Jump to content

Cube Quest Concludes: Wins, Lessons Learned from Centennial Challenge


NASA

Recommended Posts

  • Publishers

5 min read

Cube Quest Concludes: Wins, Lessons Learned from Centennial Challenge

KSC-20210805-PH-CSH01_0009~large.jpg?w=1
Small satellites, called CubeSats, are shown secured inside NASA’s Orion stage adapter at NASA’s Kennedy Space Center in Florida on Aug. 5, 2021. One of these CubeSats belonged to Team Miles, one of the three finalists in the Cube Quest Centennial Challenge. The ring-shaped stage adapter was connected to the Space Launch System’s Interim Cryogenic Propulsion Stage, with the Orion spacecraft secured on top. The CubeSats’ mission was to detach from the stage adapter, then fly near and beyond the Moon to conduct a variety of science experiments and technology demonstrations to expand our knowledge of the lunar surface during the Artemis I mission.
NASA/Cory Huston

By Savannah Bullard

Artemis I launched from NASA’s Kennedy Space Center in Florida on Nov. 16, 2022, penning a new era of space exploration and inching the agency closer to sending the first woman and first person of color to the lunar surface.

Aboard the Space Launch System (SLS) rocket were 10 small satellites, no bigger than shoeboxes, whose goal was to detach and capably perform operations near and beyond the Moon. One of those satellites was a product of the Cube Quest Challenge, a NASA-led prize competition that asked citizen innovators to design, build, and deliver flight-qualified satellites called CubeSats that could perform its mission independently of the Artemis I mission.

Cube Quest is the agency’s first in-space public prize competition. Opened in 2015, the challenge began with four ground-based tournaments, which awarded almost $500,000 in prizes. Three finalists emerged from the ground competition with a ticket to hitch a ride aboard the SLS as a secondary payload – and win the rest of the competition’s $5 million prize purse, NASA’s largest-ever prize offering to date – in 2022.

Of the three finalists, Team Miles was the sole team to make the trip on Artemis I successfully. Shortly after a successful deployment in space, controllers detected downlink signals and processed them to confirm whether the CubeSat was operational. This remains the latest update for the Team Miles CubeSat.

“We’re still celebrating the many wins that were borne out of Cube Quest,” said Centennial Challenges Program Manager Denise Morris. “The intent of the challenge was to reward citizen inventors who successfully advance the CubeSat technologies needed for operations on the Moon and beyond, and I believe we accomplished this.”

Innovation rarely comes without error, but according to Challenge Manager Naveen Vetcha, who supports Centennial Challenges through Jacobs Space Exploration Group, even after everything goes as expected, there is no guarantee that scientists will reach their desired outcomes.

“Given the magnitude of what we can and do accomplish every day at NASA, it comes with the territory that not every test, proposal, or idea will come out with 100 percent success,” Vetcha said. “We have set ambitious goals, and challenging ourselves to change what’s possible will inevitably end with examples of not meeting our stretch goals. But, with each failure comes more opportunities and lessons to carry forward. In the end, our competitors created technologies that will enable affordable deep space CubeSats, which, to me, is a big win.”

Advancements in Commercial Space Research

Although Team Miles may have made it furthest in the Cube Quest Challenge, having launched its CubeSat as a secondary payload aboard Artemis I, the team continues to participate in the challenge long after launch.

“From Team Miles, Miles Space LLC was created and is still in business,” said Jan McKenna, Team Miles’ project manager and safety lead. “Miles Space is developing and selling the propulsion system designed for our craft to commercial aerospace companies, and we’ve expanded to be able to create hardware for communications along with our CubeSat developments.”

The next steps for Miles Space LLC include seeing through their active patent applications, establishing relationships with potential clients, and continuing to hunt for a connection with their flying CubeSat. Another finalist team, Cislunar Explorers, is currently focused on using their lessons learned to benefit the global small satellite community.

“I utilized the contacts I made through Cube Quest and the other Artemis Secondary Payloads for my thesis research,” said Aaron Zucherman, Cislunar Explorers’ project manager. “This has enabled me to find partnerships and consulting work with other universities and companies where I have shared my experiences learning the best ways to build interplanetary CubeSats.”

Inspiring a Generation of Space Scientists

This challenge featured teams from diverse educational and commercial backgrounds. Several team members credited the challenge as a catalyst in their graduate thesis or Ph.D. research, but one young innovator says Cube Quest completely redirected his entire career trajectory.

Project Selene team lead, Braden Oh, competed with his peers at La Cañada High School in La Cañada, California. Oh’s team eventually caught the attention of Kerri Cahoy at the Massachusetts Institute of Technology, and the designs were similar enough that Cahoy invited the two teams to merge. The exposure gained through this partnership was a powerful inspiration for Oh and his peers.

“I originally intended to apply to college as a computer science major, but my experiences in Cube Quest inspired me to study engineering instead,” Oh said. “I saw similar stories unfold for a number of my teammates; one eventually graduated from MIT and another now works for NASA.”

Cube Quest is managed out of NASA’s Ames Research Center in California’s Silicon Valley. The competition is a part of NASA’s Centennial Challenges, which is housed at the agency’s Marshall Space Flight Center in Huntsville, Alabama. Centennial Challenges is a part of NASA’s Prizes, Challenges, and Crowdsourcing program in the Space Technology Mission Directorate.

Jonathan Deal
NASA’s Marshall Space Flight Center
256-544-0034
jonathan.e.deal@nasa.gov

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Following eight months of intense research, design, and prototyping, six university teams presented their “Inflatable Systems for Lunar Operations” concepts to a panel of judges at NASA’s 2024 Breakthrough, Innovative and Game-Changing (BIG) Idea Challenge forum. 
      The challenge, funded by NASA’s Space Technology Mission Directorate and Office of STEM Engagement, seeks novel ideas from higher education on a new topic each year and supports the agency’s Lunar Surface Innovation Initiative in developing new approaches and innovative technologies to pave the way for successful exploration on the surface of the Moon. This year, teams were asked to develop low Size, Weight, and Power inflatable technologies, structures and systems that could benefit future Artemis missions to the Moon and beyond. 
      Taking top honors at this year’s forum receiving the Artemis Award was Northwestern University with National Aerospace Corporation & IMS Engineered Products, with their concept titled METALS: Metallic Expandable Technology for Artemis Lunar Structures. The Artemis Award is given to the team whose concept has the best potential to contribute to and be integrated into an Artemis mission.  
      The Northwestern University BIG Idea Challenge team developed METALS, an inflatable metal concept for long-term storage of cryogenic fluid on the Moon. The concept earned the Artemis Award, top honors in NASA’s 2024 BIG Idea Challenge.Credit: National Institute of Aerospace The Artemis Award is a generous recognition of the potential impact that our work can have. We hope it can be a critical part of the Artemis Program moving forward. We’re exceptionally grateful to have the opportunity to engage directly with NASA in research for the Artemis Program in such a direct way while we’re still students.” 
      Julian Rocher
      Team co-lead for Northwestern University
      METALS is an inflatable system for long term cryogenic fluid storage on the Moon. Stacked layers of sheet metal are welded along their aligned edges, stacked inside a rocket, and inflated once on the lunar surface. The manufacturing process is scalable, reliable, and simple. Notably, METALS boasts superior performance in the harsh lunar environment, including resistance against radiation, abrasion, micrometeorites, gas permeability, and temperature extremes.
      Northwestern University team members pose with lunar inflatable prototypes from their METALS project in NASA’s 2024 BIG Idea Challenge. Credit: Northwestern University We learned to ask the right questions, and we learned to question what is the status quo and to go above and beyond and think outside the box. It’s a special mindset for everyone to have on this team… it’s what forces us to innovate.” 
      Trevor Abbott
      Team co-lead for Northwestern University
      Arizona State University took home the 2024 BIG Idea Challenge Systems Engineering prize for their project, AEGIS: Inflatable Lunar Landing Pad System. The AEGIS system is designed to deflect the exhaust gasses of lunar landers thereby reducing regolith disturbances generated during landing. The system is deployed on the lunar surface where it uses 6 anchors in its base to secure itself to the ground. Once inflated to its deployed size of 14 m in diameter, AEGIS provides a reusable precision landing zone for incoming landers.
      Arizona State University earned the Systems Engineering prize for their BIG Idea Challenge project: AEGIS: Inflatable Lunar Landing Pad System. Arizona State University
      This year’s forum was held in tandem with the Lunar Surface Innovation Consortium’s (LSIC) Fall Meeting at the University of Nevada, Las Vegas, where students had the opportunity to network with NASA and industry experts, attend LSIC panels and presentations, and participate in the technical poster session. The consortium provides a forum for NASA to communicate technological requirements, needs, and opportunities, and for the community to share with NASA existing capabilities and critical gaps. 
      We felt that hosting this year’s BIG Idea Forum in conjunction with the LSIC Fall Meeting would be an exciting opportunity for these incredibly talented students to network with today’s aerospace leaders in government, industry, and academia. Their innovative thinking and novel contributions are critical skills required for the successful development of the technologies that will drive exploration on the Moon and beyond.” 
      Niki Werkheiser
      Director of Technology Maturation in NASA’s Space Technology Mission Directorate
      In February, teams submitted proposal packages, from which six finalists were selected for funding of up to $150,000 depending on each team’s prototype and budget. The finalists then worked for eight months designing, developing, and demonstrating their concepts. The 2024 BIG Idea program concluded at its annual forum, where teams presented their results and answered questions from judges. Experts from NASA, Johns Hopkins Applied Physics Laboratory, and other aerospace companies evaluated the student concepts based on technical innovation, credibility, management, and the teams’ verification testing. In addition to the presentation, the teams provided a technical paper and poster detailing their proposed inflatable system for lunar operations. 
      Year after year, BIG Idea student teams spend countless hours working on tough engineering design challenges. Their dedication and ‘game-changing’ ideas never cease to amaze me. They all have bright futures ahead of them.” 
      David Moore
      Program Director for NASA’s Game Changing Development program
      Second-year mechanical engineering student Connor Owens, left, and electrical engineering graduate student Sarwan Shah run through how they’ll test the sheath-and-auger anchor for the axial vertical pull test of the base anchor in a former shower room in Sun Devil Hall. Image credit: Charlie Leight/ASU News The University of Maryland BIG Idea Challenge team’s Auxiliary Inflatable Wheels for Lunar Rover project in a testing environment University of Maryland Students from University of Michigan and a component of their Cargo-BEEP (Cargo Balancing Expandable Exploration Platform) projectUniversity of Michigan Northwestern University welders prepare to work on their 2024 BIG Idea Challenge prototype, a metal inflatable designed for deployment on the Moon.Northwestern University Brigham Young University’s Untethered and Modular Inflatable Robots for Lunar Operations projectBrigham Young University California Institute of Technology’s PILLARS: Plume-deployed Inflatable for Launch and Landing Abrasive Regolith Shielding projectCalifornia Institute of Technology The Inflatable Systems for Lunar Operations theme allowed teams to submit various technology concepts such as soft robotics, deployable infrastructure components, emergency shelters or other devices for extended extravehicular activities, pressurized tunnels and airlocks, and debris shields and dust protection systems. National Institute of Aerospace NASA’s Space Technology Mission Directorate sponsors the BIG Idea Challenge through a collaboration between its Game Changing Development program and the agency’s Office of STEM Engagement. It is managed by a partnership between the National Institute of Aerospace and Johns Hopkins Applied Physics Laboratory.   
      Team presentations, technical papers, and digital posters are available on the BIG Idea website.       
      For full competition details, visit:  https://bigidea.nianet.org/2024-challenge
      Keep Exploring Discover More Topics From NASA
      Space Technology Mission Directorate
      Game Changing Development Projects
      Game Changing Development projects aim to advance space technologies, focusing on advancing capabilities for going to and living in space.
      NASA’s Lunar Surface Innovation Initiative
      Get Involved
      View the full article
    • By NASA
      On Sept. 20, 2024, four students experienced the wonder of space exploration at NASA’s Johnson Space Center in Houston, taking part in an international competition that brought their work to life aboard the International Space Station.  

      Now in its fifth year, the Kibo Robot Programming Challenge (Kibo-RPC) continues to push the boundaries of robotics, bringing together the world’s brightest young minds for a real-world test of programming, problem-solving, and innovation.
      The Kibo Robot Programming Challenge (Kibo-RPC) students tour the Gateway Habitation and Logistics Outpost module at NASA’s Johnson Space Center in Houston.NASA/Helen Arase Vargas The stakes reached new heights in this year’s competition, with 661 teams totaling 2,788 students from 35 countries and regions competing to program robots aboard the orbiting laboratory. Organized by the Japan Aerospace Exploration Agency in collaboration with the United Nations Office for Outer Space Affairs, the challenge provided a unique platform for students to test their skills on a global stage. 

      Meet Team Salcedo 

      Representing the U.S., Team Salcedo is composed of four talented students: Aaron Kantsevoy, Gabriel Ashkenazi, Justin Bonner, and Lucas Paschke. Each member brought a unique skill set and perspective, contributing to the team’s well-rounded approach to the challenge. 
      From left to right are Kibo-RPC students Gabriel Ashkenazi, Lucas Paschke, Aaron Kantsevoy, and Justin Bonner. NASA/Helen Arase Vargas The team was named in honor of Dr. Alvaro Salcedo, a robotics teacher and competitive robotics coach who had a significant impact on Kantsevoy and Bonner during high school. Dr. Salcedo played a crucial role in shaping their interests and aspirations in science, technology, engineering, and mathematics (STEM), inspiring them to pursue careers in these fields. 

      Kantsevoy, a computer science major at Georgia Institute of Technology, or Georgia Tech, led the team with three years of Kibo-RPC experience and a deep interest in robotics and space-based agriculture. Bonner, a second-year student at the University of Miami, is pursuing a triple major in computer science, artificial intelligence, and mathematics. Known for his quick problem-solving, he played a key role as a strategist and computer vision expert. Paschke, a first-time participant and computer science student at Georgia Tech, focused on intelligence systems and architecture, and brought fresh insights to the table. Ashkenazi, also studying computer science at Georgia Tech, specialized in computer vision and DevOps, adding depth to the team’s technical capabilities. 

      AstroBee Takes Flight 

      The 2024 competition tasked students with programming AstroBee, a free-flying robot aboard the station, to navigate a complex course while capturing images scattered across the orbital outpost. For Team Salcedo, the challenge reached its peak as their code was tested live on the space station.  
      The Kibo-RPC students watch their code direct Astrobee’s movements at Johnson Space Center with NASA Program Specialist Jamie Semple on Sept. 20, 2024.NASA/Helen Arase Vargas The robot executed its commands in real time, maneuvering through the designated course to demonstrate precision, speed, and adaptability in the microgravity environment. Watching AstroBee in action aboard the space station offered a rare glimpse of the direct impact of their programming skills and added a layer of excitement that pushed them to fine-tune their approach. 

      Overcoming Challenges in Real Time 

      Navigating AstroBee through the orbital outpost presented a set of unique challenges. The team had to ensure the robot could identify and target images scattered throughout the station with precision while minimizing the time spent between locations.  
      The Kibo-RPC students watch in real time as the free-flying robot Astrobee performs maneuvers aboard the International Space Station, executing tasks based on their input to test its capabilities. NASA/Helen Arase Vargas Using quaternions for smooth rotation in 3D space, they fine-tuned AstroBee’s movements to adjust camera angles and capture images from difficult positions without succumbing to the limitations of gimbal lock. Multithreading allowed the robot to simultaneously process images and move to the next target, optimizing the use of time in the fast-paced environment. 

      The Power of Teamwork and Mentorship 

      Working across different locations and time zones, Team Salcedo established a structured communication system to ensure seamless collaboration. Understanding each team member’s workflow and adjusting expectations accordingly helped them maintain efficiency, even when setbacks occurred. 
      Team Salcedo tour the Space Vehicle Mockup Facility with their NASA mentors (from top left to right) Education Coordinator Kaylie Mims, International Space Station Research Portfolio Manager Jorge Sotomayer, and Kibo-RPC Activity Manager Jamie Semple. NASA/Helen Arase Vargas Mentorship was crucial to their success, with the team crediting several advisors and educators for their guidance. Kantsevoy acknowledged his first STEM mentor, Casey Kleiman, who sparked his passion for robotics in middle school.  

      The team expressed gratitude to their Johnson mentors, including NASA Program Specialist Jamie Semple, Education Coordinator Kaylie Mims, and International Space Station Research Portfolio Manager Jorge Sotomayer, for guiding them through the program’s processes and providing support throughout the competition. 

      They also thanked NASA’s Office of STEM Engagement for offering the opportunity to present their project to Johnson employees.  

      “The challenge mirrors how the NASA workforce collaborates to achieve success in a highly technical environment. Team Salcedo has increased their knowledge and learned skills that they most likely would not have acquired individually,” said Semple. “As with all of our student design challenges, we hope this experience encourages the team to continue their work and studies to hopefully return to NASA in the future as full-time employees.” 

      Pushing the Boundaries of Innovation 

      The Kibo-RPC allowed Team Salcedo to experiment with new techniques, such as Slicing Aided Hyperinference—an approach that divides images into smaller tiles for more detailed analysis. Although this method showed promise in detecting smaller objects, it proved too time-consuming under the competition’s time constraints, teaching the students valuable lessons about prioritizing efficiency in engineering. 
      The Kibo-RPC students present their robotic programming challenge to the International Space Station Program. NASA/Bill Stafford For Team Salcedo, the programming challenge taught them the value of communication, the importance of learning from setbacks, and the rewards of perseverance. The thrill of seeing their code in action on the orbital outpost was a reminder of the limitless possibilities in robotics and space exploration. 

      Inspiring the Next Generation 

      With participants from diverse backgrounds coming together to compete on a global platform, the Kibo-RPC continues to be a proving ground for future innovators.  

      The challenge tested the technical abilities of students and fostered personal growth and collaboration, setting the stage for the next generation of robotics engineers and leaders. 
      The Kibo-RPC students and their mentors at the Mission Control Center. NASA/Helen Arase Vargas
      As Team Salcedo looks ahead, they carry with them the skills, experiences, and inspiration needed to push the boundaries of human space exploration.  

      “With programs like Kibo-RPC, we are nurturing the next generation of explorers – the Artemis Generation,” said Sotomayer. “It’s not far-fetched to imagine that one of these students could eventually be walking on the Moon or Mars.” 

      The winners were announced virtually from Japan on Nov. 9, with Team Salcedo achieving sixth place. 

      Watch the international final round event here. 

      For more information on the Kibo Robot Programming Challenge, visit: https://jaxa.krpc.jp/
      View the full article
    • By European Space Agency
      The Space Resources Challenge was launched last week, an opportunity for innovators to pioneer the technologies that will help humankind live and work sustainably on the Moon.
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This video shows IPEx in the digital simulation environment.Credit: Johns Hopkins APL/Steve Gribben/Beverly Jensen Space is hard, but it’s not all hardware.  
      The new Lunar Autonomy Challenge invites teams of students from U.S. colleges and universities to test their software development skills. Working entirely in virtual simulations of the Moon’s surface, teams will develop an autonomous agent using software that can accomplish pre-defined tasks without help from humans. These agents will be used to navigate a digital twin of NASA’s ISRU Pilot Excavator (IPEx) and map specified locations in the digital environment. The IPEx is an autonomous mobility robot engineered to efficiently collect and transport lunar regolith, the loose rocky material on the Moon’s surface.     
      Autonomous systems allow spacecraft, rovers, and robots to operate without relying on constant contact with astronauts or mission control. Before hardware is trusted to operate independently on location, which for Artemis missions includes the Moon, it must be tested virtually. High-fidelity virtual simulations allow NASA to anticipate and improve how systems, both software and hardware, will function in the physical world. Testing in virtual simulations also allows technologists to explore different mission scenarios, observe potential outcomes, and reduce risks. 
      In the Lunar Autonomy Challenge, students will develop their knowledge of autonomous systems by working with the same simulation tools created in-house by Caterpillar Inc. of Irving, Texas, over decades of research and development. Teams will need to utilize the IPEx digital twin’s cameras and orientation sensors to accurately map surface elevation and identify obstacles. Like with real lunar missions, teams must also manage their energy usage and consider the Moon’s harsh terrain and low-light conditions. Through the competition, participants will learn more about autonomous robotic operation, surface mapping, localization, orientation, path planning, and hazard detection. 
      Eligibility
      Teams must be comprised of at least four undergraduate and/or graduate students and a faculty advisor at a U.S. college or university.
      Challenge Timeline & Structure
      The challenge will take place between November 2024 and May 2025 and will include both a qualifying round and a final round. Interested teams must apply by Thursday, Nov. 7.
      Round 1: Selected teams will develop and train their agent using provided virtual environments. Teams will have three opportunities to submit their agent to run in a qualification environment. For each submission, their agent will be scored based on performance.
      The top scoring teams will be invited to continue. Round 2: Teams will work to further refine the agents. Teams will have multiple opportunities in total to submit their agents to the competition environment. The top three teams will be named challenge winners.    Challenge Guidelines
      Interested teams should carefully review the Challenge Guidelines and the Lunar Autonomy Challenge site for more details, including proposal requirements, FAQs, and additional technical guidance. 
      Prizes
      The top three highest-scoring teams on the leaderboard in the finals will be awarded cash prizes: 
      First Place: $10,000 
      Second Place: $5,000 
      Third Place: $3,000 
         
      Application Submissions
      Applications must be submitted to NASA STEM Gateway by Nov. 7, 2024.  
      Learn more about the challenge: https://lunar-autonomy-challenge.jhuapl.edu
      The Lunar Autonomy Challenge is a collaboration between NASA, The Johns Hopkins University (JHU) Applied Physics Laboratory (APL), Caterpillar Inc., and Embodied AI. APL is managing the challenge for NASA. 
      NASA’s ISRU Pilot Excavator (IPEx) during a flight-like demonstration at NASA’s Kennedy Space Center’s Swamp Works testing facility. Credit: NASA Authored by: Stephanie Yeldell, Education Integration Lead
      Space Technology Mission Directorate
      NASA Headquarters, Washington, DC
      Keep Exploring Discover More Topics From NASA
      Space Technology Mission Directorate
      NASA’s Lunar Surface Innovation Initiative
      ISRU Pilot Excavator
      Get Involved
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Students celebrate after a successful performance in the 2024 Student Launch competition at Bragg Farms in Toney, Alabama.NASA NASA has selected 71 teams from across the U.S. to participate in its 25th annual Student Launch Challenge, one of the agency’s Artemis Student Challenges. The competition is aimed at inspiring Artemis Generation students to explore science, technology, engineering, and math (STEM) for the benefit of humanity.
      As part of the challenge, teams will design, build, and fly a high-powered amateur rocket and scientific payload. They also must meet documentation milestones and undergo detailed reviews throughout the school year.
      The nine-month-long challenge will culminate with on-site events starting on April 30, 2025. Final launches are scheduled for May 3, at Bragg Farms in Toney, Alabama, just minutes north of NASA’s Marshall Space Flight Center in Huntsville, Alabama. Teams are not required to travel for their final launch, having the option to launch from a qualified site. Details are outlined in the Student Launch Handbook.
      Each year, NASA updates the university payload challenge to reflect current scientific and exploration missions. For the 2025 season, the payload challenge will again take inspiration from the Artemis missions, which seek to land the first woman and first person of color on the Moon, and pave the way for future human exploration of Mars.
      As Student Launch celebrates its 25th anniversary, the payload challenge will include reports from STEMnauts, non-living objects representing astronauts. The STEMnaut crew must relay real-time data to the student team’s mission control via radio frequency, simulating the communication that will be required when the Artemis crew achieves its lunar landing.
      University and college teams are required to meet the 2025 payload requirements set by NASA, but middle and high school teams have the option to tackle the same challenge or design their own payload experiment.
      Student teams will undergo detailed reviews by NASA personnel to ensure the safety and feasibility of their rocket and payload designs. The team closest to their target will win the Altitude Award, one of multiple awards presented to teams at the end of the competition. Other awards include overall winner, vehicle design, experiment design, and social media presence.
      In addition to the engineering and science objectives of the challenge, students must also participate in outreach efforts such as engaging with local schools and maintaining active social media accounts. Student Launch is an all-encompassing challenge and aims to prepare the next generation for the professional world of space exploration.
      The Student Launch Challenge is managed by Marshall’s Office of STEM Engagement (OSTEM). Additional funding and support are provided by NASA’s OSTEM via the Next Gen STEM project, NASA’s Space Operations Mission Directorate, Northrup Grumman, National Space Club Huntsville, American Institute of Aeronautics and Astronautics, National Association of Rocketry, Relativity Space, and Bastion Technologies.
      For more information about Student Launch, visit:
      Student Launch Website Taylor Goodwin
      Marshall Space Flight Center, Huntsville, Ala.
      256.544.0034
      taylor.goodwin@nasa.gov
      Facebook logo @StudentLaunch @StudentLaunch Share
      Details
      Last Updated Oct 04, 2024 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center Explore More
      2 min read NASA Announces Teams to Compete in International Rover Challenge
      Article 1 hour ago 20 min read The Marshall Star for October 2, 2024
      Article 2 days ago 29 min read The Marshall Star for September 25, 2024
      Article 1 week ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...