Members Can Post Anonymously On This Site
2022 SaSa Graduate Student Mentors
-
Similar Topics
-
By NASA
4 Min Read Student-Built Capsules Endure Heat of Re-entry for NASA Science
The five capsules of the KREPE-2 mission are pictured on Earth prior to flight. Credits: University of Kentucky. In July 2024, five student-built capsules endured the scorching heat of re-entry through Earth’s atmosphere as part of the second Kentucky Re-Entry Probe Experiment (KREPE-2). Scientists are now analyzing the data from the KREPE-2 experiments, which could advance the development of heat shields that protect spacecraft when they return to Earth.
The mission was designed to put a variety of heat shield prototypes to the test in authentic re-entry conditions to see how they would perform. These experimental capsules, which were built by students at the University of Kentucky and funded by the NASA Established Program to Stimulate Competitive Research (EPSCoR) within NASA’s Office of STEM Engagement, all survived more than 4,000 degrees Fahrenheit during descent.
The football-sized capsules also successfully transmitted valuable data via the Iridium satellite network along their fiery journey. The trove of information they provided is currently being analyzed to consider in current and future spacecraft design, and to improve upon designs for future experiments.
“These data – and the instruments used to obtain the data – assist NASA with designing and assessing the performance of current and new spacecraft that transport crew and cargo to and from space,” said Stan Bouslog, thermal protection system senior discipline expert at NASA’s Johnson Space Center in Houston who served as the agency’s technical monitor for the project.
Taking the Plunge: Communicating Through a Fiery Descent
“The only way to ‘test like you fly’ a thermal protection system is to expose it to actual hypersonic flight through an atmosphere,” Bouslog said.
The self-contained capsules launched aboard an uncrewed Northrop Grumman Cygnus spacecraft in January 2024 along with other cargo bound for the International Space Station. The cargo craft detached from the space station July 12 as the orbiting laboratory flew above the south Atlantic Ocean. As the Cygnus spacecraft began its planned breakup during re-entry, the KREPE-2 capsules detected a signal – a temperature spike or acceleration – to start recording data and were released from the vehicle. At that point, they were traveling at a velocity of about 16,000 miles per hour at an altitude of approximately 180,000 feet.
The University of Kentucky student team and advisors watched and waited to learn how the capsules had fared.
As the capsules descended through the atmosphere, one group watched from aboard an aircraft flying near the Cook Islands in the south Pacific Ocean, where they tracked the return of the Cygnus spacecraft. The flight was arranged in partnership with the University of Southern Queensland in Toowoomba, Queensland, Australia, and the University of Stuttgart in Stuttgart, Germany. Alexandre Martin, professor of mechanical and aerospace engineering at the University of Kentucky and the principal investigator for the experiment, was on that flight.
“We flew in close to the re-entry path to take scientific measurements,” Martin said, adding that they used multiple cameras and spectrometers to observe re-entry. “We now have a much better understanding of the break-up event of the Cygnus vehicle, and thus the release of the capsules.”
Meanwhile, members of the University of Kentucky’s Hypersonic Institute had gathered at the university to watch as KREPE-2 data arrived via email. All five successfully communicated their flight conditions as they hurtled to Earth.
“It will take time to extract the data and analyze it,” Martin said. “But the big accomplishment was that every capsule sent data.”
Members of the University of Kentucky student team have begun analyzing the data to digitally reconstruct the flight environment at the time of transmission, providing key insights for future computer modeling and heat shield design.
An artist’s rendering of one of the KREPE-2 capsules during re-entry. A. Martin, P. Rodgers, L. Young, J. Adams, University of Kentucky Building on Student Success
The mission builds on the accomplishments of KREPE-1, which took place in December 2022. In that experiment, two capsules recorded temperature measurements as they re-entered Earth’s atmosphere and relayed that data to the ground.
The extensive dataset collected during the KREPE-2 re-entry includes heat shield measurements, such as temperature, as well as flight data including pressure, acceleration, and angular velocity. The team also successfully tested a spectrometer that provided spectral data of the shockwave in front of a capsule.
“KREPE-1 was really to show we could do it,” Martin said. “For KREPE-2, we wanted to fully instrument the capsules and really see what we could learn.”
KREPE-3 is currently set to take place in 2026.
The ongoing project has provided valuable opportunities for the University of Kentucky student team, from undergrads to PhD students, to contribute to spaceflight technology innovation.
“This effort is done by students entirely: fabrication, running simulations, handling all the NASA reviews, and doing all the testing,” Martin said. “We’re there supervising, of course, but it’s always the students who make these missions possible.”
Related links:
EPSCoR Space Station Research Explorer: Kentucky Re-entry Probe Experiment-2 Science Launches to Space Station on NASA’s 20th Northrop Grumman Mission Big Goals, Small Package: Enabling Compact Deliveries from Space Keep Exploring Discover More STEM Topics From NASA
For Colleges and Universities
Established Program to Stimulate Competitive Research
About STEM Engagement at NASA
Learning Resources
View the full article
-
By NASA
Twelve-year-old, Aadya Karthik of Seattle, Washington; nine-year-old, Rainie Lin of Lexington, Kentucky; and eighteen-year-old, Thomas Lui, winners of the 2023-2024 Power to Explore Student Writing Challenge observe testing at a NASA Glenn cleanroom during their prize trip to Cleveland. Credit: NASA NASA’s fourth annual Power to Explore Student Challenge kicked off November 7, 2024. The science, engineering, technology, and mathematics (STEM) writing challenge invites kindergarten through 12th grade students in the United States to learn about radioisotope power systems, a type of nuclear battery integral to many of NASA’s far-reaching space missions.
Students are invited to write an essay about a new nuclear-powered mission to any moon in the solar system they choose. Submissions are due Jan. 31, 2025.
With freezing temperatures, long nights, and deep craters that never see sunlight on many of these moons, including our own, missions to them could use a special kind of power: radioisotope power systems. These power systems have helped NASA explore the harshest, darkest, and dustiest parts of our solar system and enabled spacecraft to study its many moons.
“Sending spacecraft into space is hard, and it’s even harder sending them to the extreme environments surrounding the diverse moons in our solar system,” said Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “NASA’s Power to Explore Student Challenge provides the incredible opportunity for our next generation – our future explorers – to design their own daring missions using science, technology, engineering, and mathematics to explore space and discover new science for the benefit of all, while also revealing incredible creative power within themselves. We cannot wait to see what the students dream up!”
Entries should detail where students would go, what they would explore, and how they would use radioisotope power systems to achieve mission success in a dusty, dark, or far away moon destination.
Judges will review entries in three grade-level categories: K-4, 5-8, and 9-12. Student entries are limited to 275 words and should address the mission destination, mission goals, and describe one of the student’s unique powers that will help the mission.
One grand prize winner from each grade category will receive a trip for two to NASA’s Glenn Research Center in Cleveland to learn about the people and technologies that enable NASA missions. Every student who submits an entry will receive a digital certificate and an invitation to a virtual event with NASA experts where they’ll learn about what powers the NASA workforce to dream big and explore.
Judges Needed
NASA and Future Engineers are seeking volunteers to help judge the thousands of contest entries anticipated submitted from around the country. Interested U.S. residents older than 18 can offer to volunteer approximately three hours to review submissions should register to judge at the Future Engineers website.
The Power to Explore Student Challenge is funded by the NASA Science Mission Directorate’s Radioisotope Power Systems Program Office and managed and administered by Future Engineers under the direction of the NASA Tournament Lab, a part of the Prizes, Challenges, and Crowdsourcing Program in NASA’s Space Technology Mission Directorate.
To learn more about the challenge, visit:
https://www.nasa.gov/power-to-explore
-end-
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Kristin Jansen
Glenn Research Center, Cleveland
216-296-2203
kristin.m.jansen@nasa.gov
Share
Details
Last Updated Nov 07, 2024 LocationNASA Headquarters Related Terms
Opportunities For Students to Get Involved Science Mission Directorate STEM Engagement at NASA View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Candeska Cikana Community College uses selective laser sintering, a type of 3D-printing in which heat and pressure form specific structures using layers of powdered material. Shown here, a student works to remove excess material, in this case a powdered form of nylon with carbon fibers, to reveal a prototype of the “Mapi Hapa,” or “sky shoe.” Candeska Cikana Community College Human exploration on the lunar surface is no small feat. It requires technologists and innovators from all walks of life to tackle many challenges, including feet.
From designing astronaut boots, addressing hazardous Moon dust, and researching new ways to land on Mars, NASA is funding valuable research through M-STAR (Minority University Research and Education Project’s (MUREP) Space Technology Artemis Research). The M-STAR program provides opportunities for students and faculty at Minority Serving Institutions to participate in space technology development through capacity building and research grants. With more than $11.5 million awarded since 2020, M-STAR aims to ensure NASA isn’t leaving any potential solution behind.
Best Foot Forward
Nicholas Bitner from Candeska Cikana Community College, left, and Jesse Rhoades from the University of North Dakota (UND), right, are pictured in UND’s BiPed lab, where their students test and capture motion data for the Mapi Hapa. Walter Criswell, UND Today Supportive boots are required for astronauts who will perform long duration Artemis missions on the Moon. With astronaut foot health in mind, students and faculty of North Dakota’s Candeska Cikana Community College in Fort Totten and the University of North Dakota in Grand Forks are designing a solution for extravehicular activity Moon boots. The project, called Mapi Hapa, proposes a 3D printed device that helps astronauts achieve the range of motion that takes place in the ankle when you draw your toe back towards the shin.
Candeska Cikana Community College is a tribal college that serves the Spirit Lake Nation, including the Dakota, Lakota, Sisseton, Wahpeton, and Yanktonai peoples.
Nicholas Bitner, an instructor at Candeska Cikana and graduate student at the University of North Dakota, notes the unique skills that tribal students possess. “Their perspective, which is unlike that of any other student body, thrives on building with their hands and taking time to make decisions.”
Bitner also attributes many opportunities and successes of their program to M-STAR and its partnership which exemplifies the dire importance of consistent funding.
“Given the relationships, we have been able to expand our capabilities and our lab, but it has also given us funding. We were able to hire all our students in the engineering department as lab technicians. So, they get paid to do the research that they are a part of, and not only do they have that psychological ownership, but they also have a good paying job that looks nice on their resumes.”
In addition to addressing astronaut foot health, M-STAR funding is helping develop solutions to combat lunar regolith, or Moon dust, which can damage landers, spacesuits, and human lungs, if inhaled.
Lunar Dust Development
With M-STAR, New Mexico State University in Las Cruces developed affordable, reliable lunar regolith simulants to help test lunar surface technologies. The team also designed testing facilities that mimic environmental conditions on the Moon.
New Mexico State has already started sharing their simulants, including with a fellow M-STAR awardee. An M-STAR project selected in 2023 from the University of Maryland Eastern Shore in Princess Anne uses the simulants to help test their experience in smart agriculture to test applications for crop production on the Moon.
University of Maryland, Eastern Shore explores the possibility of growing crops in lunar regolith by mixing varying proportions of lunar regolith simulant, horse manure, and potting soil. The lunar regolith simulant was provided by fellow M-STAR awardee at New Mexico State University in in Las Cruces.Stephanie Yeldell/NASA Douglas Cortez, associate professor in civil engineering at New Mexico State, believes different perspectives are essential to maximizing solutions.
“There are hundreds of people working at Minority Serving Institutions that are used to looking at the world in a completely different way,” said Cortez. “When they start looking at the same problem and parameters, they come up with very different solutions.”
As we look to sustainable presence on the Moon, NASA also has its sights set on Mars and M-STAR is helping develop technologies to inform crewed Martian exploration.
Stick the Landing
San Diego State University in California was awarded funding for research on Mars entry, descent, and landing technologies. The team aims to achieve optimal trajectory by developing onboard algorithms that guide vehicles to descent autonomously.
The M-STAR research opportunities have been invaluable to students like Chris Davami and his teammates working to develop improved methods to land on Mars.
Christopher Davami, who supported San Diego State University’s 2021 M-STAR project, is pictured here at NASA’s Langley Research Center, where he was selected for internships supporting research in aeroelasticity, atmospheric flight, and entry systems research.NASA “I would definitely not have been able to have these opportunities with NASA if it weren’t for M-STAR,” said Davami. “M-STAR helped pay for my education, which helped me save a lot in student loans. I probably wouldn’t be going to graduate school right now if I did not have this opportunity. This program enabled me to keep pursuing my research and continue doing what I love.”
Following his contributions to the M-STAR-funded project, Davami was awarded a NASA Space Technology Graduate Research Opportunity in 2023 on his work in autonomous end-to-end trajectory planning and guidance constrained entry and precision power decent.
Through efforts like M-STAR, NASA aims to seed the future workforce and prepare colleges and universities to win other NASA research opportunities. When it comes to the advancement of space technology, people of different backgrounds and skillsets are needed to achieve what was once known as impossible. Not only can the diversification of ideas spark fundamental innovations in space, but it can also help students apply these technological advancements to solving problems here on Earth.
To learn more about M-STAR visit:
https://go.nasa.gov/442k76s
by: Gabrielle Thaw, NASA’s Space Technology Mission Directorate
Facebook logo @NASATechnology @NASA_Technology Keep Exploring Discover More Topics From NASA
Space Technology Mission Directorate
Student & STEM Opportunities
NASA Grants to Strengthen Diversity in Engineering, STEM Fields
Get Involved
Share
Details
Last Updated Nov 05, 2024 EditorLoura Hall Related Terms
Space Technology Mission Directorate Technology View the full article
-
By European Space Agency
The 2025 ESA internship opportunities are now live! Positions are open in a wide range of fields, including engineering, science, IT, natural and social sciences, business, economics, and administrative services. This is your chance to launch your career in the extraordinary world of space exploration—don't miss out on this incredible opportunity to gain hands-on experience with one of the world’s leading space organisations!
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
This video shows IPEx in the digital simulation environment.Credit: Johns Hopkins APL/Steve Gribben/Beverly Jensen Space is hard, but it’s not all hardware.
The new Lunar Autonomy Challenge invites teams of students from U.S. colleges and universities to test their software development skills. Working entirely in virtual simulations of the Moon’s surface, teams will develop an autonomous agent using software that can accomplish pre-defined tasks without help from humans. These agents will be used to navigate a digital twin of NASA’s ISRU Pilot Excavator (IPEx) and map specified locations in the digital environment. The IPEx is an autonomous mobility robot engineered to efficiently collect and transport lunar regolith, the loose rocky material on the Moon’s surface.
Autonomous systems allow spacecraft, rovers, and robots to operate without relying on constant contact with astronauts or mission control. Before hardware is trusted to operate independently on location, which for Artemis missions includes the Moon, it must be tested virtually. High-fidelity virtual simulations allow NASA to anticipate and improve how systems, both software and hardware, will function in the physical world. Testing in virtual simulations also allows technologists to explore different mission scenarios, observe potential outcomes, and reduce risks.
In the Lunar Autonomy Challenge, students will develop their knowledge of autonomous systems by working with the same simulation tools created in-house by Caterpillar Inc. of Irving, Texas, over decades of research and development. Teams will need to utilize the IPEx digital twin’s cameras and orientation sensors to accurately map surface elevation and identify obstacles. Like with real lunar missions, teams must also manage their energy usage and consider the Moon’s harsh terrain and low-light conditions. Through the competition, participants will learn more about autonomous robotic operation, surface mapping, localization, orientation, path planning, and hazard detection.
Eligibility
Teams must be comprised of at least four undergraduate and/or graduate students and a faculty advisor at a U.S. college or university.
Challenge Timeline & Structure
The challenge will take place between November 2024 and May 2025 and will include both a qualifying round and a final round. Interested teams must apply by Thursday, Nov. 7.
Round 1: Selected teams will develop and train their agent using provided virtual environments. Teams will have three opportunities to submit their agent to run in a qualification environment. For each submission, their agent will be scored based on performance.
The top scoring teams will be invited to continue. Round 2: Teams will work to further refine the agents. Teams will have multiple opportunities in total to submit their agents to the competition environment. The top three teams will be named challenge winners. Challenge Guidelines
Interested teams should carefully review the Challenge Guidelines and the Lunar Autonomy Challenge site for more details, including proposal requirements, FAQs, and additional technical guidance.
Prizes
The top three highest-scoring teams on the leaderboard in the finals will be awarded cash prizes:
First Place: $10,000
Second Place: $5,000
Third Place: $3,000
Application Submissions
Applications must be submitted to NASA STEM Gateway by Nov. 7, 2024.
Learn more about the challenge: https://lunar-autonomy-challenge.jhuapl.edu
The Lunar Autonomy Challenge is a collaboration between NASA, The Johns Hopkins University (JHU) Applied Physics Laboratory (APL), Caterpillar Inc., and Embodied AI. APL is managing the challenge for NASA.
NASA’s ISRU Pilot Excavator (IPEx) during a flight-like demonstration at NASA’s Kennedy Space Center’s Swamp Works testing facility. Credit: NASA Authored by: Stephanie Yeldell, Education Integration Lead
Space Technology Mission Directorate
NASA Headquarters, Washington, DC
Keep Exploring Discover More Topics From NASA
Space Technology Mission Directorate
NASA’s Lunar Surface Innovation Initiative
ISRU Pilot Excavator
Get Involved
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.