailey said. “Our dedicated workforce is excited and proud to be part of NASA’s return to the Moon.”  
      NASA Stennis achieved an RS-25 testing milestone in April at the Fred Haise Test Stand. Completion of the successful RS-25 certification series provided critical data for L3Harris (formerly known as Aerojet Rocketdyne) to produce new RS-25 engines, using modern processes and manufacturing techniques. The engines will help power SLS rockets beginning with Artemis V.   
      The first four Artemis missions are using modified space shuttle main engines also tested at NASA Stennis. For each Artemis mission, four RS-25 engines, along with a pair of solid rocket boosters, power the SLS rocket to produce more than 8.8 million pounds of total combined thrust at liftoff.   
      NASA’s powerful SLS rocket is the only rocket that can send the Orion spacecraft, astronauts, and cargo to the Moon on a single mission.   
      Following key test infrastructure upgrades near the Fred Haise Test Stand, NASA Stennis will be ready for more RS-25 engine testing. NASA has awarded L3Harris contracts to provide 24 new engines, supporting SLS launches for Artemis V through Artemis IX.  
      “Every RS-25 engine that launches Artemis to space will be tested at NASA Stennis,” said Joe Schuyler, director of the NASA Stennis Engineering and Test Directorate. “We take pride in helping to power this nation’s human space exploration program. We also take great care in testing these engines because they are launching astronauts to space. We always have safety in mind.” 
      NASA’s Stennis Space Center conducts a successful hot fire of the first flight core stage of NASA’s powerful SLS (Space Launch System) rocket on the B-2 side of the Thad Cochran Test Stand on March 18, 2021. NASA employees, as well as NASA astronauts Jessica Meir and Zena Cardman, watched the milestone moment. The hot fire of more than eight minutes marked the culmination of a Green Run series of tests on the stage and its integrated systems.  NASA/Stennis In addition to RS-25 testing, preparations are ongoing at the Thad Cochran Test Stand (B-2) for future testing of the agency’s new exploration upper stage. The more powerful SLS second stage, which will send astronauts and cargo to deep space aboard the Orion spacecraft, is being built at NASA’s Michoud Assembly Facility in New Orleans.   
      Before its first flight, the NASA Stennis test team will conduct a series of Green Run tests on the new stage’s integrated systems to demonstrate it is ready to fly. Crews completed installation of a key component for testing the upper stage in October. The lift and installation of the 103-ton interstage simulator component, measuring 31 feet in diameter and 33 feet tall, provided crews best practices for moving and handling the actual flight hardware when it arrives to NASA Stennis.   
      The exploration upper stage Green Run test series will culminate with a hot fire of the stage’s four RL10 engines, made by L3Harris, the lead SLS engines contractor.  
      “All of Mississippi shares in our return to the Moon with the next great era of human space exploration going through NASA Stennis,” Bailey said. “Together, we can be proud of the state’s contributions to NASA’s great mission.”   
      For information about NASA’s Stennis Space Center, visit:  
      Stennis Space Center – NASA  
      Share
      Details
      Last Updated Nov 13, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Explore More
      5 min read NASA Stennis – An Ideal Place for Commercial Companies
      Article 13 mins ago 5 min read NASA Stennis Test Team Supports Space Dreams with Proven Expertise
      Article 14 mins ago 5 min read NASA Stennis Adapts with Purpose to Power Nation’s Space Dreams
      Article 14 mins ago Keep Exploring Discover Related Stennis Topics
      Propulsion Test Engineering
      NASA Stennis Front Door
      Multi-User Test Complex
      Doing Business with NASA Stennis
      View the full article
    • By NASA
      Teams with NASA and Lockheed Martin prepare to conduct testing on NASA’s Orion spacecraft on Thursday, Nov. 7, 2024, in the altitude chamber inside the Neil A. Armstrong Operations and Checkout building at NASA’s Kennedy Space Center in Florida. Lockheed Martin/David Wellendorf Teams lifted NASA’s Orion spacecraft for the Artemis II test flight out of the Final Assembly and System Testing cell and moved it to the altitude chamber to complete further testing on Nov. 6 inside the Neil A. Armstrong Operations and Checkout building at NASA’s Kennedy Space Center in Florida.
      Engineers returned the spacecraft to the altitude chamber, which simulates deep space vacuum conditions, to complete the remaining test requirements and provide additional data to augment data gained during testing earlier this summer.
      The Artemis II test flight will be NASA’s first mission with crew under the Artemis campaign, sending NASA astronauts Victor Glover, Christina Koch, and Reid Wiseman, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon and back.
      Image credit: Lockheed Martin/David Wellendorf
      View the full article
    • By NASA
      NASA HLS (Human Landing System) Program strategic communicator and U.S. Navy Reservist Public Affairs Officer Joe Vermette brings a wealth of public service to Artemis communication activities. NASA/Ken Hall Coming from a Navy family, Vermette was inspired to military service by the example of his brother, uncles and father, who admired President John Kennedy’s call to land on the Moon and for citizens to do what they can for our country. Photo courtesy Joe Vermette While some stand on the sidelines and witness history, others are destined to play a part in it. And then there are those who document it, bringing the people, the action, the images, the words, and the personalities to the world. U. S. Navy Reservist Public Affairs Officer and program strategic communicator for NASA’s HLS (Human Landing System) Joe Vermette stands at the nexus of all three.
      Spurred to action to serve his country by the events of September 11, 2001; veteran of numerous overseas deployments with the Navy, and responsible for communicating NASA’s return to the Moon through the Artemis campaign, Vermette has played a part in history while he communicates humanity’s greatest endeavors to the world.
      Vermette joined NASA in August 2020 during the COVID-19 pandemic, coming from the Federal Emergency Management Agency (FEMA), where he was a regional communications director. Right off the bat, he rose to the challenge of learning about space exploration, Artemis, and communicating the new way the HLS Program would work with commercial providers for Moon landing services,  rather than specifying spacecraft to be built.
      “I was used to being right in the middle of the action,” Vermette said. “The pandemic challenged me to work in a new way. At the same time, NASA and HLS were working in a new way, having just brought on our first commercial provider, SpaceX,” he said. In May 2023, the HLS Program brought on a second commercial provider, Blue Origin, for human landing services.
      After earning a degree in military history with a minor in communications from Florida State University, Vermette worked as a video journalist and spot writer for CNN. But it was the terrorist attacks of September 11, 2001, that really shaped his career in government service. “Three weeks later, I went down to the recruiting office and began the process of joining the military. I saw an opportunity to help the country in the best capacity I could,” Vermette said.
      Since then, his career has been dotted by active deployments, from the Middle East to Europe to stateside; onboard Navy ships, at U.S. Central Command, at U. S. Special Operations Command, and more.
      NASA’s HLS Program and Artemis have benefitted from Vermette’s experience and steady hand helping guide strategic communications since 2020. He recently answered the call to active duty again but intends to return to NASA once his military obligations are fulfilled.
      “NASA is a different world than the military or disaster response. But I’ve been fortunate enough to see – and communicate about – government success stories in all three arenas, Vermette said. “Seeing NASA put astronauts on the Moon again will be the best ‘mission complete’ I could have.”
      With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of the Red Planet. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the human landing system, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      For more on HLS, visit: 
      https://www.nasa.gov/humans-in-space/human-landing-system
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      View the full article
  • Check out these Videos

×
×
  • Create New...