Jump to content

University of Utah takes top honors in BIG Idea Lunar Forge Challenge 


NASA

Recommended Posts

  • Publishers
Student from University of Utah with Powder Metallurgy Research Laboratory, Artemis Award winners of the 2023 BIG Idea Challenge.
A member of the winning team of NASA’s 2023’s BIG Idea Challenge working on their Lunar Forge project, Production of Steel from Lunar Regolith through Carbonyl Iron Refining (CIR).
University of Utah

Through Artemis, NASA plans to conduct long-duration human and robotic missions on the lunar surface in preparation for future crewed exploration of Mars. Expanding exploration capabilities requires a robust lunar infrastructure, including practical and cost-effective ways to construct a lunar base. One method is employing in-situ resource utilization (ISRU) – or the ability to use naturally occurring resources – to produce consumables and build structures in the future, which will make explorers more Earth-independent.  

An ISRU process that NASA wants to learn more about is forging metals from lunar minerals to create structures and tools in the future. Through its 2023 Breakthrough, Innovative and Game-Changing (BIG) Idea Lunar Forge Challenge, NASA sought innovative concepts from university students to design an ISRU metal production pipeline on the Moon. The year-and-a-half-long challenge, funded by NASA’s Space Technology Mission Directorate (STMD) and Office of STEM Engagement, supports NASA’s Lunar Surface Innovation Initiative in developing new approaches and novel technologies to pave the way for successful exploration on the surface of the Moon.

Finalist teams presented their research, designs, prototypes, and testing results to a panel of NASA and industry judges at a culminating forum on Nov. 16, in Cleveland, Ohio.

The University of Utah team, partnering with Powder Metallurgy Research Laboratory, earned the Artemis Award, which represents top honors in the 2023 BIG Idea Challenge. Their lunar forge project, Production of Steel from Lunar Regolith through Carbonyl Iron Refining (CIR), represents a promising avenue to extract iron from reduced lunar regolith and refine it into a high purity powder product in a two-stage process. The Artemis Award is given to the team whose concept has the best potential to contribute to and be integrated into an Artemis mission. 

There were multiple times we came close to scrapping the concept, but each time we found the strength to go a little farther. Our small group was driven by a genuine belief in the concept and curiosity of what would happen. This honor has validated the perseverance, effort, and dedication of exploring an innovative and applied idea. Participating in this challenge has allowed us to gain a tremendous and unique experience in technical and collaboration skills. We are incredibly grateful for this opportunity and for the friends we made along the way!

Collin Andersen, Team Lead

Collin Andersen, Team Lead

University of Utah and Powder Metallurgy Research Laboratory

The University of Utah team, partnering with Powder Metallurgy Research Laboratory, earned the Artemis Award, which represents top honors in the 2023 BIG Idea Challenge.
The University of Utah team, partnering with Powder Metallurgy Research Laboratory, earned the Artemis Award, which represents top honors in the 2023 BIG Idea Challenge.
Credit: National Institute of Aerospace

Teams could select to address technologies needed along any point in the lunar metal production pipeline, including, but not limited to: 

  • Metal detecting 
  • Metal refining
  • Forming materials for additive manufacturing
  • Testing and qualifying 3D printed infrastructure for use on the Moon

In January, teams submitted proposal packages, from which seven finalists were selected in March 2023 for funding of up to $180,000, totaling nearly $1.1 million across all teams. The finalists then worked for nine months designing, developing, and demonstrating their concepts. The 2023 BIG Idea program concluded at its annual forum, where teams presented their results and answered questions from judges, followed by an interactive poster session. Experts from NASA and other aerospace companies evaluated the student concepts based on technical innovation, credibility, management, and teams’ verification testing. In addition to the presentation, the teams provided a technical paper and technical poster detailing their proposed metal production pipeline.

This was a fantastic experience for both the student and NASA participants. The university concepts for how to forge metal on the Moon were inspiring and resulted in diverse, novel approaches for the agency to consider, as well as an extensive learning experience for students. The BIG Idea Challenge proves time and time again that engaging the academic community in complex technology challenges is a worthwhile endeavor for everyone involved.

Niki werkheiser

Niki werkheiser

Director of technology maturation within STMD

In addition to the top spot, several teams were recognized in other categories, including: 

Edison Award: Missouri University of Science & Technology

Path-to-Flight Award: University of North Texas with Advanced Materials & Manufacturing Processes Institute at UNT; Enabled Engineering

Systems Engineering: Northwestern University with Wearifi, Inc.

Best Verification Demonstration: Colorado School of Mines

BIG Picture Award: Massachusetts Institute of Technology with Honeybee Robotics 

Innovation Award: Pennsylvania State University with RFHIC & Jacobs Space Exploration Group

The 2023 BIG Idea Challenge is sponsored by NASA through a collaboration between STMD’s Game Changing Development program and the Office of STEM Engagement’s Space Grant project. The Challenge is managed by a partnership between the National Institute of Aerospace and the Johns Hopkins Applied Physics Laboratory (APL)

NASA sponsors the 2023 BIG Idea Challenge through its Game Changing Development program and the Office of STEM Engagement’s Space Grant project. The National Institute of Aerospace and the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland managed the challenge for NASA. 

Team presentations, technical papers, and digital posters are available on the BIG Idea website.   

For full competition details, visit:
https://bigidea.nianet.org/2023-challenge/

   

Illustration of an astronaut on the Moon working on metal forging
NASA’s 2023 annual Breakthrough, Innovative and Game-Changing (BIG) Idea Challenge asks college students to design technologies that will support a metal production pipeline on the Moon – from extracting metal from lunar minerals to creating structures and tools.
NASA/Advanced Concepts Lab
2023 BIG Idea Lunar Forge

  

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      In partnership with the Air Force Research Laboratory, the United States Space Force is currently accepting proposals for USSF University Consortium/Space Strategic Technology Institute 4, focused on Advanced Remote Sensing.
      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      ESI24 Li Quadchart
      Wei Li
      University of Texas at Dallas
      Internal defects are always formed in laser welding process due to the keyhole instability, molten pool collapse, and rapid solidification. The extreme lunar environment complicates the reliable implementation of welding, thereby enhancing the welding defects formation. The welding defects are critical material barriers preventing the metal components from Moon exploration. Professor Wei Li’s team will establish an integrated computational materials modelling framework to study the process-structure-property linkage of laser welding under the lunar conditions. The research is emphasized on modelling the internal defects (void, lack of fusion) formed in the lunar laser welding by fully considering the reduced gravity, large temperature change, and extreme vacuum on the Moon surface, and predicting the influence of internal defects on the material and mechanical properties of welding joint.
      Back to ESI 2024
      Keep Exploring Discover More Topics From STRG
      Space Technology Mission Directorate
      STMD Solicitations and Opportunities
      Space Technology Research Grants
      About STRG
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      ESI24 Nam Quadchart
      SungWoo Nam
      University of California, Irvine
      Lunar dust may seem unimposing, but it presents a significant challenge for space missions. Its abrasive and jagged particles can damage equipment, clog devices, and even pose health risks to astronauts. This project addresses such issues by developing advanced coatings composed of crumpled nano-balls made from atomically thin 2D materials such as MoS₂, graphene, and MXenes. By crumpling these nanosheets—much like crumpling a piece of paper—we create compression and aggregation resistant particles that can be dispersed in sprayable solutions. As a thin film coating, these crumpled nano-balls form corrugated structures that passively reduce dust adhesion and surface wear. The deformable crumpled nano-ball (DCN) coating works by minimizing the contact area between lunar dust and surfaces, thanks to its unique nano-engineered design. The 2D materials exhibit exceptional durability, withstanding extreme thermal and vacuum environments, as well as resisting radiation damage. Additionally, the flexoelectric and electrostatically dissipative properties of MoS₂, graphene, and MXenes allow the coating to neutralize and dissipate electrical charges, making them highly responsive to the charged lunar dust environment. The project will be executed in three phases, each designed to bring the technology closer to real-world space applications. First, we will synthesize the crumpled nano-balls and investigate their adhesion properties using advanced microscopy techniques. The second phase will focus on fundamental testing in simulated lunar environments, where the coating will be exposed to extreme temperatures, vacuum, radiation, and abrasion. Finally, the third phase will involve applying the coating to space-heritage materials and conducting comprehensive testing in a simulated lunar environment, targeting up to 90% dust clearance and verifying durability over repeated cycles of dust exposure. This research aligns with NASA’s goals for safer, more sustainable lunar missions by reducing maintenance requirements and extending equipment lifespan. Moreover, the potential applications extend beyond space exploration, with the technology offering promising advances in terrestrial industries such as aerospace and electronics by providing ultra-durable, wear-resistant surfaces. Ultimately, the project contributes to advancing materials science and paving the way for NASA’s long-term vision of sustainable space exploration.
      Back to ESI 2024
      Keep Exploring Discover More Topics From STRG
      Space Technology Mission Directorate
      STMD Solicitations and Opportunities
      Space Technology Research Grants
      About STRG
      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      ESI24 Zou Quadchart
      Min Zou
      University of Arkansas, Fayetteville
      Lunar dust, with its highly abrasive and electrostatic properties, poses serious threats to the longevity and functionality of spacecraft, habitats, and equipment operating on the Moon. This project aims to develop advanced bioinspired surface textures that effectively repel lunar dust, targeting critical surfaces such as habitat exteriors, doors, and windows. By designing and fabricating innovative micro-/nano-hierarchical core-shell textures, we aim to significantly reduce dust adhesion, ultimately enhancing the performance and durability of lunar infrastructure. Using cutting-edge fabrication methods like two-photon lithography and atomic layer deposition, our team will create resilient, dust-repelling textures inspired by natural surfaces. We will also conduct in-situ testing with a scanning electron microscope to analyze individual particle adhesion and triboelectric effects, gaining critical insights into lunar dust behavior on engineered surfaces. These findings will guide the development of durable surfaces for long-lasting, low-maintenance lunar equipment, with broader applications for other dust-prone environments.
      Back to ESI 2024
      Keep Exploring Discover More Topics From STRG
      Space Technology Mission Directorate
      STMD Solicitations and Opportunities
      Space Technology Research Grants
      About STRG
      View the full article
    • By NASA
      An artist’s concept of SpaceX’s Starship Human Landing System (HLS) on the Moon. NASA is working with SpaceX to develop the Starship HLS to carry astronauts from lunar orbit to the Moon’s surface and back for Artemis III and Artemis IV. Starship HLS is roughly 50 meters tall, or about the length of an Olympic swimming pool. SpaceX This artist’s concept depicts a SpaceX Starship tanker (bottom) transferring propellant to a Starship depot (top) in low Earth orbit. Before astronauts launch in Orion atop the agency’s SLS (Space Launch System) rocket, SpaceX will launch a storage depot to Earth orbit. For the Artemis III and Artemis IV missions, SpaceX plans to complete propellant loading operations in Earth orbit to send a fully fueled Starship Human Landing System (HLS) to the Moon. SpaceX An artist’s concept shows how a crewed Orion spacecraft will dock to SpaceX’s Starship Human Landing System (HLS) in lunar orbit for Artemis III. Starship HLS will dock directly to Orion so that two astronauts can transfer to the lander to descend to the Moon’s surface, while two others remain in Orion. Beginning with Artemis IV, NASA’s Gateway lunar space station will serve as the crew transfer point. SpaceX The artist’s concept shows two Artemis III astronauts preparing to step off the elevator at the bottom of SpaceX’s Starship HLS to the Moon’s surface. At about 164 feet (50 m), Starship HLS will be about the same height as a 15-story building. (SpaceX)The elevator will be used to transport crew and cargo between the lander and the surface. SpaceX NASA is working with U.S. industry to develop the human landing systems that will safely carry astronauts from lunar orbit to the surface of the Moon and back throughout the agency’s Artemis campaign.
      For Artemis III, the first crewed return to the lunar surface in over 50 years, NASA is working with SpaceX to develop the company’s Starship Human Landing System (HLS). Newly updated artist’s conceptual renders show how Starship HLS will dock with NASA’s Orion spacecraft in lunar orbit, then two Artemis crew members will transfer from Orion to Starship and descend to the surface. There, astronauts will collect samples, perform science experiments, and observe the Moon’s environment before returning in Starship to Orion waiting in lunar orbit. Prior to the crewed Artemis III mission, SpaceX will perform an uncrewed landing demonstration mission on the Moon.
      NASA is also working with SpaceX to further develop the company’s Starship lander to meet an extended set of requirements for Artemis IV. These requirements include landing more mass on the Moon and docking with the agency’s Gateway lunar space station for crew transfer.
      The artist’s concept portrays SpaceX’s Starship HLS with two Raptor engines lit performing a braking burn prior to its Moon landing. The burn will occur after Starship HLS departs low lunar orbit to reduce the lander’s velocity prior to final descent to the lunar surface. SpaceX With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the human landing system, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      For more on HLS, visit: 
      https://www.nasa.gov/humans-in-space/human-landing-system
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      View the full article
  • Check out these Videos

×
×
  • Create New...