Members Can Post Anonymously On This Site
Minority Serving Institution Partners
-
Similar Topics
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA and partners from Aerostar and AeroVironment discuss a simulation of a high-altitude air traffic management system for vehicles flying 60,000 feet and above in the Airspace Operations Lab (AOL) at NASA’s Ames Research Center in California’s Silicon Valley.NASA/Don Richey NASA, in partnership with AeroVironment and Aerostar, recently demonstrated a first-of-its-kind air traffic management concept that could pave the way for aircraft to safely operate at higher altitudes. This work seeks to open the door for increased internet coverage, improved disaster response, expanded scientific missions, and even supersonic flight. The concept is referred to as an Upper-Class E traffic management, or ETM.
There is currently no traffic management system or set of regulations in place for aircraft operating 60,000 feet and above. There hasn’t been a need for a robust traffic management system in this airspace until recently. That’s because commercial aircraft couldn’t function at such high altitudes due to engine constraints.
However, recent advancements in aircraft design, power, and propulsion systems are making it possible for high altitude long endurance vehicles — such as balloons, airships, and solar aircraft — to coast miles above our heads, providing radio relay for disaster response, collecting atmospheric data, and more.
But before these aircraft can regularly take to the skies, operators must find a way to manage their operations without overburdening air traffic infrastructure and personnel.
NASA partners from Aerostar and AeroVironment discuss a simulation of the ATM-X E Traffic Management (ETM) system for vehicles flying 60,000 feet and above in the Airspace Operations Lab (AOL) at NASA’s Ames Research Center in California’s Silicon Valley. “We are working to safely expand high-altitude missions far beyond what is currently possible,” said Kenneth Freeman, a subproject manager for this effort at NASA’s Ames Research Center in California’s Silicon Valley. “With routine, remotely piloted high-altitude operations, we have the opportunity to improve our understanding of the planet through more detailed tracking of climate change, provide internet coverage in underserved areas, advance supersonic flight research, and more.”
Current high-altitude traffic management is processed manually and on a case-by-case basis. Operators must contact air traffic control to gain access to a portion of the Class E airspace. During these operations, no other aircraft can enter this high-altitude airspace. This method will not accommodate the growing demand for high-altitude missions, according to NASA researchers.
To address this challenge, NASA and its partners have developed an ETM traffic management system that allows aircraft to autonomously share location and flight plans, enabling aircraft to stay safely separated.
During the recent traffic management simulation in the Airspace Operations Laboratory at Ames, data from multiple air vehicles was displayed across dozens of traffic control monitors and shared with partner computers off site. This included aircraft location, health, flight plans and more. Researchers studied interactions between a slow fixed-wing vehicle from AeroVironment and a high-altitude balloon from Aerostar operating at stratospheric heights. Each aircraft, connected to the ETM traffic management system for high altitude, shared location and flight plans with surrounding aircraft.
This digital information sharing allowed Aerostar and AeroVironment high-altitude vehicle operators to coordinate and deconflict with each other in the same simulated airspace, without having to gain approval from air traffic control. Because of this, aircraft operators were able to achieve their objectives, including wireless communication relay.
This simulation represents the first time a traffic management system was able to safely manage a diverse set of high-altitude aircraft operations in the same simulated airspace. Next, NASA researchers will work with partners to further validate this system through a variety of real flight tests with high-altitude aircraft in a shared airspace.
The Upper-Class E traffic management concept was developed in coordination with the Federal Aviation Administration and high-altitude platform industry partners, under NASA’s National Airspace System Exploratory Concepts and Technologies subproject led out of Ames.
View the full article
-
By NASA
On 5/13/24, in alignment with the NASA Interagency Agreement with the US Department of State Advancing Science, Technology, Engineering, and Math in Bhutan through Increased Earth Observation Capacity, Aparna R. Phalke, Sarah Cox and Tony Kim (ST11) traveled to Thimphu, Bhutan, to represent the SERVIR SCO at the official launch on 5/17/24 of the “Farm Action Toolkit” service (https://crops.servirglobal.net/dashboard/) with the implementing partners from Bhutan Druk Holdings and Investments (DHI) Super Fablab, National Statistical Bureau (NSB), Department of Agriculture, National Center of Organic Agriculture, National Land Commission and GovTech Bhutan. The service was presented with meaningful opening remarks from Manish Rai (DHI), Andrea Goodman (U.S. Department of State), Sangay Dorji (Retired Head of the Environmental Office, Ministry of Economic Affairs) and Tony Kim . Also in attendance were Bhutan Foundation officials in addition to implementing partners. The “Farm Action Toolkit” co-developed by SERVIR and Bhutan’s implementing partners to support their mission on self-sufficiency for food and save operational costs. This service provides field-scale (30-m) crop area and yields related products and algorithms including 2002 to 2023 crop/non crop maps, rice area maps, maize area maps and rice yield estimations.
Following the launch of the Farm Action Toolkit service in Thimphu, Bhutan, a SERVIR SCO service team led by Aparna Phalke and Bhutan’s implementing partner team from DHI performed field surveys of agricultural fields across the Thimphu, Punakha and Paro area of Bhutan using GPS, and Helmet data collection with GoPro cameras and drones (5/23-25/24). The Helmet data collection with GoPro cameras tool method was replicated from SERVIR’s Applied Science Team PI Catherine Nakalemb’s project in SERVIR-West Africa. The team also interviewed individual farmers from areas covering rice cultivation with pest, disease and water related issues. The implementing partner and SERVIR SCO team also collected market analysis data consisting of fifty plus vendors and vendors cum farmers interviews on agricultural commodities and the supply chain (5/18-19/24). These field surveys will play a significant role in the operation and adoption of the Farm Action Toolkit service by implementing partners
In-person outreach events were conducted at the Royal Thimphu College and College of Natural Resources, Royal University of Bhutan (RUB) on 5/14/24 and 5/24/24, respectively. Over 100 students from each academic institution participated in the outreach events, which focused on NASA milestones and how to leverage Earth observations to address immediate environmental issues in Bhutan.
These activities are part of a NASA Interagency Agreement with the US Department of State – Advancing Science, Technology, Engineering, and Math in Bhutan through Increased Earth Observation Capacity – a collaboration that also includes NASA’s DEVELOP, ARSET, and GLOBE programs.
View the full article
-
By Space Force
Department of the Air Force leaders reinforced the importance of interoperability in the air and space domains during the Global Air and Space Chiefs' Conference, Royal International Air Tattoo and Farnborough International Air Show.
View the full article
-
By NASA
NASA astronaut Mike Barratt processes brain organoid samples inside the life science glovebox for a neurodegenerative disorder study. NASA plans to use future commercial low Earth orbit destinations for the continuation of scientific research.NASA NASA hosted a meeting to share knowledge with companies developing future commercial destinations at the agency’s Johnson Space Center in Houston. The discussion could aid in developing safe, reliable, innovative, and cost-effective space stations. Industry representatives from more than 20 companies attended.
The program focused on NASA’s planned use of commercial destinations, draft utilization requirements, and the payload life cycle. A primary interest for the use of commercial stations includes the continuation of scientific research in low Earth orbit, such as human research, technology demonstrations, biological and physical science, and Earth observation.
David Caponio from Vast Space presents a five-minute lightning talk on the company’s capabilities during the program NASA’s Johnson Space Center. Vast is working with NASA under the second Collaborations for Commercial Space Capabilities initiative for technologies and operations required for its microgravity and artificial gravity stations, including the Haven-1 commercial destination.NASA/Josh Valcarcel “NASA has benefited from the unique microgravity environment of low Earth orbit to conduct important science investigations and technology demonstrations for more than two decades,” said Dr. Kirt Costello, utilization manager for NASA’s Commercial Low Earth Orbit Development Program. “As commercial companies make progress in the design and development of their own space stations, it is important that we share NASA’s needs and requirements as well as foster an open dialogue between government and private industry.”
The program builds on a request for information released last year, seeking feedback from industry as the agency refines its requirements for new commercial space destinations.
Vergel Romero of Sierra Space speaks with representatives from other commercial companies during a networking opportunity. Sierra Space is working with Blue Origin on the development of Orbital Reef, and also holds an unfunded Space Act Agreement with NASA for the development of its commercial low Earth orbit ecosystem.NASA/Josh Valcarcel Since then, the feedback has helped develop and refine a utilization requirements strategy, including a concept of operations, basic laboratory capabilities, and common payload standards for heritage hardware. NASA will continue to refine its future requirements and incorporate future low Earth orbit needs of other U.S. government agencies and international partners.
NASA uses a two-phase strategy to support the development of commercial destinations and enable the agency to purchase services as one of many customers. Phase 1 efforts extend through 2025, before NASA plans to transition to Phase 2, which will be to certify commercial destinations and purchase services.
Eleasa Kim, payload operations lead for NASA’s Commercial Low Earth Orbit Development Program, presents on NASA’s planned utilization activities for commercial destinations and expectations for provider support.NASA/Josh Valcarcel The agency’s commercial strategy for low Earth orbit will provide the government with reliable and safe services at a lower cost and enable the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.
Learn more about NASA’s commercial space strategy at:
https://www.nasa.gov/humans-in-space/commercial-space/
Keep Exploring Discover More Topics
Low Earth Orbit Economy
Commercial Space
Artemis
In Space Production Applications
View the full article
-
By NASA
A photo of MPLAN principal investigator awardees from various minority-serving institutions at the 2023 NASA Better Together conference in San Jose, California.Credits: NASA NASA has selected 23 minority-serving institutions to receive $1.2 million to grow their research and technology capabilities, collaborate on research projects, and contribute to the agency’s missions for the benefit of humanity.
Through NASA’s Minority University Research and Education Project (MUREP) Partnership Learning Annual Notification (MPLAN) award, selected institutions will receive up to $50,000 each for a six-month period to work directly on STEM projects with subject matter experts in NASA’s mission directorates.
“As NASA looks to inspire the next generation, the Artemis Generation, we are intentional in increasing access for all,” said Shahra Lambert, NASA senior advisor for engagement and equity. “It’s a daring task to return to the Moon then venture to Mars, but NASA is known to make the impossible possible. By funding partnerships such as MPLAN, and tapping into all pools of STEM resources, including MSIs, we are ensuring the future of our missions are in good hands.”
The awards will contribute to research opportunities in preparation for larger funding programs such as NASA’s annual Small Business Innovation Research/Small Business Technology Transfer solicitation, the Space Technology Research Grant Program within the agency’s Space Technology Mission Directorate, the University Leadership Initiative within the Aeronautics Research Mission Directorate, and the Human Research Program within NASA’s Space Operations Mission Directorate.
“These awards will help unlock the full potential of students traditionally underrepresented in science, technology, engineering, and mathematics research and careers,” said Torry Johnson, deputy associate administrator of STEM Engagement Projects at NASA Headquarters in Washington. “Through this award, universities receive support, resources, and guidance directly from NASA experts, which can be a game changer for the work they do to develop technological innovations that contribute to NASA missions and benefit all of humanity.”
The awardees are as follows:
Arizona State University Drones for Contact-inclusive Planetary Exploration
California State University-Dominguez Hills Bioinspired Surface Design for Thermal Extremes
California State University-Fresno Human-Centric Digital Twins in NASA Space Missions
California State University-Northridge Repurposing Lander Parts into Geodesic Assemblies
California State University, Monterey Bay Crafting Biofuels via Molecular Insights
CUNY New York City College of Technology Polyethylene Glycol Diacrylate for Seed Growth: Microgreens in Space
Delgado Community College, New Orleans, Louisiana Freshmen Access to CubeSat Education
Fayetteville State University, Fayetteville, North Carolina New Tech for Storm Tracking with Machine Learning
Hampton University, Hampton, Virginia Sustained Approach for Energetic Lunar Operation
New Mexico Institute of Mining and Technology Information-Theoretic Multi-Robot Exploration
Portland State University, Portland, Oregon Robot Leg Design for Lunar Exploration
Regents of New Mexico State University Extreme Aerodynamics Over Small Air Vehicles
San Diego State University Enhanced Aero-Composites: Reinforcement Innovation
San Francisco State University Early Non-invasive Diagnosis of Heart Diseases
San Jose State University Designing Resilient Battery System for Space
Southern University and A & M College, Baton Rouge, Louisiana X-Ray 3D Printing of Nanocomposites for AME
Plant Antimicrobial in Space Exploration using AI
Spelman College, Atlanta, Georgia Non-contact Optical Sensor for Biomedicine
The Research Foundation of CUNY on behalf of City College, New York Soft Tendril-inspired Robot for Space Exploration
The University of Texas at San Antonio Hydrodynamic Stability of Jets via Neural Networks
Low-SWaP Water Electrolyzer for Lunar/Martian In-Situ Resource Utilization
The University of Texas Rio Grande Valley Tuneable NanoEnergetic Microthruster Cartridges
University of California, Irvine Flexible Modular Robots for Extreme Access
University of Hawaii at Manoa Ultrasound methods for monitoring carcinogenesis
University of New Mexico All-climate and Ultrafast Aluminum Ion Batteries
The awarded institutions and their partners are invited to meet with NASA researchers and MUREP representatives throughout the remainder of 2024. The meetings serve as training sessions to pursue future NASA opportunities. These trainings focus primarily on fostering collaboration, enhancing technical skills, and providing insights into NASA’s research priorities to better prepare participants for future opportunities.
To learn more about MPLAN, visit:
https://go.nasa.gov/49gsZ9X
-end-
Gerelle Dodson
Headquarters, Washington
202-358-1600
gerelle.q.dodson@nasa.gov
Share
Details
Last Updated Jul 01, 2024 LocationNASA Headquarters Related Terms
STEM Engagement at NASA Get Involved Grants & Opportunities MUREP View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.