Jump to content

55 Years Ago: Eight Months Before the Moon Landing


Recommended Posts

  • Publishers
Posted

November 1968 proved pivotal to achieving the goal of landing a man on the Moon before the end of the decade. The highly successful Apollo 7 mission that returned American astronauts to space provided the confidence for NASA to decide to send the next flight, Apollo 8, on a trip to orbit the Moon in December. At NASA’s Kennedy Space Center (KSC) in Florida, the Saturn V rocket and the Apollo spacecraft for that mission sat on Launch Pad 39A undergoing tests for its upcoming launch. In the nearby Vehicle Assembly Building (VAB), the three stages of the Saturn V for the Apollo 9 mission sat stacked awaiting the addition of its spacecraft undergoing final testing. Also in the VAB, workers had begun stacking the Apollo 10 Saturn V, while the Apollo 10 spacecraft arrived for testing. As the Apollo 8 and 9 crews continued their training, NASA named the crew for Apollo 10 and announced the science experiments that the first Moon landing astronauts would deploy.

Image of President Lyndon B. Johnson, second from left, presents Apollo 7 astronauts Walter M. Schirra, left, Donn F. Eisele, and R. Walter Cunningham with Exceptional Service Medals at the LBJ Ranch Entertainer Bob Hope, second from right, taped an episode of his show at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, with guests the “Voice of Mission Control” Paul P. Haney, left, Apollo 7 astronauts Schirra, Cunningham, and Eisele, and television star Barbara Eden The Apollo 7 Command Module on display at the Frontiers of Flight Museum at Dallas Love Field
Left: President Lyndon B. Johnson, second from left, presents Apollo 7 astronauts Walter M. Schirra, left, Donn F. Eisele, and R. Walter Cunningham with Exceptional Service Medals at the LBJ Ranch. Middle: Entertainer Bob Hope, second from right, taped an episode of his show at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, with guests the “Voice of Mission Control” Paul P. Haney, left, Apollo 7 astronauts Schirra, Cunningham, and Eisele, and television star Barbara Eden. Right: The Apollo 7 Command Module on display at the Frontiers of Flight Museum at Dallas Love Field.

Following their highly successful flight, Apollo 7 astronauts Walter M. Schirra, Donn F. Eisele, and R. Walter Cunningham returned to Houston’s Ellington Air Force Base on Oct. 26. On Nov. 2, President Lyndon B. Johnson presented the astronauts with Exceptional Service Medals at the LBJ Ranch in Johnson City, Texas. Four days later, comedian Bob Hope filmed an episode of his weekly television variety show in the auditorium of the Manned Spacecraft Center (MSC), now the Johnson Space Center in Houston. Hope saluted the Apollo 7 astronauts in a skit that included actress Barbara Eden, star of the television series “I Dream of Jeannie” that featured fictional astronauts. Paul P. Haney, MSC Director of Public Affairs and the “Voice of Mission Control,” also participated in the skit. Following the recovery of Apollo 7, the prime recovery ship U.S.S. Essex sailed for Norfolk Naval Air Station in Virginia, where on Oct. 27 workers offloaded the Command Module (CM), and placed it aboard a cargo plane to fly it to California for return to its manufacturer, North American Rockwell Space Division in Downey, for postflight inspection. On Jan. 20, 1969, the Apollo 7 astronauts as well as their spacecraft took part in President Richard M. Nixon’s first inauguration parade. In 1970, NASA transferred the Apollo 7 spacecraft to the Smithsonian Institution that loaned it to the National Museum of Science and Technology in Ottawa, Canada, for display. Following its return to the United States in 2004, it went on display at the Frontiers of Flight Museum at Love Field in Dallas.

Image of the circumlunar trajectory of Apollo 8 Apollo 8 astronauts William A. Anders, left, James A. Lovell, and Frank Borman during a press conference shortly after the announcement of their mission to orbit the Moon Photo of Anders, left, Lovell, and Borman in the Command Module simulator
Left: The circumlunar trajectory of Apollo 8. Middle: Apollo 8 astronauts William A. Anders, left, James A. Lovell, and Frank Borman during a press conference shortly after the announcement of their mission to orbit the Moon. Right: Anders, left, Lovell, and Borman in the Command Module simulator.

On Nov. 12, 1968, NASA Headquarters put out the following statement: “The National Aeronautics and Space Administration today announced that the Apollo 8 mission would be prepared for an orbital flight around the Moon.” That momentous statement ended weeks of intense internal agency deliberations and public speculation about Apollo 8’s targeted mission. The original mission plan called for Apollo 8 to conduct the first test of the Lunar Module (LM) in Earth orbit, but when the LM fell behind schedule, NASA managers in August began contemplating sending the Apollo 8 crew on a lunar orbital test of the Command Module (CM). The decision hinged partly on a successful Apollo 7 mission, and with that milestone passed, NASA Administrator James E. Webb approved the daring plan. On only the second crewed Apollo mission, the first crew to launch on the Saturn V, and only the third launch of the mighty Moon rocket, with the second of those experiencing some serious anomalies, the decision weighed the risks against the benefits of achieving the Moon landing goal before the end of the decade. With the Dec. 21 launch date fast approaching, the Apollo 8 crew of Frank Borman, James A. Lovell, and William A. Anders and their backups Neil A. Armstrong, Edwin E. “Buzz” Aldrin, and Fred W. Haise had begun training for the lunar mission even before the official announcement. During a Nov. 16 press conference, Borman, Lovell, and Anders discussed their preparations for the historic mission. On Nov. 19, at KSC’s Launch Complex 39, engineers completed the Flight Readiness Test to validate the launch vehicle, spacecraft, and ground systems.

Photo of The Apollo 9 prime crew of James A. McDivitt, left, David R. Scott, and Russell L. Schweickart, not pictured, prepares for an altitude chamber test of their Command Module (CM) in the Manned Spacecraft Operations Building at NASA’s Kennedy Space Center in Florida Photo of McDivitt, emerging from the CM, Schweickart, at left in the raft, and Scott complete water egress training in the Gulf of Mexico Photo of The Apollo 9 backup crew of Charles “Pete” Conrad, left, Richard F. Gordon, and Alan L. Bean prepares for their water egress training
Left: The Apollo 9 prime crew of James A. McDivitt, left, David R. Scott, and Russell L. Schweickart, not pictured, prepares for an altitude chamber test of their Command Module (CM) in the Manned Spacecraft Operations Building at NASA’s Kennedy Space Center in Florida. Middle: McDivitt, emerging from the CM, Schweickart, at left in the raft, and Scott complete water egress training in the Gulf of Mexico. Right: The Apollo 9 backup crew of Charles “Pete” Conrad, left, Richard F. Gordon, and Alan L. Bean prepares for their water egress training.

The LM formed a critical component to the Moon landing effort. Delays in preparing LM-3 for flight resulted in the crewed test to slip to Apollo 9 in early 1969. The three stages of the Apollo 9 Saturn V stood stacked on Mobile Launcher 2 in High Bay 3 of the VAB. The Apollo 9 spacecraft components, CSM-104 and LM-3, continued testing in the KSC’s Manned Spacecraft Operations Building (MSOB). The prime crew of James A. McDivitt, David R. Scott, and Russell L. Schweickart, as well as their backups Charles “Pete” Conrad, Richard F. Gordon, and Alan L. Bean completed several altitude chamber tests with CSM-104 during the month of November. On Nov. 30, workers placed LM-3 inside its Spacecraft LM Adapter, topping it with CSM-104 to complete the spacecraft for its Dec. 3 rollover to the VAB for mating with the Saturn V. McDivitt, Scott, and Schweickart conducted water egress training in the Gulf of Mexico near Galveston, Texas. On Nov. 25, workers aboard the Motor Vessel M/V Retriever lowered a mockup CM with the crew inside into the water in a nose-down position. Flotation bags inflated to right the spacecraft to a nose-up position. The astronauts then exited the capsule onto life rafts and recovery personnel hoisted them aboard a helicopter. Backups Conrad, Gordon, and Bean completed the test on Dec. 6.

Photo of The Apollo 10 prime crew of Eugene A. Cernan, left, John W. Young, and Thomas P. Stafford Photo of the Apollo 10 backup crew of L. Gordon Cooper, Edgar D. Mitchell, and Donn F. Eisele
Left: The Apollo 10 prime crew of Eugene A. Cernan, left, John W. Young, and Thomas P. Stafford. Right: The Apollo 10 backup crew of L. Gordon Cooper, Edgar D. Mitchell, and Donn F. Eisele.

On Nov. 13, NASA announced the crew for the Apollo 10 mission planned for the spring of 1969. The fourth crewed Apollo mission would involve the launch of a CM and LM on a Saturn V rocket. Depending on the success of earlier missions, Apollo 10 planned to test the CM and LM either in Earth orbit or in lunar orbit, the latter a dress rehearsal for the actual Moon landing likely to follow on Apollo 11. NASA designated Thomas P. Stafford, John W. Young, and Eugene A. Cernan as the prime crew, the first all-veteran three person crew. The trio had served as the backup crew on Apollo 7 and had flight experience in the Gemini program. As backups, NASA assigned L. Gordon Cooper, Donn F. Eisele, and Edgar D. Mitchell. Cooper had flown previously on Mercury 9 and Gemini VIII, Eisele had just returned from Apollo 7, while this marked the first crew assignment for Mitchell. As support crew members, NASA named Joe H. Engle, James B. Irwin, and Charles M. Duke.

Photo of the Apollo 10 Command Module, left, and Service Module arrive at NASA’s Kennedy Space Center (KSC) in Florida Photo of the Apollo 10 S-IC first stage arrives at KSC’s Vehicle Assembly Building (VAB). Workers in the VAB stack the Apollo 10 first stage on its Mobile Launcher
Left: The Apollo 10 Command Module, left, and Service Module arrive at NASA’s Kennedy Space Center (KSC) in Florida. Middle: The Apollo 10 S-IC first stage arrives at KSC’s Vehicle Assembly Building (VAB). Right: Workers in the VAB stack the Apollo 10 first stage on its Mobile Launcher.

Flight hardware in support of Apollo 10 continued to arrive at KSC. Following delivery of LM-4 in October, on Nov. 2 workers mated its two stages and placed the vehicle in one of the MSOB’s altitude chambers. Stafford and Cernan carried out a sea level run on Nov. 22. The CM-106 and SM-106 for Apollo 10 arrived at KSC on Nov. 23 and workers trucked them to the MSOB where they mated the two modules three days later. In the VAB, the Saturn V’s S-IC first stage arrived on Nov. 27 and workers erected it on Mobile Launcher 3 in High Bay 2, awaiting the arrival of the upper stages.

A mockup of the laser ranging retroreflector (LRRR) experiment A mockup of the passive seismic experiment package (PSEP) A mockup of the solar wind composition (SWC) experiment A suited technician deploys mockups of the Apollo 11 experiments – the SWC, far left, the PSEP, and the LRRR, during a test session
Left: A mockup of the laser ranging retroreflector (LRRR) experiment. Middle left: A mockup of the passive seismic experiment package (PSEP). Middle right: A mockup of the solar wind composition (SWC) experiment. Right: A suited technician deploys mockups of the Apollo 11 experiments – the SWC, far left, the PSEP, and the LRRR, during a test session.

On Nov. 19, NASA announced that when Apollo astronauts first land on the Moon, possibly as early as during the Apollo 11 mission in the summer of 1969, they would deploy three scientific experiments – a passive seismometer experiment package (PSEP), a laser ranging retro-reflector (LRRR), and a solar wind composition (SWC) experiment – during their 2.5-hour excursion on the lunar surface. The PSEP will provide information about the Moon’s interior by recording any seismic activity. The passive LRRR consists of an array of precision optical reflectors that serve as a target for Earth-based lasers for highly precise measurements of the Earth-Moon distance. The SWC consists of a sheet of aluminum foil that the astronauts deploy at the beginning of their spacewalk and retrieve at the end for postflight analysis. During the exposure, the foil traps particles of the solar wind, especially noble gases.

The Lunar Module Test Article-8 (LTA-8) inside Chamber B of the Space Environment Simulation Laboratory (SESL) at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston Astronaut James B. Irwin inside LTA-8 during one of the altitude runs Workers remove LTA-8 from SESL’s Chamber B at the conclusion of the altitude tests
Left: The Lunar Module Test Article-8 (LTA-8) inside Chamber B of the Space Environment Simulation Laboratory (SESL) at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston. Middle: Astronaut James B. Irwin inside LTA-8 during one of the altitude runs. Right: Workers remove LTA-8 from SESL’s Chamber B at the conclusion of the altitude tests.

On Nov. 14, engineers in MSC’s Space Environment Simulation Laboratory (SESL) completed a series of altitude tests with LM Test Article-8 (LTA-8) to certify the vehicle for lunar missions. Astronaut Irwin and Grumman Aircraft Corporation consulting pilot Gerald P. Gibbons completed the final test, the last in a series of five that started on Oct. 14. Grumman pilot Glennon M. Kingsley paired up with Gibbons for three of the tests. During the tests that simulated various portions of the LM’s flight profile, the chamber maintained a vacuum simulating an altitude of about 150 miles and temperatures as low as -300o F. Strip heaters attached to the LTA’s surface provided the simulated solar heat. NASA transferred the LTA-8 to the Smithsonian Institution in 1978 and it is now on public display at Space Center Houston.

Depiction of Zond 6’s circumlunar trajectory
Depiction of Zond 6’s circumlunar trajectory. Image credit: courtesy RKK Energia.

A Proton rocket with a Zond spacecraft on the launch pad at the Baikonur Cosmodrome Zond 6 photographed the Earth as it looped around the Moon
Left: A Proton rocket with a Zond spacecraft on the launch pad at the Baikonur Cosmodrome. Right: Zond 6 photographed the Earth as it looped around the Moon. Image credits: courtesy RKK Energia.

Depiction of Zond 6’s skip reentry trajectory flown
Depiction of Zond 6’s skip reentry trajectory flown. Image credit: courtesy RKK Energia.

In another reminder that the race to the Moon still existed, on Nov. 10 the Soviet Union launched the Zond 6 spacecraft. Although it launched uncrewed, the Zond spacecraft, essentially a Soyuz without the forward orbital compartment and modified for flights to lunar distances, could carry a crew of two cosmonauts. A cadre of cosmonauts trained for such missions. Similar to the Zond 5 mission in September, Zond 6 entered a trajectory that looped it around the Moon on Nov. 13, passing within 1,500 miles of the lunar surface. The spacecraft took photographs of the Moon’s near and far sides and of the distant Earth. As it neared Earth during its return journey, trouble developed aboard the spacecraft as a faulty hatch seal caused a slow leak and it began to lose atmospheric pressure. Ground controllers initially steadied the pressure loss and performed a final midcourse maneuver that allowed Zond 6 to perform a skip reentry to land in Soviet territory on Nov. 17. However, the spacecraft continued to lose pressure and a buildup of static electricity created a coronal discharge that triggered the spacecraft’s soft landing rockets to fire and cut the parachute lines while it was still descending through 5,300 meters altitude. Although the capsule hit the ground at a high velocity, rescue forces were able to recover the film containers. The Soviets at the time did not reveal either the depressurization or the crash but claimed the flight was a successful circumlunar mission. With two apparently successful uncrewed circumlunar flights and the resumption of crewed missions with Soyuz 3 in October, these Soviet activities perhaps played a part in the decision to send Apollo 8 to the Moon.

News from around the world in November 1968:

Nov. 5 – Richard M. Nixon elected as the 37th U.S. President.

Nov. 5 – Shirley A. Chisolm of Brooklyn, New York, becomes the first African American woman elected to the U.S. Congress.

Nov 8 – The United States launches Pioneer 9 into solar orbit to monitor solar storms that could be harmful to Apollo astronauts traveling to the Moon.

Nov. 13 – The HL-10 lifting body aircraft with NASA pilot John A. Manke at the controls made its first successful powered flight after being dropped from a B-52 bomber at Edwards Air Force Base in California’s Mojave Desert.

Nov. 14 – Yale University announces it is going co-ed beginning in the 1969-1970 academic year.

Nov. 22 – The Beatles release the “The Beatles” (better known as the White Album), the band’s only double album.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA 2025: To the Moon, Mars, and Beyond
    • By NASA
      Through NASA’s Artemis campaign, astronauts will land on the lunar surface and use a new generation of spacesuits and rovers as they live, work, and conduct science in the Moon’s South Pole region, exploring more of the lunar surface than ever before. Recently, the agency completed the first round of testing on three commercially owned and developed LTVs (Lunar Terrain Vehicle) from Intuitive Machines, Lunar Outpost, and Venturi Astrolab at NASA’s Johnson Space Center in Houston.NASA/Bill Stafford Venturi Astrolab’s FLEX, Intuitive Machines’ Moon RACER, and Lunar Outpost’s Eagle lunar terrain vehicle – three commercially owned and developed LTVs (Lunar Terrain Vehicle) – are pictured at NASA’s Johnson Space Center in Houston in this photo from Nov. 21, 2024.
      As part of an ongoing year-long feasibility study, each company delivered a static mockup of their vehicle to Johnson at the end of September, initiated rover testing in October and completed the first round of testing in December inside the Active Response Gravity Offload System (ARGOS) test facility. Lunar surface gravity is one-sixth of what we experience here on Earth, so to mimic this, ARGOS offers an analog environment that can offload pressurized suited subjects for various reduced gravity simulations.
      See how these LTVs were tested.
      Image credit: NASA/Bill Stafford
      View the full article
    • By NASA
      5 Min Read NASA’s Ames Research Center Celebrates 85 Years of Innovation
      The NACA Ames laboratory in 1944 Credits: NASA Ames Research Center in California’s Silicon Valley pre-dates a lot of things. The center existed before NASA – the very space and aeronautics agency it’s a critical part of today. And of all the marvelous advancements in science and technology that have fundamentally changed our lives over the last 85 years since its founding, one aspect has remained steadfast; an enduring commitment to what’s known by some on-center simply as, “an atmosphere of freedom.” 
      Years before breaking ground at the site that would one day become home to the world’s preeminent wind tunnels, supercomputers, simulators, and brightest minds solving some of the world’s toughest challenges, Joseph Sweetman Ames, the center’s namesake, described a sentiment that would guide decades of innovation and research: 
      My hope is that you have learned or are learning a love of freedom of thought and are convinced that life is worthwhile only in such an atmosphere
      Joseph sweetman ames
      Founding member of the N.A.C.A.
      “My hope is that you have learned or are learning a love of freedom of thought and are convinced that life is worthwhile only in such an atmosphere,” he said in an address to the graduates of Johns Hopkins University in June 1935.
      That spirit and the people it attracted and retained are a crucial part of how Ames, along with other N.A.C.A. research centers, ultimately made technological breakthroughs that enabled humanity’s first steps on the Moon, the safe return of spacecraft through Earth’s atmosphere, and many other discoveries that benefit our day-to-day lives.
      Russell Robinson momentarily looks to the camera while supervising the first excavation at what would become Ames Research Center.NACA “In the context of my work, an atmosphere of freedom means the freedom to pursue high-risk, high-reward, innovative ideas that may take time to fully develop and — most importantly — the opportunity to put them into practice for the benefit of all,” said Edward Balaban, a researcher at Ames specializing in artificial intelligence, robotics, and advanced mission concepts.
      Balaban’s career at Ames has involved a variety of projects at different stages of development – from early concept to flight-ready – including experimenting with different ways to create super-sized space telescopes in space and using artificial intelligence to help guide the path a rover might take to maximize off-world science results. Like many Ames researchers over the years, Balaban shared that his experience has involved deep collaborations across science and engineering disciplines with colleagues all over the center, as well as commercial and academic partners in Silicon Valley where Ames is nestled and beyond. This is a tradition that runs deep at Ames and has helped lead to entirely new fields of study and seeded many companies and spinoffs.
      Before NASA, Before Silicon Valley: The 1939 Founding of Ames Aeronautical Laboratory “In the fields of aeronautics and space exploration the cost of entry can be quite high. For commercial enterprises and universities pursuing longer term ideas and putting them into practice often means partnering up with an organization such as NASA that has the scale and multi-disciplinary expertise to mature these ideas for real-world applications,” added Balaban.
      “Certainly, the topics of inquiry, the academic freedom, and the benefit to the public good are what has kept me at Ames,” reflected Ross Beyer, a planetary scientist with the SETI Institute at Ames. “There’s not a lot of commercial incentive to study other planets, for example, but maybe there will be soon. In the meantime, only with government funding and agencies like NASA can we develop missions to explore the unknown in order to make important fundamental science discoveries and broadly share them.”
      For Beyer, his boundary-breaking moment came when he searched – and found – software engineers at Ames capable and passionate about open-source software to generate accurate, high-resolution, texture-mapped, 3D terrain models from stereo image pairs. He and other teams of NASA scientists have since applied that software to study and better understand everything from changes in snow and ice characteristics on Earth, as well as features like craters, mountains, and caves on Mars or the Moon. This capability is part of the Artemis campaign, through which NASA will establish a long-term presence at the Moon for scientific exploration with commercial and international partners. The mission is to learn how to live and work away from home, promote the peaceful use of space, and prepare for future human exploration of Mars. 
      “As NASA and private companies send missions to the Moon, they need to plan landing sites and understand the local environment, and our software is freely available for anyone to use,” Beyer said. “Years ago, our management could easily have said ‘No, let’s keep this software to ourselves; it gives us a competitive advantage.’ They didn’t, and I believe that NASA writ large allows you to work on things and share those things and not hold them back.” 
      When looking forward to what the next 85 years might bring, researchers shared a belief that advancements in technology and opportunities to innovate are as expansive as space itself, but like all living things, they need a healthy atmosphere to thrive. Balaban offered, “This freedom to innovate is precious and cannot be taken for granted. It can easily fall victim if left unprotected. It is absolutely critical to retain it going forward, to ensure our nation’s continuing vitality and the strength of the other freedoms we enjoy.”
      Ames Aeronautical Laboratory.NACAView the full article
    • By NASA
      “Trying to do stellar observations from Earth is like trying to do birdwatching from the bottom of a lake.” James B. Odom, Hubble Program Manager 1983-1990.

      The third servicing mission to the Hubble Space Telescope, placed in orbit in 1990, occurred during the STS-103 mission in December 1999. During the mission, originally planned for June 2000 but accelerated by six months following unexpected failures of the telescope’s attitude control gyroscopes, the astronauts restored the facility to full functionality. During their eight-day mission that featured the first space shuttle crew to spend Christmas in space, the seven-member U.S. and European crew rendezvoused with and captured Hubble, and four astronauts in rotating teams of two conducted three lengthy and complex spacewalks to service and upgrade the telescope. They redeployed the telescope with greater capabilities than ever before to continue its mission to help scientists unlock the secrets of the universe.
      Schematic showing the Hubble Space Telescope’s major components. Workers inspect the Hubble Space Telescope’s 94-inch diameter primary mirror prior to assembly. Astronauts release the Hubble Space Telescope in April 1990 during the STS-31 mission. The discovery after the Hubble Space Telescope’s launch in 1990 that its primary mirror suffered from a flaw called spherical aberration disappointed scientists who could not obtain the sharp images they had expected. But thanks to the Hubble’s built-in feature of on-orbit servicing, NASA devised a plan to correct the telescope’s optics during the first planned repair mission in 1993. A second servicing mission in 1997 upgraded the telescope’s capabilities until the next mission planned for three years later. But after three of the telescope’s six gyroscopes failed in 1997, 1998, and 1999, mission rules dictated a call up mission in case additional gyroscope failures sent Hubble into a safe mode. NASA elected to move up some of the servicing tasks from the third mission, splitting it into missions 3A and 3B, planning to fly 3A in October 1999 on Discovery’s STS-103 mission primarily to replace the failed gyroscopes. Delays to the shuttle fleet resulting from anomalies during the launch of STS-93 in July 1993 slipped STS-103 first into November and ultimately into December. Technical issues with Discovery itself pushed the launch date to mid-December, and raised concerns about having a shuttle in orbit during the Y2K transition. Once the launch had slipped to Dec. 19, mission planners cut the mission from 10 to eight days, deleting one of the four spacewalks, to ensure a return before the end of the calendar year. The servicing mission couldn’t come soon enough, as a fourth gyroscope failed aboard Hubble in mid-November, with Discovery already poised on the launch pad to prepare for STS-103. Controllers placed Hubble in a safe mode until the astronauts arrived.
      The STS-103 crew of C. Michael Foale, left, Claude Nicollier, Scott J. Kelly, Curtis L. Brown, Jean-François A. Clervoy, John M. Grunsfeld, and Steven L. Smith. The STS-103 crew patch. The mission patch for the Hubble Servicing Mission-3A. To execute the third Hubble Servicing Mission, in July 1998 NASA selected an experienced four-person team to carry out a record-breaking six spacewalks on the flight then planned for June 2000. The spacewalkers included Mission Specialists Steven L. Smith serving as payload commander, John M. Grunsfeld, C. Michael Foale, and European Space Agency (ESA) astronaut Claude Nicollier from Switzerland. The addition in March 1999 of Commander Curtis L. Brown, Pilot Scott J. Kelly, and Mission Specialist ESA astronaut Jean-François A. Clervoy of France rounded out the highly experienced crew with 18 previous spaceflights among them. Brown earned the distinction as only the fifth person to fly in space six times. For Kelly, STS-103 marked his first spaceflight. Smith, Clervoy, and Grunsfeld each had flown two previous missions, Foale four including a long-duration mission aboard Mir, and Nicollier three. Smith participated in three spacewalks during the second Hubble Servicing Mission and Nicollier served as the Remote Manipulator System (RMS) or robotic arm operator during the first.
      The STS-103 crew at the traditional prelaunch breakfast at NASA’s Kennedy Space Center in Florida. Suited up, the STS-103 astronauts leave crew quarters for the trip to Launch Pad 39B. Space shuttle Discovery on Launch Pad 39B, awaiting launch. Discovery arrived back to KSC at the end of the STS-96 mission on June 6, 1999, and workers towed it to the Orbiter Processing Facility the same day to begin readying it for STS-103. The vehicle rolled over to the Vehicle Assembly Building on Nov. 4, where workers mated it with its external tank and twin solid rocket boosters, before rolling the stack out to Launch Pad 39B on Nov. 13.
      Liftoff of space shuttle Discovery on the STS-103 Hubble Space Telescope servicing mission 3A. The Hubble Space Telescope as Discovery approaches. The STS-103 crew berthing the Hubble into the payload bay. Beginning its 27th trip into space, Discovery lifted off from Launch Pad 39B at 7:50 p.m. EST on Dec. 19 to fix the ailing space telescope. Two days later, Brown and Kelly maneuvered Discovery to within range of Hubble so Clervoy operating the 50-foot-long RMS could grapple the telescope and berth it into the payload bay.
      During the first spacewalk, astronauts John M. Grunsfeld, left, and Steven L. Smith replacing one of the Rate Sensor Units containing two gyroscopes. Smith gives a thumbs up with his image reflected in the Hubble Space Telescope. Smith and Grunsfeld conducted the mission’s first spacewalk on Dec. 22, the flight’s fourth day in space. The duo, aided by Clervoy operating the RMS from inside Discovery, completed two of mission’s highest priority objectives. They replaced the failed gyroscopes, installing three new Rate Sensor Units, each containing two gyroscopes, to return control to the ailing telescope. They also installed six Voltage/Temperature Improvement Kits to prevent the telescope’s batteries from overheating as they aged. The excursion lasted eight hours 15 minutes, at the time the second longest spacewalk.
      During the second spacewalk, astronauts C. Michael Foale, left, and Claude Nicollier during the changeout of the fine guidance sensor. Foale at the end of the Remote Manipulator System services the Hubble Space Telescope. The next day, Nicollier and Foale conducted the mission’s second spacewalk. The main task for this excursion involved installing a new computer aboard Hubble, replacing the original 1970s vintage unit. The new radiation-hardened system ran 20 times faster and carried six times more memory while using one-third the electrical power. They also installed a fine guidance sensor before concluding the eight-hour 10-minute spacewalk.
      Astronauts Steven L. Smith, left, and John M. Grunsfeld begin their servicing activities during the third spacewalk. At the end of the third and final spacewalk, Grunsfeld, left, and Smith provide closing comments about the work the mission accomplished to service the Hubble Space Telescope. Smith and Grunsfeld ventured outside for a second time to complete the flight’s third and final spacewalk on Dec. 24, the first spacewalk conducted on Christmas Eve day. First, they replaced an old reel-to-reel tape recorder with a solid state unit providing a 10-fold increase in recording capability and replaced a failed data transmitter. They installed seven new covers on Hubble’s electronics bay doors for added protection of the telescope’s insulation. This third spacewalk lasted eight hours eight minutes.
      The first space shuttle crew to celebrate Christmas in space, the STS-103 astronauts pose wearing Santa hats. The Hubble Space Telescope shortly after the STS-103 crew released it. The next day, the STS-103 astronauts earned the distinction as the first space shuttle crew to spend Christmas Day in space. Clervoy grappled Hubble, lifted it out of the payload bay and released it to continue its mission. Hubble Space Telescope Program Manager John H. Campbell said after the release, “The spacecraft is being guided by its new gyros under the control of its brand new computer. [It] is now orbiting freely and is in fantastic shape.” After deploying Hubble, the astronauts enjoyed a well-deserved Christmas dinner, with Clervoy providing French delicacies. The crew spent Dec. 26 readying Discovery for its return to Earth, including testing its reaction control system thrusters and aerodynamic surfaces and stowing unneeded gear.
      Astronauts Steven L. Smith, left, Claude Nicollier, and John M. Grunsfeld complete their fluid loading protocol and put on their launch and entry suits prior to reentry. Space shuttle Discovery makes a perfect night landing at NASA’s Kennedy Space Center in Florida. The crew welcome home ceremony at Ellington Field in Houston. On Dec. 27, the astronauts donned their launch and entry suits and prepared for the return to Earth. They closed the payload bay doors and fired Discovery’s engines to bring them out of orbit. Just before landing, Kelly lowered the craft’s landing gear and Brown guided Discovery to a smooth night landing at KSC, concluding a flight of seven days, 23 hours, 11 minutes. They circled the Earth 119 times. The flight marked Discovery’s last solo flight as all its subsequent missions docked with the International Space Station. Workers at KSC began readying it for its next mission, STS-92 in October 2000.

      The Hubble Space Telescope continues to operate today, far exceeding the five-year life extension expected from the last of the servicing missions in 2009. Joined in space by the James Webb Space Telescope in 2021, the two instruments together continue to image the skies across a broad range of the electromagnetic spectrum to provide scientists with the tools to gain unprecedented insights into the universe and its formation.

      Watch the STS-103 crew narrate a video of their Hubble servicing mission.
      View the full article
    • By European Space Agency
      Video: 00:10:27 In 1975, 10 European countries came together with a vision to collaborate on key space activities: science and astronomy, launch capabilities and space applications: the European Space Agency, ESA, was born.
      In 2025, we mark half a century of joint European achievement – filled with firsts and breakthroughs in science, exploration and technology, and the space infrastructure and economy that power Europe today.
       
      During the past five decades ESA has grown, developing ever bolder and bigger projects and adding more Member States, with Slovenia joining as the latest full Member State in January.
       
      We’ll also celebrate the 50th anniversary of ESA’s Estrack network, 30 years of satellite navigation in Europe and 20 years since ESA launched the first demonstration satellite Giove-A which laid the foundation for the EU’s own satnav constellation Galileo. Other notable celebrations are the 20th anniversary of ESA’s Business Incubation Centres, or BICs, and the 30th year in space for SOHO, the joint ESA and NASA Solar and Heliospheric Observatory.
       
      Sadly though, 2025 will mean end of science operations for Integral and Gaia. Integral, ESA's gamma-ray observatory has exotic objects in space since 2002 and Gaia concludes a decade of mapping the stars. But as some space telescopes retire, another one provides its first full data release. Launched in 2023, we expect Euclid’s data release early in the new year.
       
      Launch-wise, we’re looking forward to Copernicus Sentinel-4 and -5 (Sentinel-4 will fly on an MTG-sounder satellite and Sentinel-5 on the MetOp-SG-A1 satellite), Copernicus Sentinel-1D, Sentinel-6B and Biomass. We’ll also launch the SMILE mission, or Solar wind Magnetosphere Ionosphere Link Explorer, a joint mission with the Chinese academy of science.
       
      The most powerful version of Europe’s new heavy-lift rocket, Ariane 6, is set to fly operationally for the first time in 2025. With several European commercial launcher companies planning to conduct their first orbital launches in 2025 too, ESA is kicking off the European Launcher Challenge to support the further development of European space transportation industry.
       
      In human spaceflight, Polish ESA project astronaut Sławosz Uznański will fly to the ISS on the commercial Axiom-4 mission. Artemis II will be launched with the second European Service Module, on the first crewed mission around the Moon since 1972.
      The year that ESA looks back on a half century of European achievement will also be one of key decisions on our future. At the Ministerial Council towards the end of 2025, our Member States will convene to ensure that Europe's crucial needs, ambitions and the dreams that unite us in space become reality.
      So, in 2025, we’ll celebrate the legacy of those who came before but also help establish a foundation for the next 50 years. Join us as we look forward to a year that honours ESA’s legacy and promises new milestones in space.
      View the full article
  • Check out these Videos

×
×
  • Create New...