Jump to content

The Marshall Star for November 15, 2023


Recommended Posts

  • Publishers
Posted
27 Min Read

The Marshall Star for November 15, 2023

NASA’s Juno captured this view of Jupiter

Commercial Crew Program’s Plaque Hanging Tradition Continues, Celebrating Work Done by Marshall Team

By Celine Smith

NASA’s Marshall Space Flight Center participated in a new tradition last December to honor engineers for their exceptional efforts on CCP (Commercial Crew Program) missions to the International Space Station continued Nov. 13, with a third plaque hanging at the HOSC (Huntsville Operations Support Center).

Team members are nominated at Marshall, Johnson Space Center, and Kennedy Space Center – centers that support CCP – to hang the plaque of the mission they supported. David Gwaltney, LVSO (Launch Vehicle Systems Office) technical assistant, was selected to hang the plaque for Crew-5, and Jonathan Carman, deputy SpaceX Falcon 9 lead engineer, was selected to hang the plaque for Crew-6. The Crew-5 mission launched in October of 2022. Crew-6 launched earlier this year in March.

Dave Gwaltney, left, Launch Vehicle Systems Office technical assistant and Lisa McCollum, Marshall’s Commercial Crew Program Launch Vehicle Safety Office deputy manager, hold the Crew-5 mission plaque together as they smile.
Dave Gwaltney, left, Launch Vehicle Systems Office technical assistant and Lisa McCollum, Marshall’s Commercial Crew Program Launch Vehicle Safety Office deputy manager, hold the Crew-5 mission plaque together as they smile.
NASA/Charles Beason

Gwaltney was chosen for the support he provided as a technical assistant for LVSO on the Crew-5 mission. While hardware for the mission was in transit it was damaged. He was critical to ensuring the proper inspections and analysis were completed. He then relayed the risk assessments to the program for acceptance. Gwaltney’s expertise led him to accurately pinpoint major areas of risks and understand them for a successful mission.

“We had good communication lines and an experienced team that allowed us to be ready for what we needed to do,” Gwaltney said.

Crew-5 was the first CCP mission to be led by a female commander, Nicole Mann. Mann also became the first indigenous woman to fly with NASA. Anna Kikina became the first Russian cosmonaut to fly on a U.S. commercial rocket during this mission as well.

Carman was recognized for his coordination of the second launch attempt for the Crew-6 mission that took place during a severe weather warning at HOSC. Carman took preventative measures to ensure the launch was a success. He collaborated with Mission Management and Integration, HOSC personnel, and the Marshall support team. He relocated the launch operations team to the storm shelter while preserving open lines of communication.

Jonathan Carman, left, deputy SpaceX Falcon 9 lead engineer, shakes hands with McCollum before he hangs the Crew-6 mission plaque.
Jonathan Carman, left, deputy SpaceX Falcon 9 lead engineer, shakes hands with McCollum before he hangs the Crew-6 mission plaque.
NASA/Charles Beason

“It’s an honor to have people count on me to take on the role and have trust in me,” Carman said. “I learned that good coordination and teamwork is always a recipe for success.”

The launch of Crew-6 was the first time a Crew Dragon capsule was reused for a fourth time. The mission also featured the first United Arab Emirates astronaut.

“Both Dave and Jonathan have consistently gone above and beyond to meet the need and make sure that the crew has a safe flight to station,” said Lisa McCollum, Marshall’s CCP LVSO deputy manager.

The second plaque hanging took place at HOSC on April 20 earlier this year. Ken Schrock, an avionics system engineer, hung the plaque for the Crew-3 mission, Patrick Mills, liquid propulsion systems engineer, hung the Crew-4 plaque, and Megan Hines, system safety engineer, hung the OFT-2 plaque.

Schrock was selected for critically assessing autonomous flight termination system test products and analyzing their reports for the Crew-3 mission. He also monitors Falcon 9 fleet launches for any issues that could be applicable to other CCP missions.

From left, Patrick Mills, liquid propulsion systems engineer, Megan Hines, systems safety engineer, and Ken Schrock, an avionics systems engineer, smile together after hanging their CCP plaques April 20.
From left, Patrick Mills, liquid propulsion systems engineer, Megan Hines, systems safety engineer, and Ken Schrock, an avionics systems engineer, smile together after hanging their CCP plaques April 20.
NASA/Charles Beason

Mills was honored with a plaque hanging for his repair work on Falcon 9’s first stage booster for its fourth launch on the Crew-4 mission. After static fire, the team identified repairs that would be needed before flight. Mills played a key role in measuring the risk of the leaks caused. He led the team that decided patching them would be a suitable resolution preventing any spraying during the engine start up.

Hines was recognized for her safety and mission assurance work on the OFT-2 mission. Due to most of the team being focused on the reused components in the Crew-4 mission, Hines coordinated all the OFT-2 safety and mission assurance work. During the mission she provided support on-console during the launch. The flight met all test objectives, completing the first docking of the Starliner to the space station.

“I’m really proud of this team and how much work, heart and effort goes into each flight,” McCollum said. “It’s important for the folks across the agency and the public to know what our team is doing behind the scenes to make these missions happen.”

Smith, a Media Fusion employee, supports the Marshall Office of Communications.

› Back to Top

National WWII Museum Brings Valor Outreach Event to Michoud Veterans

By Heather Keller

Veterans from the multi-tenant workforce at NASA’s Michoud Assembly Facility attended a panel discussion featuring two Congressional Medal of Honor recipients Nov. 1 in Michoud’s Hero’s Way – a hall lined with the mission patches for every NASA mission, along with crew photos and mission details.

When the National WWII Museum in New Orleans learned they would be hosting the week-long Medal of Honor Convention in 2023, they began exploring ideas for local Valor Outreach opportunities. Michoud’s beginnings as an aircraft factory producing C-76 and C-46 cargo planes in support of WWII, in addition to its current operations supporting the space program, as well as housing multiple government agencies, including U.S. Coast Guard Base New Orleans, made it a prime location for the event.

From left, NASA’s Michoud Assembly Facility Director Lonnie Dutreix, Maj. Gen. David Mize (Ret.), Col. Harvey C. “Barney” Barnum Jr. (Ret.), and Capt. Florent A. “Flo” Groberg (Ret.) participate in a panel discussion during a Valor Outreach event for veterans Nov. 1.
From left, NASA’s Michoud Assembly Facility Director Lonnie Dutreix, Maj. Gen. David Mize (Ret.), Col. Harvey C. “Barney” Barnum Jr. (Ret.), and Capt. Florent A. “Flo” Groberg (Ret.) participate in a panel discussion during a Valor Outreach event for veterans Nov. 1.
NASA/Michael DeMocker

“NASA Michoud is a foundation of the American space program and a marvel of scientific and engineering capability,” said event moderator and retired U.S. Marine Corps Gen. David Mize, who now serves as chairman of the Mayor’s Military Advisory Committee of New Orleans. “It is truly an underappreciated American jewel.”

The event afforded a unique opportunity to the attendees to be with the “heroic unicorns of the U.S. military,” according to Mize, noting, “there are about 343 million people in the U.S. … 16.2 million living veterans … two million personnel on active and reserve duty,” yet there are only 65 living Medal of Honor recipients.

The Medal of Honor recipients, retired U.S. Army Capt. Florent Groberg and retired U.S. Marine Corps Col. Harvey Barnum, Jr., visited Michoud as part of the Congressional Medal of Honor Society Valor Outreach Program. They spoke of their individual experiences serving the country in combat and in their civilian life following retirement. Topics of discussion included patriotism, leadership, and a comparison between the foreign affairs from WWII to today, among others. The pair fielded questions from the audience, which was exclusively made up of Michoud veterans, and those currently serving onsite at USCG Base New Orleans.

Both panelists spoke on the weight of the medal, and the struggle of being celebrated as a war hero while their comrades gave the ultimate sacrifice.

“The medal is not ours,” said Groberg, a veteran of the War on Terrorism. “We’re recipients of the medal. We’re a courier of the medal. There’s a story behind each and every one of our medals, that include many, many other people aside from us. Now we have a platform to tell those stories.”

Groberg continued with the names of the four soldiers who lost their lives in Afghanistan on the day he earned his accolade, a personal mission he’s adopted to honor their memory.

Freddie Grass, left, safety manager for Boasso Construction, visits with Mize and Barnum during a factory tour at Michoud. Grass has four Purple Hearts, while Mize has the Distinguished Superior Service Medal.
Freddie Grass, left, safety manager for Boasso Construction, visits with Mize and Barnum during a factory tour at Michoud. Grass has four Purple Hearts, while Mize has the Distinguished Superior Service Medal.
NASA/Michael DeMocker

Barnum, a veteran of the Vietnam War, spoke about the 365 Medal of Honor recipients who were alive when he was decorated in 1967. At that time there were honorees who served as far back as the Banana Wars of the 1890s, who became his mentors, and taught him the importance of being a caretaker of the medal. He compared the honor to a brotherhood, saying they have all become family.

“Many of us go to the White House when a new recipient is awarded, and then we also gather at Arlington when we say ‘goodbye,’” Barnum said. “It’s the greatest fraternity that anybody could ever be a member of.”

To Groberg and Barnum, the greatest honor is knowing that their peers nominated them for the recognition, though they noted one aspect where the society falls short. “We need a woman,” Groberg said. “We had some women that went out who walked the walk with us, they fought with us, they did some incredible work, and some of them didn’t come home.”

Drawing on their experience, Groberg and Barnum urged their fellow veterans to talk about their experiences and recalled how opening up to those around them aided in both their physical and emotional recovery.

When asked if they would do it all over again by a Michoud employee, both men agreed they would, without hesitation; however, when asked if they would ever consider going to space, they had a difference of opinion.

“Not me,” Barnum said. “I’ve always wondered why people jump out of good airplanes.”

Groberg, a former Boeing employee said, “A hundred percent… this is the future …especially with ya’ll building the rockets. Count me in.”

Following the panel discussion, the Medal of Honor recipients enjoyed a lunch with Michoud leadership, a small contingency of Michoud veterans, and USCG personnel. Finishing out the day, the WW II staff and Medal of Honor recipients enjoyed a tour of America’s rocket factory while engaging MAF veterans along the tour route.

Keller, a Manufacturing Technical Solutions Inc. employee, works in communications at Michoud Assembly Facility.

› Back to Top

Greg Chavers Named Strategic Architect, Integration Manager of Marshall’s Science and Technology Office

Greg Chavers has been named as the strategic architect and integration manager in the Science and Technology Office at NASA’s Marshall Space Flight Center.

Chavers is returning to Marshall following his role as Mars Campaign Office director in the Moon to Mars Program Office, Exploration Systems Development Mission Directorate, at NASA Headquarters from April to November 2023. In that role, he led risk reduction and technology development of systems that will lead to human Mars missions. The technologies are being demonstrated on the ground, in Low Earth orbit on the International Space Station, and will be demonstrated on the Moon on future Artemis missions.

Greg Chavers, strategic architect and integration manager in the Science and Technology Office at NASA’s Marshall Space Flight Center.
Greg Chavers, strategic architect and integration manager in the Science and Technology Office at NASA’s Marshall Space Flight Center.
NASA

Before leading the Mars Campaign Office, Chavers was director of the Technical Integration Office at headquarters, starting in 2022. In that role, he led an office consisting of about 70 civil servants and more than 50 support contractors including senior leaders and executives that influence the investments of multi-billions of dollars across all human spaceflight destinations.

In 2020, he was appointed assistant deputy associate administrator for the Human Explorations Office, Systems Engineering and Integration, also at headquarters. From 2019-2020, Chavers was deputy program manager for HLS (Human Lander Systems) at Marshall. He was formulation manager at headquarters for HLS from 2018-2019. In 2012, Chavers was named Lander Technologies project manager.

He joined NASA in 1991 in the Systems Analysis and Integration Lab in Marshall’s Engineering Directorate. Chavers spent more than 20 years in the Engineering Directorate before transitioning to project management in Marshall’s flight projects office.

A native of Flomaton, Alabama, Chavers received a bachelor’s degree in aerospace from Auburn University, and a master’s in astrophysics and a doctorate in physics from the University of Alabama.

He and his wife of 33 years, Denise, live in Decatur. They have three children and two grandchildren.

› Back to Top

Rocket Exhaust on the Moon: NASA Supercomputers Reveal Surface Effects

Through Artemis, NASA plans to explore more of the Moon than ever before with human and robotic missions on the lunar surface. Because future landers will be larger and equipped with more powerful engines than the Apollo landers, mission risks associated with their operation during landing and liftoff is significantly greater. With the agency’s goal to establish a sustained human presence on the Moon, mission planners must understand how future landers interact with the lunar surface as they touch down in unexplored moonscapes.

Landing on the Moon is tricky. When missions fly crew and payloads to the lunar surface, spacecraft control their descent by firing rocket engines to counteract the Moon’s gravitational pull. This happens in an extreme environment that’s hard to replicate and test on Earth, namely, a combination of low gravity, no atmosphere, and the unique properties of lunar regolith – the layer of fine, loose dust and rock on the Moon’s surface.

Researchers at NASA’s Marshall Space Flight Center produced a simulation of the Apollo 12 lander engine plumes interacting with the lunar surface. This animation depicts the last half-minute of descent before engine cut-off, showing the predicted forces exerted by plumes on a flat computational surface. Known as shear stress, this is the amount of lateral, or sideways, force applied over a set area, and it is the leading cause of erosion as fluids flow across a surface. Here, the fluctuating radial patterns show the intensity of predicted shear stress. Lower shear stress is dark purple, and higher shear stress is yellow. (NASA/Patrick Moran and Andrew Weaver)

Each time a spacecraft lands or lifts off, its engines blast supersonic plumes of hot gas toward the surface and the intense forces kick up dust and eject rocks or other debris at high speeds. This can cause hazards like visual obstructions and dust clouds that can interfere with navigation and science instrumentation ­or cause damage to the lander and other nearby hardware and structures. Additionally, the plumes can erode the surface under the lander. Although craters were not formed for Apollo-scale landers, it is unknown how much the larger landers being planned for upcoming Artemis missions will erode the surface and whether they will rapidly cause cratering in the landing zone, posing a risk to the lander’s stability and astronauts aboard. 

To improve its understanding of plume-surface interactions, also known as PSI, researchers at NASA’s Marshall Space Flight Center have developed new software tools to predict PSI environments for NASA projects and missions, including the Human Landing SystemCommercial Lunar Payload Services initiative, and future Mars landers. These tools are already being used to predict cratering and visual obscuration on upcoming lunar missions and are helping NASA minimize risks to spacecraft and crew during future landed missions.

The team at Marshall recently produced a simulation of the Apollo 12 lander engine plumes interacting with the surface and the predicted erosion that closely matched what happened during landing. This animation depicts the last half-minute of descent before engine cut-off, showing the predicted forces exerted by plumes on a flat computational surface. Known as shear stress, this is the amount of lateral, or sideways, force applied over a set area, and it is the leading cause of erosion as fluids flow across a surface. Here, the fluctuating radial patterns show the intensity of predicted shear stress. Lower shear stress is dark purple, and higher shear stress is yellow. 

These simulations were run on the Pleaides supercomputer at the NASA Advanced Supercomputing facility at NASA’s Ames Research Center over several weeks of runtime, generating terabytes of data. 

NASA is showcasing 42 of the agency’s computational achievements at SC23, the international supercomputing conference, Nov. 12-17, in Denver, Colorado. For more technical information, visit: https://www.nas.nasa.gov/sc23.

Used for this research, the framework for the Descent Interpolated Gas Granular Erosion Model, or DIGGEM, was funded through NASA’s Small Business Innovation Research program within NASA’s STMD (Space Technology Mission Directorate) in Washington, and by the Stereo Cameras for Lunar Plume Surface Studies project that is managed by NASA’s Langley Research Center, also funded by STMD. The Loci/CHEM+DIGGEM code was further refined through direct support for flight projects within the Human Landing System program funded by NASA’s ESDMD (Exploration Systems Development Mission Directorate) in Washington as well as the Strategy and Architecture Office in ESDMD.

› Back to Top

I am Artemis: Eric Bordelon

As a child, Eric Bordelon had posters of the space shuttle in his room. Now, he takes photos and video for NASA as a multimedia specialist at NASA’s Michoud Assembly Facility. Known as NASA’s Rocket Factory, the site is where structures for NASA’s Apollo, shuttle, and now, NASA’s SLS (Space Launch System) rocket and Orion spacecraft are produced for Artemis missions.

Bordelon joined the NASA team in 2007 working with the external tank program for the space shuttle at Michoud. One of Bordelon’s favorite aspects of the job is being a part of the storytelling involving Michoud’s rich history, including documenting the facility transition from the Space Shuttle Program to the SLS Program.

Eric Bordelon, a multimedia specialist at NASA’s Michoud Assembly Facility in New Olreans, stands in front of a weld confidence article that forms part of the liquid oxygen tank for the SLS (Space Launch System) rocket’s future exploration upper stage.
Eric Bordelon, a multimedia specialist at NASA’s Michoud Assembly Facility, stands in front of a weld confidence article that forms part of the liquid oxygen tank for the SLS (Space Launch System) rocket’s future exploration upper stage.
NASA/Steven Seipel

“Many people don’t realize that Michoud has been around since the 40s and NASA has been here since the 60s,” Bordelon said. “A part of my job I really love is meeting and taking photos of the people working behind the scenes on the rocket. They’re turning bolts, welding, spraying foam, and are artists in their own way. One of my goals is to learn what each of these people do, so I can help tell their stories.”

Bordelon grew up in Destrehan, Louisiana, a suburb of New Orleans, and initially dreamed about being a sound recording engineer. He attended Loyola University New Orleans where he studied music business but soon after went to work for a print shop. During his time there, he met several photographers and soon picked up a new hobby: photography. He purchased his first digital camera in 2005 and started taking photos around New Orleans. When the job at NASA opened, he decided to see if that hobby could turn into a career.

Fast forward to 2022: That young boy with space posters on his wall grew up to be a part of the Artemis Generation. Though he had been capturing how rockets came together for years at Michoud, Bordelon had not seen a launch. That changed in 2022 with Artemis I. Not only did Bordelon watch his first launch at NASA’s Kennedy Space Center, but he also photographed and documented it for NASA.

“I watched this powerful rocket’s core stage be built at Michoud,” Bordelon said. “When I first saw the SLS rocket fully assembled with Orion atop, sitting on the launch pad ready for its inaugural flight for Artemis I, I had to pause, take a minute, and revel in just how amazing it was to be a small part of that.”

During Artemis I launch activities in 2022, he captured a stunning photo of the Sun behind the SLS rocket as a Florida storm rolled in. The photo – with its purple, pink, and orange hues – was selected for one of NASA’s “Picture of the Year” awards.

Read other I am Artemis features.

› Back to Top

Arkansas City Welcomes Marshall to Discuss 2024 Total Solar Eclipse

The contiguous United States will see only one total solar eclipse between now and the year 2044, and the citizens of Russellville, Arkansas, are ready.

On Monday, April 8, 2024, the Moon will pass between the Sun and Earth, providing an opportunity for those in the path of the Moon’s shadow to see a total solar eclipse, including the Sun’s outer atmosphere, or corona. With more than 100,000 tourists expected to visit Russellville for this rare experience, elected officials and industry leaders hosted a team of NASA experts from Marshall Space Flight Center to discuss educational outreach opportunities.

A crowd of people listen to a panel on stage discuss the 2024 eclipse.
More than 1,000 people attended a free solar eclipse presentation in Russellville, Arkansas, featuring experts from NASA’s Marshall Space Flight Center, Oct. 30.
Joshua Mashon

“Having NASA involved elevates the importance of this eclipse and amplifies the excitement for our community,” said Russellville Mayor Fred Teague. “We are thankful for the rich discussions and insight provided by NASA, and we look forward to hosting them again during the April eclipse.”

Due to the length of the eclipse totality in Russellville, NASA is planning to host part of the agency’s live television broadcast from the city, as well as conduct several scientific presentations and public outreach events for visitors. Additional factors for selecting Russellville included access to a large university, and proximity to Little Rock – the state’s capital – to engage media outlets and key stakeholders representing industry and academia.

The day-long Oct. 30 visit helped NASA learn how the city is preparing for the massive influx of tourists and news media personnel. Christie Graham, director of Russellville Tourism, explained the city’s commitment to the eclipse and how their planning processes started more than a year in advance.

“Months ago, we created our solar eclipse outreach committee, consisting of key stakeholders and thought leaders from across the city,” Graham said. “We’ve developed advanced communication and emergency management plans which will maximize our city’s resources and ensure everyone has a safe and memorable viewing experience.”

A man stands on stage in a black shirt holding a microphone.
Adam Kobelski, a solar astrophysicist with Marshall, shares tips to safely view a total solar eclipse. Many U.S. cities, including Russellville, Arkansas, are planning watch parties to view the April 2024 total solar eclipse.
Joshua Mashon

This visit also provided NASA an opportunity to share important heliophysics messaging with the public, including the next generation of scientists, engineers, and explorers. To learn how best to interact with local students, Marshall team members met with the Russellville School District Superintendent Ginni McDonald and Arkansas Tech University Acting Interim President Russell Jones.

“Leveraging the eclipse to provide quality learning opportunities will be a valuable and unforgettable experience for all,” McDonald said. “Our staff enjoyed discussing best strategies and look forward to sharing NASA educational content with our students.”

The team also discussed internship opportunities available for students to work at NASA centers across the nation, as well as how to get involved in NASA’s Artemis student challenges, sophisticated engineering design challenges available for middle school, high school, college and university students.

“Our university serves nearly 10,000 students, many pursuing a variety of STEM (science, technology, engineering, and math) degrees, including mechanical and electrical engineering, biological and computer sciences, nursing, and more,” Jones said. “It is important our students learn of the many unique opportunities available with NASA and how they can get involved.”

A Marshall Space Flight Scientist discusses the eclipse with people at the bottom of a stage.
Following the NASA public presentation about the April 2024 total solar eclipse, Kobelski chats with guests interested in learning more about NASA and heliophysics.
NASA/Christopher Blair

The agency’s visit concluded with a free public presentation at The Center for The Arts, where more than 1,000 attendees gained insight on the upcoming eclipse from Dr. Adam Kobelski, a solar astrophysicist at Marshall. Following the presentation, Marshall team members participated in a question-and-answer session with audience members of all ages.

Overall, the visit proved valuable for everyone with NASA team members remarking how enthusiastic and prepared both Russellville and the university are to support the eclipse event.

“It was a refreshing reminder of the public’s excitement for the science we conduct at NASA,” Kobelski said. “This experience established my overall confidence in their readiness to successfully host a quality viewing experience for everyone.”

The April eclipse is part of the Heliophysics Big Year, a global celebration of solar science and the Sun’s influence on Earth and the entire solar system. Everyone is encouraged to participate in solar science events such as watching solar eclipses, experiencing an aurora, participating in citizen science projects, and other fun Sun-related activities.

Cities across the nation are planning eclipse watch parties and other celebrations to commemorate the event. Weather permitting, the April 2024 total eclipse will be visible across 13 states, from Texas to New York.

Learn more about the 2024 eclipse.

› Back to Top

NASA Project Manager Helps Makes Impact in Southeast Asia with SERVIR

By Celine Smith

“As the seedlings were placed in the water, I felt a moment of déjà vu,” NASA scientist Tony Kim said. “I was taken back to when I was a child playing in similar fields in South Korea. It felt like I was meant to be there bringing space to village with satellite data.”

As he looked at rice fields while visiting Bhutan in September 2023, Kim savored the chance to do something meaningful across Southeast Asia and also in his native country. Having seen his childhood home turn from rice fields to a city, Kim knows the importance of sustainably using the land.

Tony Kim standing in front of a statue of a Whale on a large metal ball in South Korea's Songdo Central Park.
Tony Kim in South Korea’s Songdo Central Park standing in front of the statue “Cruising Together” created by Han Jeong-ho.
NASA/Tony Kim

In Bhutan, Kim and research partners are identifying rice paddies, estimating crop production, predicting shortages, and gauging the health of each harvest. He represents NASA as an international project manager for SERVIR, a partnership between NASA and USAID (U.S. Agency for International Development). It is a flagship program for Earth Action in NASA’s Earth Sciences Division, created in 2005 and rooted at NASA’s Marshall Space Flight Center.

SERVIR – which means “to serve” in Spanish – aids more than 50 nations in Asia, Africa, and Latin America in their efforts to address issues like food and water security, droughts, and the negative effects of climate change. SERVIR assists regional, national, and local institutions by using NASA satellite data, models, and products to manage resources sustainably.

NASA and USAID launched its SERVIR Mekong hub in 2015 at the ADPC(Asian Disaster Preparedness Center) in Bangkok, Thailand. The hub has been renamed SERVIR Southeast Asia as of this year. Other SERVIR hubs are in the Himalayas, West Africa, and the Amazon.

In addition to Bhutan, Kim also traveled back home to Seoul, South Korea – nearly 20 years since his last visit – to represent SERVIR Southeast Asia. “When I went back to Korea, I felt like a kid going back in time,” Kim said.

A group of people pose for a photo while at a conference.
Kim, back row fifth from the right, pictured with other attendees during the 2023 PEER (Partnerships for Enhanced Engagement in Research) Bhutan Symposium where Bhutanese scientists funded by USAID (U.S. Agency for International Development). present their research. Kim’s presentation was, “Advancing STEM in Bhutan through Increased Earth Observation Capacity.”
Royal Society for Protection of Nature Bhutan

The USAID RDMA (Regional Development Mission for Asia), which funds SERVIR Southeast Asia requested Kim’s presence for a meeting with Korean leaders. He discussed the value of NASA satellite data for environmental decision-making with the Korean Ministry of Environment and USAID RDMA, as well as opportunities for collaboration to solve water issues in the Indo-Pacific region and natural resource management in the Lower Mekong sub-region.

“Korea recovered from war in the 1950’s and developed very quickly as a powerhouse for technology products. Now Korea is helping other developing countries in Asia,” Kim said. “I am so proud of my home country and my adopted country (through NASA) helping people around the world to use satellite data in productive ways.”

Kim was eight years old in 1974 when his family moved from the southern edge of Seoul to the suburbs of Chicago. “Our parents immigrated to the United States to give us the opportunity to better ourselves through education,” he said. After high school, he went to the University of Illinois, where he pursued a degree in aeronautical and astronautical engineering. After graduation, he joined Marshall as a propulsion engineer, testing cryogenic fluid management techniques for advanced rocket propulsion systems.

From there, Kim’s 33-year NASA journey led him through a variety of roles. He served in 1992 as an operations controller for two Spacelab missions. In 1996, he led an operation team for the International Space Station Furnace Facility. From 1998-2001, he was a payload operations manager for space station science payloads.

Tony Kim stands for his portrait with an American Flag behind him.
Tony Kim, SERVIR Science Coordination Office project manager, International Flagship Program for Earth Action.
NASA

Marshall selected Kim to study at Auburn University in 1997, where he earned his master’s degree in material science. Afterwards, Kim attended the International Space University. Then, he led the ALTUS Cumulus Electrification Study, where an uninhabited aerial vehicle was used to study lightning during a thunderstorm.

Kim was selected in 2003 for the NASA Administrator’s Fellowship Program to teach a design engineering course at Texas A&M in Kingsville for one year. He spent the next year at NASA Headquarters in Washington. Kim returned to Marshall as a deep throttling rocket engine technology manager and then deputy manager for advanced nuclear thermal propulsion technology development.

In 2016, Kim served as deputy program manager for Centennial Challenges, NASA’s premier, large-prize program. Kim worked with Bradley University and Caterpillar in Peoria, Illinois, to conduct NASA’s 3D-printed Habitat Challenge.

“SERVIR was the only organization that could have taken me away from Centennial Challenges,” Kim said.

Kim and his wife, Sonya, live in Huntsville, Alabama, and have three grown children. He said the lessons his parents imparted remain as true today as when he was a small child.

“They taught us to work hard, keep your commitments, and care about what you do and the people you do it with,” he said. “If you do those things, you’ll find success.”Smith, a Media Fusion employee, supports the Marshall Office of Communications.

› Back to Top

Juno Finds Jupiter’s Winds Penetrate in Cylindrical Layers

Gravity data collected by NASA’s Juno mission indicates Jupiter’s atmospheric winds penetrate the planet in a cylindrical manner, parallel to its spin axis. A paper on the findings was recently published in the journal Nature Astronomy.

The violent nature of Jupiter’s roiling atmosphere has long been a source of fascination for astronomers and planetary scientists, and Juno has had a ringside seat to the goings-on since it entered orbit in 2016. During each of the spacecraft’s 55 to date, a suite of science instruments has peered below Jupiter’s turbulent cloud deck to uncover how the gas giant works from the inside out.

NASA’s Juno captured this view of Jupiter
NASA’s Juno captured this view of Jupiter during the mission’s 54th close flyby of the giant planet on Sept. 7. The image was made with raw data from the JunoCam instrument that was processed to enhance details in cloud features and colors.
Image data: NASA/JPL-Caltech/SwRI/MSSS Image processing by Tanya Oleksuik CC BY NC SA 3.0

One way the Juno mission learns about the planet’s interior is via radio science. Using NASA’s Deep Space Network antennas, scientists track the spacecraft’s radio signal as Juno flies past Jupiter at speeds near 130,000 mph, measuring tiny changes in its velocity – as small as 0.01 millimeter per second. Those changes are caused by variations in the planet’s gravity field, and by measuring them, the mission can essentially see into Jupiter’s atmosphere.

Such measurements have led to numerous discoveries, including the existence of a dilute core deep within Jupiter and the depth of the planet’s zones and belts, which extend from the cloud tops down approximately 1,860 miles.

To determine the location and cylindrical nature of the winds, the study’s authors applied a mathematical technique that models gravitational variations and surface elevations of rocky planets like Earth. At Jupiter, the technique can be used to accurately map winds at depth. Using the high-precision Juno data, the authors were able to generate a four-fold increase in the resolution over previous models created with data from NASA’s trailblazing Jovian explorers Voyager and Galileo.

“We applied a constraining technique developed for sparse data sets on terrestrial planets to process the Juno data,” said Ryan Park, a Juno scientist and lead of the mission’s gravity science investigation from NASA’s Jet Propulsion Laboratory. “This is the first time such a technique has been applied to an outer planet.”

The measurements of the gravity field matched a two-decade-old model that determined Jupiter’s powerful east-west zonal flows extend from the cloud-level white and red zones and belts inward. But the measurements also revealed that rather than extending in every direction like a radiating sphere, the zonal flows go inward, cylindrically, and are oriented along the direction of Jupiter’s rotation axis. How Jupiter’s deep atmospheric winds are structured has been in debated since the 1970s, and the Juno mission has now settled the debate.

This illustration depicts findings that Jupiter’s atmospheric winds
This illustration depicts findings that Jupiter’s atmospheric winds penetrate the planet in a cylindrical manner and parallel to its spin axis. The most dominant jet recorded by NASA’s Juno is shown in the cutout: The jet is at 21 degrees north latitude at cloud level, but 1,800 miles (3,000 kilometers) below that, it’s at 13 degrees north latitude.
Image credit: NASA/JPL-Caltech/SSI/SWRI/MSSS/ASI/ INAF/JIRAM/Björn Jónsson CC BY 3.0

“All 40 gravity coefficients measured by Juno matched our previous calculations of what we expect the gravity field to be if the winds penetrate inward on cylinders,” said Yohai Kaspi of the Weizmann Institute of Science in Israel, the study’s lead author and a Juno co-investigator. “When we realized all 40 numbers exactly match our calculations, it felt like winning the lottery.”

Along with bettering the current understanding of Jupiter’s internal structure and origin, the new gravity model application could be used to gain more insight into other planetary atmospheres.

Juno is currently in an extended mission. Along with flybys of Jupiter, the solar-powered spacecraft has completed a series of flybys of the planet’s icy moons Ganymede and Europa and is in the midst of several close flybys of Io. The Dec. 30 flyby of Io will be the closest to date, coming within about 930 miles of its volcano-festooned surface.

“As Juno’s journey progresses, we’re achieving scientific outcomes that truly define a new Jupiter and that likely are relevant for all giant planets, both within our solar system and beyond,” said Scott Bolton, the principal investigator of the Juno mission at the Southwest Research Institute in San Antonio. “The resolution of the newly determined gravity field is remarkably similar to the accuracy we estimated 20 years ago. It is great to see such agreement between our prediction and our results.”

NASA’s Jet Propulsion Laboratory, a division of Caltech, manages the Juno mission for the principal investigator, Scott J. Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center for the agency’s Science Mission Directorate. Lockheed Martin Space in Denver built and operates the spacecraft.

Read more about Juno.

› Back to Top

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      Unraveling the Mystery of the Real Star of Bethlehem / Christmas Star
    • By NASA
      X-ray: NASA/CXC/SAO; Optical: Clow, M.; Image Processing: NASA/CXC/SAO/L. Frattare and K. Arcand This new view of the “Christmas tree cluster” NGC 2264, released on Dec. 17, 2024, combines data from NASA’s Chandra X-ray Observatory and optical data from astrophotographer Michael Clow’s telescope in Arizona. Chandra data is represented in red, purple, blue, and white, while optical data is in green and violet.
      Located about 2,500 light-years from Earth, NGC 2264 is a cluster of young stars between one and five million years old. The stars are seen here as blue and white lights surrounded by swirls of gas—the “pine needles” of the tree—with green representing light in the visible spectrum.
      Read more about the “Christmas tree cluster” – and the “cosmic wreath.”
      Image credit: X-ray: NASA/CXC/SAO; Optical: Clow, M.; Image Processing: NASA/CXC/SAO/L. Frattare and K. Arcand
      View the full article
    • By European Space Agency
      Image: With the festive season approaching, even Earth-observing satellites are getting into the spirit, capturing a stunning compilation of European cities that resemble stars. View the full article
    • By NASA
      NASA’s Human Landing System (HLS) will transport the next astronauts that land on the Moon, including the first woman and first person of color, beginning with Artemis III. For safety and mission success, the landers and other equipment in development for NASA’s Artemis campaign must work reliably in the harshest of environments.
      The Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) lab at NASA’s Marshall Space Flight Center in Huntsville, Alabama, provides engineers with thermal analysis of materials that may be a prototype or in an early developmental stage using a vacuum chamber, back left, and a conduction chamber, right. NASA/Ken Hall Engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, are currently testing how well prototype insulation for SpaceX’s Starship HLS will insulate interior environments, including propellant storage tanks and the crew cabin. Starship HLS will land astronauts on the lunar surface during Artemis III and Artemis IV.
      Marshall’s Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) laboratory provides the resources and tools for an early, quick-check evaluation of insulation materials destined for Artemis deep space missions.
      “Marshall’s HI-TTeMP lab gives us a key testing capability to help determine how well the current materials being designed for vehicles like SpaceX’s orbital propellant storage depot and Starship HLS, will insulate the liquid oxygen and methane propellants,” said HLS chief engineer Rene Ortega. “By using this lab and the expertise provided by the thermal engineers at Marshall, we are gaining valuable feedback earlier in the design and development process that will provide additional information before qualifying hardware for deep space missions.”
      A peek inside the conductive test chamber at NASA Marshall’s HI-TTeMP lab where thermal engineers design, set up, execute, and analyze materials destined for deep space to better understand how they will perform in the cold near-vacuum of space. NASA/Ken Hall On the Moon, spaceflight hardware like Starship HLS will face extreme temperatures. On the Moon’s south pole during lunar night, temperatures can plummet to -370 degrees Fahrenheit (-223 degrees Celsius). Elsewhere in deep space temperatures can range from roughly 250 degrees Fahrenheit (120 degrees Celsius) in direct sunlight to just above absolute zero in the shadows.
      There are two primary means of managing thermal conditions: active and passive. Passive thermal controls include materials such as insulation, white paint, thermal blankets, and reflective metals. Engineers can also design operational controls, such as pointing thermally sensitive areas of a spacecraft away from direct sunlight, to help manage extreme thermal conditions. Active thermal control measures that could be used include radiators or cryogenic coolers.
      Engineers use two vacuum test chambers in the lab to simulate the heat transfer effects of the deep space environment and to evaluate the thermal properties of the materials. One chamber is used to understand radiant heat, which directly warms an object in its path, such as when heat from the Sun shines on it. The other test chamber evaluates conduction by isolating and measuring its heat transfer paths.
      NASA engineers working in the HI-TTeMP lab not only design, set up, and run tests, they also provide insight and expertise in thermal engineering to assist NASA’s industry partners, such as SpaceX and other organizations, in validating concepts and models, or suggesting changes to designs. The lab is able to rapidly test and evaluate design updates or iterations.
      NASA’s HLS Program, managed by NASA Marshall, is charged with safely landing astronauts on the Moon as part of Artemis. NASA has awarded contracts to SpaceX for landing services for Artemis III and IV and to Blue Origin for Artemis V. Both landing services providers plan to transfer super-cold propellant in space to send landers to the Moon with full tanks.
      With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the HLS, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      For more on HLS, visit: 
      https://www.nasa.gov/humans-in-space/human-landing-system
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      Explore More
      8 min read Preguntas frecuentes: La verdadera historia del cuidado de la salud de los astronautas en el espacio
      Article 1 day ago 6 min read FAQ: The Real Story About Astronaut Health Care in Space
      Article 1 day ago 3 min read Ready, Set, Action! Our Sun is the Star in Dazzling Simulation
      Article 1 day ago
      r
      View the full article
    • By NASA
      23 Min Read The Marshall Star for October 30, 2024
      Editor’s Note: Starting Nov. 4, the Office of Communications at NASA’s Marshall Space Flight Center will no longer publish the Marshall Star on nasa.gov. The last public issue will be Oct. 30. To continue reading Marshall news, visit nasa.gov/marshall.
      Marshall Team Members View Progress Toward Future Artemis Flights
      Blake Stewart, lead of the Thrust Vector Control Test Laboratory inside Building 4205 at NASA’s Marshall Space Flight Center, explains how his team tests the mechanisms that steer engine and booster nozzles of NASA’s SLS (Space Launch System) rocket to a group of Marshall team members Oct. 24. The employees were some of the more than 500 team members who viewed progress toward future Artemis flights on bus tours offered by the SLS Program. Building 4205 is also home to the Propulsion Research and Development Laboratory that includes 26 world-class labs and support areas that help the agency’s ambitious goals for space exploration. The Software Integration Lab and the Software Integration Test Facility are among the labs inside supporting SLS that employees visited on the tour. (NASA/Sam Lott)
      A group of Marshall team members gather below the development test article for the universal stage adapter that will be used on the second variant of SLS, called Block 1B. The universal stage adapter is located inside one of the high bays in building 4619. The universal stage adapter will connect the Orion spacecraft to the SLS exploration upper stage. With the exploration upper stage, which will be powered by four RL10-C3 engines, SLS will be capable of lifting more than 105 metric tons (231,000 pounds) from Earth’s surface. This extra mass capability enables SLS to send multiple large payloads to the Moon on the same launch. (NASA/Sam Lott)
      Marshall team members view the Orion Stage Adapters for the Artemis II and Artemis III test flights inside Building 4708. The Orion Stage Adapter, built at Marshall, connects the rocket’s interim cryogenic propulsion stage to the Orion spacecraft. The Orion Stage Adapter for Artemis II is complete and ready to be shipped to Kennedy Space Center. The Oct. 24 tours featured four stops that also included opportunities to see the Artemis III launch vehicle stage adapter, and the development test article for the SLS Block 1B universal stage adapter that will begin flying on Artemis IV. Additionally, programs and offices such as the Human Landing Systems Development Office and the Science and Technology Office hosted exhibits in the lobby of Building 4220, where employees gathered for the tours. (NASA/Jonathan Deal)
      › Back to Top
      Center Commemorates National Disability Employment Awareness Month
      By Serena Whitfield
      In conjunction with National Disability Employment Awareness Month, NASA’s Marshall Space Flight Center held anagencywide virtual event hosted by the Office of Diversity and Equal Opportunity on Oct. 24.
      Marshall team members watched the Webex event in Building 4221.
      From left, Tora Henry, director of the Office of Diversity and Equal Opportunity at Marshall, Chip Dobbs, supply management specialist at Marshall, and Marshall Associate Director Roger Baird pause for a photo following the Oct. 24 virtual event the center hosted as part of National Disability Awareness Month. NASA/Serena Whitfield In alignment with the month’s national theme, “Access to Good Jobs for All,” the program highlighted the perspectives of people with disabilities in the workplace as they navigate the work lifecycle – from applying, to onboarding, career growth and advancement, and day-to-day engagements.
      The event began with Marshall Associate Director Roger Baird welcoming NASA team members.
      “NASA is dedicated to inclusive hiring practices and providing pathways for good jobs and career success for all employees, including workers with disabilities,” Baird said. “Some ways we do this is through targeted recruitment of qualified individuals with disabilities through accessible vacancy announcements, outreach to students with disabilities, and community partnerships.”
      NASA also utilizes Schedule A Authority, a non-competitive Direct Hiring Authority to hire people with disabilities without competition.
      Baird introduced event moderator Joyce Meier, logistics manager at Marshall, who welcomed panelists Casey Denham, Kathy Clark, Paul Spann, and Paul Sullivan, all NASA team members. The panelists from the disability community discussed their work lifecycles, lessons learned in the workplace, and shared a demonstration on colorblindness and its impact.
      Denham discussed some of the best practices for onboarding employees with neurodiversity, a term used to describe people whose brains develop or work differently than the typical brain.
      Marshall team members watch the agencywide virtual event commemorating National Disability Employment Awareness Month. NASA/Serena Whitfield Clark talked about what can be done to continue raising awareness and advocating for disability rights. She said NASA empowers its workforce with knowledge so they can be informed allies to team members with disabilities and foster a safe and inclusive working environment. 
      Spann gave insight into practical steps employers can take to accommodate candidates with deafness, and Sullivan spoke about some key considerations NASA managers should keep in mind to make the job application process more accessible to candidates with low vision.
      Guest speaker Chip Dobbs, supply management specialist at Marshall, talked about his personal experiences with being deaf. Dobbs has worked at NASA for 29 years and said he has never let his disability hold him back, but instead uses it as a gateway to inspire and connect with others.
      The event ended with closing remarks from Tora Henry, director of the Office of Diversity and Equal Opportunity at Marshall. The virtual event placed importance on planning for NASA’s future by promoting equality and addressing the barriers people with disabilities face in the workplace. 
      “As we celebrate National Disability Employment Awareness Month, keep in mind that NASA’s mission of exploring the unknown and pushing the boundaries of human potential requires the contributions of every mind, skill set, and perspective,” Baird said. “Our commitment to inclusivity ensures that no talent goes untapped, and no idea goes unheard because together, we’re not just reaching for the stars, we’re showing the world what’s possible when everyone has a seat at the table.”
      A recording of the event is available here. Learn more about NASA’s agencywide resources for individuals with disabilities as well as the agency’s Disability Employment Program.
      Whitfield is an intern supporting the Marshall Office of Communications.
      › Back to Top
      Farley Davis Receives NASA’s Blue Marble Award
      By Wayne Smith
      Farley Davis, manager of the Environmental Engineering and Occupational Health Office at NASA’s Marshall Space Flight Center, has received a 2024 Blue Marble Award from the agency.
      NASA’s Office of Strategic Infrastructure, Environmental Management Division presented the 2024 Blue Marble Awards on Oct. 8 at the agency’s Johnson Space Center. The Blue Marble Awards Program recognizes teams and individuals demonstrating exceptional environmental leadership in support of NASA’s missions and goals. In 2024, the awards included five categories: the Director’s Award, Environmental Quality, Excellence in Energy and Water Management, Excellence in Resilience or Climate Change Adaptation, and new this year: Excellence in Site Remediation. 
      Farley Davis, center, manager of the Environmental Engineering and Occupational Health Office at NASA’s Marshall Space Flight Center, with his NASA Blue Marble Award. Joining him, from left, are Joel Carney, assistant administrator, Strategic Infrastructure; Denise Thaller, deputy assistant administrator, Strategic Infrastructure; Charlotte Betrand, director, Environmental Management; and June Malone, director, Office of Center Operations at Marshall. NASA Davis was recognized for “exceptional leadership and outstanding commitment above and beyond individual job responsibilities, to assist Marshall and the agency in enabling environmentally sound mission success.”
      “The award was unexpected, and I am very thankful to receive the Environmental Management Director’s Blue Marble Award,” said Davis, who has been at Marshall for 33 years. “Collectively, Marshall’s environmental engineering team has made this award possible with their diligent support for many years keeping the center’s environmental compliance at the forefront. I will cherish the award for the rest of my life.”
      June Malone, director of the Office of Center Operations at Marshall, credited Davis for his environmental leadership and mentoring team members.
      “Farley’s attitude of professionalism and personal responsibility for the development and implementation of well-grounded environmental programs has increased Marshall’s sustainability and prevented pollution,” Malone said. “His tireless leadership has resulted in compliance with federal, state, and local environmental laws and regulations, and his creative solution-oriented approaches to environmental stewardship have restored contaminated areas.”
      Charlotte Bertrand, director of the Environmental Management Division at NASA Headquarters, said it was an honor to select Davis for the 2024 Blue Marble Director’s Award.
      “Farley’s incredibly distinguished career with NASA reflects the award’s intention to recognize exceptional leadership by an individual in assisting the agency in enabling environmentally sound mission success,” Bertrand said.
      Please see the awards program for additional information.
      Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.
      › Back to Top
      Take 5 with Brooke Rhodes
      By Wayne Smith
      When human exploration of Mars becomes a reality and more than just the stuff of science fiction, Brooke Rhodes will be eager to investigate what astronauts discover on the Red Planet.
      From listening to her talk about her work as an engineer at NASA’s Marshall Space Flight Center, it’s easy to grasp her excitement about the future of human space exploration and NASA’s Moon to Mars architecture.
      Brooke Rhodes is currently on detail as the branch chief of the Avionics and Software Ground Systems Test Branch at NASA’s Marshall Space Flight Center. Working in the Instrument Development, Integration and Test Branch for the past seven years, she’s been responsible for the integration and testing of International Space Station payloads. NASA “I can’t wait for the Mars rovers to have some human company,” said Rhodes, who recently began a detail as the chief of Marshall’s Avionics and Software Ground Systems Test Branch. “I need to know if we can grow Mark Watney (of The Martian movie fame) quantities of potatoes up there. Everything we do to prepare to return humans to the Moon and establish a presence in deep space is building toward putting boots on Mars. It’s an honor and a privilege to be even a small part of it.”
      Rhodes also appreciates the responsibility she takes on in any form in NASA’s exploration missions to benefit humanity. After all, she has worked on hardware for the International Space Station and has had supporting roles for the Mars Ascent Vehicle and Artemis missions.
      “We at Marshall hold an incredible amount of responsibility: responsibility for the welfare of the crew on the space station, responsibility for the welfare of the crew on the Artemis missions, and even the welfare of humanity through the responsibility we have for science on the station and elsewhere,” said Rhodes, who is from Petal, Mississippi, and has worked at Marshall for seven years. “When your missions are as critical as ours, it’s nearly impossible to not be motivated.”
      Now, on to Mars.
      Question: What is your position and what are your primary responsibilities?
      Rhodes: I recently began the detail as the branch chief of the Avionics and Software Ground Systems Test Branch, ES53. Our branch is primarily responsible for the development of hardware-in-the-loop and software development facilities for the Artemis and MAV (Mars Ascent Vehicle) missions. My home organization is ES61, the Instrument Development, Integration and Test Branch, where I’ve been responsible for the integration and testing of International Space Station payloads for the past several years.
      Rhodes with a box of sample cartridge assemblies (SCAs) headed for the International Space Station. Photo courtesy of Brooke Rhodes Question: What has been the proudest moment of your career and why?
      Rhodes: One really cool moment that sticks out was the first time I saw hardware I had been responsible for being used in space. I spent several years as the integration and test lead of the Materials Science Research Rack (MSRR) Sample Cartridge Assemblies (SCAs) and we shipped our first batch of SCAs to the space station in 2018. That shipment was the culmination of years of intense effort and teamwork, so to see them onboard and about to enable materials science was an incredible feeling. There was a moment in particular that felt a bit surreal: prior to our SCA shipment the crew discovered they were missing a couple of fasteners from the onboard furnace, so we had those shipped to us from Europe and I packed them into the SCA flight foam before they shipped to the launch site. The next time I saw those fasteners they were being held up to a camera by one of the crew members, asking if those were the ones they needed for the furnace. Putting fasteners into foam didn’t take much effort, but what it represented was much bigger: being a small part of an international effort to enable science off the Earth, for the Earth, was an incredible moment I’ll carry with me for the rest of my career.
      Question: Who or what inspired you to pursue an education/career that led you to NASA and Marshall?
      Rhodes: I had a couple of lightbulb moments my junior year of high school that eventually set me on my current career path. I very specifically recall sitting in my physics I class and learning how to calculate the planetary motion of Jupiter and thinking I had never learned about anything cooler. Even then, though, NASA didn’t really enter my thoughts. Growing up, working for NASA didn’t even occur to me as something people could actually do – being a “rocket scientist” was just an abstract concept people threw around to indicate something was difficult.
      That changed later when the same teacher who had been teaching us planetary motion took us on a field trip to Kennedy Space Center. The tour guide showing us around the Vehicle Assembly Building was a young employee who said he had majored in aerospace engineering at the University of Tennessee. That was the second lightbulb moment: here was a young person from the Southeast, just like me, who had done something tangible in order to work for NASA. That seemed easy enough, so I decided to major in aerospace engineering at Mississippi State and one day work for NASA. That turned out to not be easy, but definitely doable.
      While at Mississippi State, I was able to complete three NASA internships, one at the Jet Propulsion Laboratory and two at Marshall. Eventually, I was hired on full-time at NASA’s Johnson Space Center, but wound up making my way back to Marshall, where I’ve been ever since. There’s no place on the planet better for enthusiasts of both aerospace engineering and football.
      NASA astronaut Ricky Arnold, a space station crew member for Expedition 56, holds up a fastener for the Materials Science Laboratory, which Rhodes packed for shipment to the orbiting laboratory in 2018. “Putting fasteners into foam didn’t take much effort, but what it represented was much bigger: being a small part of an international effort to enable science off the Earth, for the Earth, was an incredible moment I’ll carry with me for the rest of my career.” Photo courtesy of Brooke Rhodes Interestingly, my physics I teacher’s name was Mrs. Rhodes, and I used to joke with my classmates that I wanted to be Mrs. Rhodes when I grew up. I didn’t actually mean that literally, but then I married Matthew Rhodes and did, indeed, become Mrs. Rhodes.
      Question: What advice do you have for employees early in their NASA career or those in new leadership roles?
      Rhodes: Scary is good. If you aren’t stepping out of your comfort zone you probably aren’t growing, and if you’re experiencing imposter syndrome, you’re probably the right person for the job.
      Question: What do you enjoy doing with your time while away from work?
      Rhodes: While away from work I tend to invest too much of my mental wellbeing into football. To recover from the stresses of work and my football teams being terrible, I like to explore National Parks. The U.S. has some of the most diverse scenery anywhere in the world, and I love getting outside and exploring it.
      Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.
      › Back to Top
      Planets Beware: NASA Unburies Danger Zones of Star Cluster
      Most stars form in collections, called clusters or associations, that include very massive stars. These giant stars send out large amounts of high-energy radiation, which can disrupt relatively fragile disks of dust and gas that are in the process of coalescing to form new planets.
      A team of astronomers used NASA’s Chandra X-ray Observatory, in combination with ultraviolet, optical, and infrared data, to show where some of the most treacherous places in a star cluster may be, where planets’ chances to form are diminished.
      In this new composite image, Chandra data (purple) shows the diffuse X-ray emission and young stars in Cygnus OB2, and infrared data from NASA’s now-retired Spitzer Space Telescope (red, green, blue, and cyan) reveals young stars and the cooler dust and gas throughout the region.X-ray: NASA/CXC/SAO/J. Drake et al, IR: NASA/JPL-Caltech/Spitzer; Image Processing: NASA/CXC/SAO/N. Wolk The target of the observations was Cygnus OB2, which is the nearest large cluster of stars to our Sun – at a distance of about 4,600 light-years. The cluster contains hundreds of massive stars as well as thousands of lower-mass stars. The team used long Chandra observations pointing at different regions of Cygnus OB2, and the resulting set of images were then stitched together into one large image.
      The deep Chandra observations mapped out the diffuse X-ray glow in between the stars, and they also provided an inventory of the young stars in the cluster. This inventory was combined with others using optical and infrared data to create the best census of young stars in the cluster.
      In a new composite image, the Chandra data (purple) shows the diffuse X-ray emission and young stars in Cygnus OB2, and infrared data from NASA’s now-retired Spitzer Space Telescope (red, green, blue, and cyan) reveals young stars and the cooler dust and gas throughout the region.
      In these crowded stellar environments, copious amounts of high-energy radiation produced by stars and planets are present. Together, X-rays and intense ultraviolet light can have a devastating impact on planetary disks and systems in the process of forming.
      Planet-forming disks around stars naturally fade away over time. Some of the disk falls onto the star and some is heated up by X-ray and ultraviolet radiation from the star and evaporates in a wind. The latter process, known as “photoevaporation,” usually takes between five and 10 million years with average-sized stars before the disk disappears. If massive stars, which produce the most X-ray and ultraviolet radiation, are nearby, this process can be accelerated.
      The researchers using this data found clear evidence that planet-forming disks around stars indeed disappear much faster when they are close to massive stars producing a lot of high-energy radiation. The disks also disappear more quickly in regions where the stars are more closely packed together.
      For regions of Cygnus OB2 with less high-energy radiation and lower numbers of stars, the fraction of young stars with disks is about 40%. For regions with more high-energy radiation and higher numbers of stars, the fraction is about 18%. The strongest effect – meaning the worst place to be for a would-be planetary system – is within about 1.6 light-years of the most massive stars in the cluster.
      A separate study by the same team examined the properties of the diffuse X-ray emission in the cluster. They found that the higher-energy diffuse emission comes from areas where winds of gas blowing away from massive stars have collided with each other. This causes the gas to become hotter and produce X-rays. The less energetic emission probably comes from gas in the cluster colliding with gas surrounding the cluster.
      Two separate papers describing the Chandra data of Cygnus OB2 are available. The paper about the planetary danger zones, led by Mario Giuseppe Guarcello (National Institute for Astrophysics in Palermo, Italy), appeared in the November 2023 issue of the Astrophysical Journal Supplement Series, and is available here. The paper about the diffuse emission, led by Juan Facundo Albacete-Colombo (University of Rio Negro in Argentina) was published in the same issue of Astrophysical Journal Supplement, and is available here.
      NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      NASA’s Jet Propulsion Laboratory (JPL) managed the Spitzer Space Telescope mission for the agency’s Science Mission Directorate until the mission was retired in January 2020. Science operations were conducted at the Spitzer Science Center at Caltech. Spacecraft operations were based at Lockheed Martin Space in Littleton, Colorado. Data are archived at the Infrared Science Archive operated by IPAC at Caltech. Caltech manages JPL for NASA.
      › Back to Top
      NASA Begins New Deployable Solar Array Tech Demo on Pathfinder Spacecraft
      NASA recently evaluated initial flight data and imagery from Pathfinder Technology Demonstrator-4 (PTD-4), confirming proper checkout of the spacecraft’s systems including its on-board electronics as well as the payload’s support systems such as the small onboard camera. Shown is a test image of Earth taken by the payload camera, shortly after PTD-4 reached orbit. This camera will continue photographing the technology demonstration during the mission. 
      A test image of Earth taken by NASA’s Pathfinder Technology Demonstrator-4’s onboard camera. The camera will capture images of the Lightweight Integrated Solar Array and anTenna upon deployment.NASA Payload operations are now underway for the primary objective of the PTD-4 mission – the demonstration of a new power and communications technology for future spacecraft. The payload, a deployable solar array with an integrated antenna called the Lightweight Integrated Solar Array and anTenna, or LISA-T, has initiated deployment of its central boom structure. The boom supports four solar power and communication arrays, also called petals. Releasing the central boom pushes the still-stowed petals nearly three feet away from the spacecraft bus. The mission team currently is working through an initial challenge to get LISA-T’s central boom to fully extend before unfolding the petals and beginning its power generation and communication operations.
      Small spacecraft on deep space missions require more electrical power than what is currently offered by existing technology. The four-petal solar array of LISA-T is a thin-film solar array that offers lower mass, lower stowed volume, and three times more power per mass and volume allocation than current solar arrays. The in-orbit technology demonstration includes deployment, operation, and environmental survivability of the thin-film solar array.  
      “The LISA-T experiment is an opportunity for NASA and the small spacecraft community to advance the packaging, deployment, and operation of thin-film, fully flexible solar and antenna arrays in space. The thin-film arrays will vastly improve power generation and communication capabilities throughout many different mission applications,” said John Carr, deputy center chief technologist at NASA’s Marshall Space Flight Center. “These capabilities are critical for achieving higher value science alongside the exploration of deep space with small spacecraft.”
      NASA teams are testing a key technology demonstration known as LISA-T, short for the Lightweight Integrated Solar Array and anTenna. It’s a super compact, stowable, thin-film solar array that when fully deployed in space, offers both a power generation and communication capability for small spacecraft. LISA-T’s orbital flight test is part of the Pathfinder Technology Demonstrator series of missions. (NASA) The Pathfinder Technology Demonstration series of missions leverages a commercial platform which serves to test innovative technologies to increase the capability of small spacecraft. Deploying LISA-T’s thin solar array in the harsh environment of space presents inherent challenges such as deploying large highly flexible non-metallic structures with high area to mass ratios. Performing experiments such as LISA-T on a smaller, lower-cost spacecraft allows NASA the opportunity to take manageable risk with high probability of great return. The LISA-T experiment aims to enable future deep space missions with the ability to acquire and communicate data through improved power generation and communication capabilities on the same integrated array.
      The PTD-4 small spacecraft is hosting the in-orbit technology demonstration called LISA-T. The PTD-4 spacecraft deployed into low Earth orbit from SpaceX’s Transporter-11 rocket, which launched from Space Launch Complex 4E at Vandenberg Space Force Base in California on Aug. 16. Marshall designed and built the LISA-T technology as well as LISA-T’s supporting avionics system. NASA’s Small Spacecraft Technology program, based at NASA’s Ames Research Center and led by the agency’s Space Technology Mission Directorate, funds and manages the PTD-4 mission as well as the overall Pathfinder Technology Demonstration mission series. Terran Orbital Corporation of Irvine, California, developed and built the PTD-4 spacecraft bus, named Triumph.
      › Back to Top
      NASA SPoRT’s Streamflow-AI Helps with Flood Preparedness in Texas
      By Paola Pinto
      For more than two decades, the NASA Short-term Prediction Research and Transition Center (SPoRT) within the NASA Earth Science Office at Marshall Space Flight Center has been at the forefront of developing and maintaining decision-making tools for meteorological predictions.
      This image represents the first instance of predictions getting into moderate flooding in Pine Island Bayou. At 14 feet (start of the moderate flooding category), Cooks Lake Road becomes unsafe for most vehicles. NASA Jonathan Brazzell, a service hydrologist at the National Weather Service (NWS) office in Lake Charles, Louisiana, highlighted a recent example of SPoRT’s impact while he was doing forecasting for Texas streams.
      Brazzell, who manages the South Texas and South Louisiana regions, emphasized the practical applications and significant impacts of the Machine Learning model developed by NASA SPoRT to predict future stream heights, known as the SPoRT Streamflow A.I. During a heavy rainfall event this past spring, he noted the challenge of forecasting flooding beyond 48 hours. SPoRT has worked closely with the NWS offices to develop a machine learning tool capable of predicting river flooding beyond two days and powered by the SPoRT Land Information System.
      “Previously, we relied on actual gauge information and risk assessments based on predicted precipitation,” Brazzell said. “Now, with this machine learning, we have a modeling tool that provides a much-needed predictive capability.”
      During forecasted periods of heavy precipitation from early to mid-May, Brazzell monitored potential flooding events and their magnitude using NASA SPoRT’s Streamflow-AI, which provided essential support to the Pine Island Bayou and Big Cow Creek communities in south Texas.
      Streamflow A.I. enabled local authorities to provide advance notice, allowing residents to prepare adequately for the event. Due to the benefit of three to seven-day flood stage predictions, the accurate forecasts helped county officials decide on road closures and evacuation advisories; community officials advised residents to gather a seven-day supply of necessities and relocate their vehicles, minimizing disruption and potential damage.
      Brazzell highlighted specific instances where the machine learning outputs were critical. For example, during the event that peaked around May 6, Streamflow A.I. accurately predicted the rise in stream height, allowing for timely road closures and advisories. These predictions were shared with county officials and were pivotal in their decision-making process.
      This image shows the water levels after rainfall and predicts a moderate stream height in Pine Island Bayou. NASA Brazzell shared that integrating SPoRT’s machine learning capabilities with their existing tools, such as flood risk mapping, proved invaluable. Although the machine learning outputs had been operational for almost two years after Hurricane Harvey, this season has provided their first significant applications in real-time scenarios due to persistent conditions of below-normal precipitation and ongoing drought.
      He also mentioned the broader applications of Streamflow A.I., including its potential use in other sites beyond those currently being monitored. He expressed interest in expanding the use of machine learning stream height outputs to additional locations, citing the successful application in current sites as a compelling reason for broader implementation.
      NASA SPoRT users’ experiences emphasize how crucial advanced prediction technologies are in hydrometeorology and emergency management operations. Based on Brazzell’s example, it is reasonable to say that the product’s ability to provide accurate, timely data greatly improves decision-making processes and ensures public safety. The partnership between NASA SPoRT and operational agencies like NOAA/NWS and county response teams demonstrates how research and operations can be seamlessly integrated into everyday practices, making a tangible difference in communities vulnerable to high-impact events.
      As the Streamflow A.I. product continues to evolve and expand its applications, it holds significant promise for improving disaster preparedness and response efforts across various regions that experience different types of flooding events.
      The Streamflow-AI product provides a 7-day river height or stage forecasts at select gauges across the south/eastern U.S. You can find the SPoRT training item on Streamflow-AI here.
      Pinto is a research associate at the University of Alabama in Huntsville, specializing in communications and user engagement for NASA SPoRT.
      › Back to Top
      Agency Awards Custodial, Refuse Collection Contract
      NASA has selected All Native Synergies Company of Winnebego, Nebraska, to provide custodial and refuse collection services at the agency’s Marshall Space Flight Center.
      The Custodial and Refuse Collection Services III contract is a firm-fixed-price contract with an indefinite-delivery/indefinite-quantity provision. Its maximum potential value is approximately $33.5 million. The performance period began Oct. 23 and will extend four and a half years, with a one-year base period, four one-year options, and a six-month extension.
      This critical service contract provides custodial and refuse collection services for all Marshall facilities. Work under the contract includes floor maintenance, including elevators; trash removal; cleaning drinking fountains and restrooms; sweeping, mopping, and cleaning building entrances and stairways.
      › Back to Top
      View the full article
  • Check out these Videos

×
×
  • Create New...