Jump to content

What Is a Black Hole? (Grades 5-8)


Recommended Posts

  • Publishers
Posted

This article is for students grades 5-8

Black hole with spinning material around it

A black hole is a region in space where the pulling force of gravity is so strong that light is not able to escape. The strong gravity occurs because matter has been pressed into a tiny space. This compression can take place at the end of a star’s life. Some black holes are a result of dying stars.

Because no light can escape, black holes are invisible. However, space telescopes with special instruments can help find black holes. They can observe the behavior of material and stars that are very close to black holes.

High energy light

How Big Are Black Holes?

Black holes can come in a range of sizes, but there are three main types of black holes. The black hole’s mass and size determine what kind it is.

The smallest ones are known as primordial black holes. Scientists believe this type of black hole is as small as a single atom but with the mass of a large mountain.

The most common type of medium-sized black holes is called “stellar.” The mass of a stellar black hole can be up to 20 times greater than the mass of the sun and can fit inside a ball with a diameter of about 10 miles. Dozens of stellar mass black holes may exist within the Milky Way galaxy.

The largest black holes are called “supermassive.” These black holes have masses greater than 1 million suns combined and would fit inside a ball with a diameter about the size of the solar system. Scientific evidence suggests that every large galaxy contains a supermassive black hole at its center. The supermassive black hole at the center of the Milky Way galaxy is called Sagittarius A. It has a mass equal to about 4 million suns and would fit inside a ball with a diameter about the size of the sun.

Close-up of black hole

How Do Black Holes Form?

Primordial black holes are thought to have formed in the early universe, soon after the big bang.

Stellar black holes form when the center of a very massive star collapses in upon itself. This collapse also causes a supernova, or an exploding star, that blasts part of the star into space.

Scientists think supermassive black holes formed at the same time as the galaxy they are in. The size of the supermassive black hole is related to the size and mass of the galaxy it is in.

Black hole Sagittarius A

If Black Holes Are “Black,” How Do Scientists Know They Are There?

A black hole can not be seen because of the strong gravity that is pulling all of the light into the black hole’s center. However, scientists can see the effects of its strong gravity on the stars and gases around it. If a star is orbiting a certain point in space, scientists can study the star’s motion to find out if it is orbiting a black hole.

When a black hole and a star are orbiting close together, high-energy light is produced. Scientific instruments can see this high-energy light.

A black hole’s gravity can sometimes be strong enough to pull off the outer gases of the star and grow a disk around itself called the accretion disk. As gas from the accretion disk spirals into the black hole, the gas heats to very high temperatures and releases X-ray light in all directions. NASA telescopes measure the X-ray light. Astronomers use this information to learn more about the properties of a black hole.

A disk of hot material around a supermassive black hole emits a burst of visible light, which travels out to a ring of dust that subsequently emits infrared light.

Could a Black Hole Destroy Earth?

Black holes do not wander around the universe, randomly swallowing worlds. They follow the laws of gravity just like other objects in space. The orbit of a black hole would have to be very close to the solar system to affect Earth, which is not likely.

If a black hole with the same mass as the sun were to replace the sun, Earth would not fall in. The black hole with the same mass as the sun would keep the same gravity as the sun. The planets would still orbit the black hole as they orbit the sun now.

Flaring, active regions of our sun are highlighted in this image combining observations from NASA's NuSTAR. During the observations, microflares went off, which are smaller versions of the larger flares that also erupt from the sun surface.

Will the Sun Ever Turn Into a Black Hole?

The sun does not have enough mass to collapse into a black hole. In billions of years, when the sun is at the end of its life, it will become a red giant star. Then, when it has used the last of its fuel, it will throw off its outer layers and turn into a glowing ring of gas called a planetary nebula. Finally, all that will be left of the sun is a cooling white dwarf star.

This week in 2008, the Fermi Gamma-ray Space Telescope was launched aboard a Delta II rocket.

How Is NASA Studying Black Holes?

NASA is learning about black holes using spacecraft like the Chandra X-ray Observatory, the Swift satellite and the Fermi Gamma-ray Space Telescope. Fermi launched in 2008 and is observing gamma rays – the most energetic form of light – in search of supermassive black holes and other astronomical phenomena. Spacecraft like these help scientists answer questions about the origin, evolution and destiny of the universe.

_________________________________________________________________________________________

Words to Know

mass: the measurement for the amount of matter in an object

red giant star: a star that is larger than the sun and red
because it has a lower temperature

white dwarf star: a small star, about the size of Earth;
one of the last stages of a star’s life
_________________________________________________________________________________________

More About Black Holes

Space Place in a Snap: What Is a Black Hole?
Black Hole Rescue
Fall Into a Black Hole
Black Holes: By the Numbers Slideshow
Black Hole Travel Postcards

Read What Is a Black Hole? (Grades K-4)

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      This article is for students grades 5-8.
      Aerodynamics is the way objects move through air. The rules of aerodynamics explain how an airplane is able to fly. Anything that moves through air is affected by aerodynamics, from a rocket blasting off, to a kite flying. Since they are surrounded by air, even cars are affected by aerodynamics.
      What Are the Four Forces of Flight?
      The four forces of flight are lift, weight, thrust and drag. These forces make an object move up and down, and faster or slower. The amount of each force compared to its opposing force determines how an object moves through the air.
      What Is Weight?
      Gravity is a force that pulls everything down to Earth. Weight is the amount of gravity multiplied by the mass of an object. Weight is also the downward force that an aircraft must overcome to fly. A kite has less mass and therefore less weight to overcome than a jumbo jet, but they both need the same thing in order to fly — lift.
      What Is Lift?
      Lift is the push that lets something move up. It is the force that is the opposite of weight. Everything that flies must have lift. For an aircraft to move upward, it must have more lift than weight. A hot air balloon has lift because the hot air inside is lighter than the air around it. Hot air rises and carries the balloon with it. A helicopter’s lift comes from the rotor blades. Their motion through the air moves the helicopter upward. Lift for an airplane comes from its wings.
      How Do an Airplane’s Wings Provide Lift?
      The shape of an airplane’s wings is what makes it possible for the airplane to fly. Airplanes’ wings are curved on top and flatter on the bottom. That shape makes air flow over the top faster than under the bottom. As a result, less air pressure is on top of the wing. This lower pressure makes the wing, and the airplane it’s attached to, move up. Using curves to affect air pressure is a trick used on many aircraft. Helicopter rotor blades use this curved shape. Lift for kites also comes from a curved shape. Even sailboats use this curved shape. A boat’s sail is like a wing. That’s what makes the sailboat move.
      What Is Drag?
      Drag is a force that pulls back on something trying to move. Drag provides resistance, making it hard to move. For example, it is more difficult to walk or run through water than through air. Water causes more drag than air. The shape of an object also affects the amount of drag. Round surfaces usually have less drag than flat ones. Narrow surfaces usually have less drag than wide ones. The more air that hits a surface, the more the drag the air produces.
      What Is Thrust?
      Thrust is the force that is the opposite of drag. It is the push that moves something forward. For an aircraft to keep moving forward, it must have more thrust than drag. A small airplane might get its thrust from a propeller. A larger airplane might get its thrust from jet engines. A glider does not have thrust. It can only fly until the drag causes it to slow down and land.
      Why Does NASA Study Aerodynamics?
      Aerodynamics is an important part of NASA’s work. The first A in NASA stands for aeronautics, which is the science of flight. NASA works to make airplanes and other aircraft better. Studying aerodynamics is an important part of that work. Aerodynamics is important to other NASA missions. Probes landing on Mars have to travel through the Red Planet’s thin atmosphere. Having to travel through an atmosphere means aerodynamics is important on other planets too.
      More About Aerodynamics
      Dynamics of Flight
      Read What Is Aerodynamics (Grades K-4)
      Explore More For Students Grades 5-8 View the full article
    • By NASA
      3 Min Read What Is Aerodynamics? (Grades K-4)
      This article is for students grades K-4.
      What Are the Four Forces of Flight?
      Aerodynamics is the way air moves around things. The rules of aerodynamics explain how an airplane is able to fly. Anything that moves through air reacts to aerodynamics. A rocket blasting off the launch pad and a kite in the sky react to aerodynamics. Aerodynamics even acts on cars, since air flows around cars.
      The four forces of flight are lift, weight, thrust and drag. These forces make an object move up and down, and faster or slower. How much of each force there is changes how the object moves through the air.
      What Is Weight?
      Everything on Earth has weight. This force comes from gravity pulling down on objects. To fly, an aircraft needs something to push it in the opposite direction from gravity. The weight of an object controls how strong the push has to be. A kite needs a lot less upward push than a jumbo jet does.
      What Is Lift?
      Lift is the push that lets something move up. It is the force that is the opposite of weight. Everything that flies must have lift. For an aircraft to move upward, it must have more lift than weight. A hot air balloon has lift because the hot air inside is lighter than the air around it. Hot air rises and carries the balloon with it. A helicopter’s lift comes from the rotor blades at the top of the helicopter. Their motion through the air moves the helicopter upward. Lift for an airplane comes from its wings.  
      How Do an Airplane’s Wings Provide Lift?
      The shape of an airplane’s wings is what makes it able to fly. Airplanes’ wings are curved on top and flatter on the bottom. That shape makes air flow over the top faster than under the bottom. So, less air pressure is on top of the wing. This condition makes the wing, and the airplane it’s attached to, move up. Using curves to change air pressure is a trick used on many aircraft. Helicopter rotor blades use this trick. Lift for kites also comes from a curved shape. Even sailboats use this concept. A boat’s sail is like a wing. That’s what makes the sailboat move.
      What Is Drag?
      Drag is a force that tries to slow something down. It makes it hard for an object to move. It is harder to walk or run through water than through air. That is because water causes more drag than air. The shape of an object also changes the amount of drag. Most round surfaces have less drag than flat ones. Narrow surfaces usually have less drag than wide ones. The more air that hits a surface, the more drag it makes.
      What Is Thrust?
      Thrust is the force that is the opposite of drag. Thrust is the push that moves something forward. For an aircraft to keep moving forward, it must have more thrust than drag. A small airplane might get its thrust from a propeller. A larger airplane might get its thrust from jet engines. A glider does not have thrust. It can only fly until the drag causes it to slow down and land.
      Read What Is Aerodynamics? (Grades 5-8)
      Explore More For Students Grades K-4 View the full article
    • By European Space Agency
      The European Space Agency's XMM-Newton is playing a crucial role in investigating the longest and most energetic bursts of X-rays seen from a newly awakened black hole. Watching this strange behaviour unfold in real time offers a unique opportunity to learn more about these powerful events and the mysterious behaviour of massive black holes.
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This article is for students grades 5-8.
      Alan Shepard was the first American in space. He was one of NASA’s first seven astronauts. Later, he walked on the moon during the Apollo program.
      What Was Shepard’s Early Life Like?
      Alan Shepard was born on Nov. 18, 1923. He was born in East Derry, N.H., and grew up there. He earned a Bachelor of Science degree from the United States Naval Academy. He served on a Navy ship in the Pacific Ocean during World War II. After the war, Shepard entered flight training and earned his pilot’s wings. He graduated from Naval Test Pilot School and Naval War College. In April 1959, NASA selected Shepard as a member of its first group of seven astronauts.
      What Happened on Alan Shepard’s First Spaceflight?
      On May 5, 1961, Alan Shepard became the first American in space. He flew on a one-person Mercury spacecraft that he named Freedom 7. It launched on a Redstone rocket. On this flight, Shepard did not orbit Earth. He flew 116 miles high and then returned safely. The flight lasted about 15 ½ minutes. The mission was a success.
      What Happened After Shepard’s First Spaceflight?
      After his first flight, Shepard developed a medical problem. An inner ear problem stopped him from flying in space. NASA named Shepard as chief of the Astronaut Office. He helped select new astronauts, plan missions and make sure astronauts were ready to fly. Later, he had surgery to fix the ear problem, and he was able to fly again. Almost 10 years passed between his first and second flights.
      What Happened on Alan Shepard’s Second Spaceflight?
      Shepard’s second spaceflight was on the Apollo 14 mission to the moon. He was commander of a crew that included Stuart Roosa and Edgar Mitchell. The Apollo spacecraft was launched on a Saturn V (5) rocket.
      On Feb. 15, 1971, Shepard and Mitchell landed on the moon. (Roosa stayed in orbit around the moon while the other two landed.) During two moonwalks, Shepard and Mitchell collected more than 100 pounds of moon rocks. They conducted scientific experiments on the lunar surface. Shepard also became the first person to hit a golf ball on the moon, showing how far it would go in the moon’s lower gravity.
      What Happened After Shepard’s Second Spaceflight?
      After his second flight, Shepard returned to his job as head of the Astronaut Office. He retired from NASA in 1974. Shepard worked in private business. He also did volunteer work to support education and to help people learn about spaceflight. Shepard died of leukemia in 1998.
      More About Alan Shepard
      Alan Shepard: First American in Space
      Alan Shepard – Ambassador of Exploration
      Freedom 7
      Apollo 14
      What Was Project Mercury?
      What Was the Apollo Program?
      What Was the Saturn V?
      Read Who Was Alan Shepard? (Grades K-4)
      Explore More for Students Grades 5-8 View the full article
    • By NASA
      4 Min Read What is an Engineer? (Grades K-4)
      This article is for students grades K-4.
      Engineers solve problems. They use science and math to create new things or make things work better. There are different kinds of engineers. They work on different kinds of projects. Some engineers design buildings or machines. Others find ways to move heat, power, or water from one place to another. Some create new tools.
      NASA needs engineers. They design the things humans need to fly in space or on airplanes. Engineers make great ideas become real.
      What do NASA engineers work on?
      NASA has many missions. These missions need different kinds of engineers. Here are some of the ways engineers help NASA get the job done.
      Spacecraft: These are vehicles that fly in space. NASA engineers decide how a spacecraft should be built and what it should do. They also make sure it will keep astronauts safe. Airplanes: NASA engineers work on airplanes. They design how the plane will look, how fast it will fly, and how much fuel it will use. Telescopes: Telescopes help us see space objects like stars and planets. Some telescopes are placed in orbit for the best view. NASA engineers design them to work in space. Computers: Computers can do complex tasks faster than people. NASA engineers write code that tells computers what to do. Anthony Vareha, NASA flight director Why is it fun to be a NASA engineer?
      At NASA, engineers get to work on cool projects. They use science and creativity to find new ways to reach big goals. Here are some of the reasons they like their work.
      “Being an engineer is like solving a huge puzzle or building something cool with building blocks. The difference is that the things we make help make the world better and improve people’s lives.” – Othmane Benefan, materials research engineer “I like being an engineer because I get to learn new things almost every day. Most of the engineering projects at NASA are super unique because we are building satellites that study new places all over the solar system (planets, asteroids, even the Sun), and it’s really fun to learn all the ways that we can use robots to explore.” – Phillip Hargrove, launch mission integration engineer “I love to build and create things. At NASA, there’s always something to do, and I get to work with people I enjoy.” – Jenna Sayler, aerospace engineer “I love being an engineer because I love trying to understand how things work. There’s a lot of stuff in our universe. Engineering is the tool I’ve chosen to help make sense of it all.” – Brian Kusnick, mechanical engineer Elaine Stewart, contamination control engineer What are some things I can do to help me become an engineer?
      Be curious and excited to learn new things. Learn more about how different types of machines work. Practice making, building, or tinkering with things. Work hard in math and science classes. When you get to middle school or high school, try a NASA student challenge or apply to be a NASA intern. Students over age 16 can apply for NASA internships. Interns work on real projects. NASA team members help guide interns as they learn. Wendy Okolo, Ph.D., aerospace research engineer How can I try engineering today?
      NASA has fun engineering activities that you can do at home. Here are a few to try:
      Make and color a paper airplane. Let your imagination fly! Build a tower with pasta! How tall can you build it? Make a paper Mars helicopter. See which design works best! Build a new spacecraft using items in your house! A CubeSat is a small satellite. Try to build a CubeSat in this online game. When you do these projects, try them more than once. Make a small change each time. See if it makes your design work better. Engineering is all about testing ideas!
      Learn More
      JPL Education: Student Projects (Grades K-4) NASA Space Place Explore More for Students Grades K-4 View the full article
  • Check out these Videos

×
×
  • Create New...