Jump to content

Modeling Turbofan Engines to Understand Aircraft Noise


NASA

Recommended Posts

  • Publishers

2 min read

Modeling Turbofan Engines to Understand Aircraft Noise

This simulation shows the complex flow of air particles through the Source Diagnostic Test turbofan engine. By simulating the fan’s rotations, researchers can target design innovations and modifications to reduce the impact of fan noise on people living and working in areas with heavy air traffic. Credit: Timothy Sandstrom, Luis Fernandes/NASA Ames Research Center

Airplane engines are loud – just ask anyone who lives near an airport. Increased air traffic from next-generation aircraft has the potential for even more disruptive noise. Researchers and engineers at NASA are working to reduce noise generated by turbofan engines, but each new design requires certification and testing to understand how much noise it will generate during takeoff and approach.  

Using the Pleiades supercomputer at the NASA Advanced Supercomputing facility at the agency’s Ames Research Center in California’s Silicon Valley, researchers have developed software that can model different engine configurations in a more timely and economic manner.  

Generating accurate simulations of rotating geometry, like a turbofan, requires time-consuming computations. Using NASA’s Launch, Ascent, and Vehicle Aerodynamics software, the team used a sliding mesh technique, which reduces the amount of runtime mapping procedures by analytically matching stationary and rotating points on the modeling grid.

The simulation is based on the Source Diagnostic Test fan, a simplified turbofan engine model used for physical tests. By using a simulation instead of a physical model, testing will require less time and expense, opening the door to easier testing and certification of turbofan engine designs that lower fuel burn and reduce emissions without increased noise levels. 

NASA is showcasing 42 of the agency’s computational achievements at SC23, the international supercomputing conference, Nov. 12-17, 2023, in Denver, Colorado. For more technical information, visit: ​

https://www.nas.nasa.gov/sc23.

For news media:

Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.

About the Author

Tara Friesen

Tara Friesen

Share

Details

Last Updated
Nov 15, 2023
Keep Exploring

Discover More Topics From NASA

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A laser powder directed energy deposition (LP-DED) 3D printer at RPM Innovations’ facility additively manufactures a large-scale aerospike rocket engine nozzle from one of Elementum 3D’s specialized, 3D-printable aluminum alloys.RPM Innovations Inc. In the fall of 2023, NASA hot fire tested an aluminum 3D printed rocket engine nozzle. Aluminum is not typically used for 3D printing because the process causes it to crack, and its low melting point makes it a challenging material for rocket engines. Yet the test was a success.

      Printing aluminum engine parts could save significant time, money, and weight for future spacecraft. Elementum 3D Inc., a partner on the project, is now making those benefits available to the commercial space industry and beyond.

      The hot fire test was the culmination of a relationship between NASA and Elementum that began shortly after the company was founded in 2014 to make more materials available for 3D printing. Based in Erie, Colorado, the company infuses metal alloys with particles of other materials to alter their properties and make them amenable to additive manufacturing. This became the basis of Elementum’s Reactive Additive Manufacturing (RAM) process.
      A rocket engine nozzle 3D printed from Elementum 3D’s A6061 RAM2 aluminum alloy undergoes hot fire testing at Marshall Space Flight Center. Credit: NASA NASA adopted the technology, qualifying the RAM version of a common aluminum alloy for 3D printing. The agency then awarded funding to Elementum 3D and another company to print the experimental Broadsword rocket engine, demonstrating the concept’s viability.

      Meanwhile, a team at NASA’s Marshall Space Flight Center in Huntsville, Alabama, was working to adapt an emerging technology to print larger engines. In 2021, Marshall awarded an Announcement of Collaborative Opportunity to Elementum 3D to modify an aluminum alloy for printing in what became the Reactive Additive Manufacturing for the Fourth Industrial Revolution project.

      The project also made a commonly used aluminum alloy available for large-scale 3D printing. It is already used in large satellite components and could be implemented into microchip manufacturing equipment, Formula 1 race car parts, and more. The alloy modified for the Broadsword engine is already turning up in brake rotors and lighting fixtures. These various applications exemplify the possibilities that come from NASA’s collaboration and investment in industry. 
      Read More Share
      Details
      Last Updated Sep 12, 2024 Related Terms
      Technology Transfer & Spinoffs Marshall Space Flight Center Spinoffs Technology Transfer Explore More
      22 min read The Marshall Star for September 11, 2024
      Article 21 hours ago 1 min read Gateway Space Station in 3D
      Article 1 day ago 5 min read NASA’s Hubble, Chandra Find Supermassive Black Hole Duo
      Like two Sumo wrestlers squaring off, the closest confirmed pair of supermassive black holes have…
      Article 3 days ago Keep Exploring Discover Related Topics
      Technology Transfer & Spinoffs
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      The NASA Ames Fire Department will conduct emergency response fire training on the west ramp of the Moffett Federal Airfield between 8 a.m. and 8 p.m. PDT Tuesday, Sept. 10 through Saturday, Sept. 14. The media and the public are advised that sirens may be audible and smoke plumes and flames may be visible from U.S. Highway 101 during this time. However, officials generally expect little to no smoke.
      The session will include a live burn created by a propane-fueled aircraft fire simulator at the field. The drill is intended to prepare Ames fire responders and Ames Emergency Operations Center staff for real-life fire emergencies.
      For more information about NASA’s Ames Research Center, visit: 
      https://www.nasa.gov/ames
      -end-
      Rachel Hoover
      Ames Research Center, Silicon Valley
      650-604-4789
      rachel.hoover@nasa.gov
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A National Advisory Committee for Aeronautics researcher notes the conditions on the P-39L after its first test run in the Icing Research Tunnel on Sept. 13, 1944. The aircraft was too large to fit in the test section, so it was installed downstream in a larger area of the tunnel. The initial tests analyzed ice buildup on the nose, propeller blades, and antennae. In the summer of 1945, the P-39L was used to demonstrate the effectiveness of a thermal pneumatic boot ice-prevention system and heated propeller blades.Credit: NASA On Sept. 13, 1944, researchers subjected a Bell P-39L Airacobra to frigid temperatures and a freezing water spray in the National Advisory Committee for Aeronautics (NACA)’s new Icing Research Tunnel (IRT) to study inflight ice buildup. Since that first run at the Aircraft Engine Research Laboratory (now NASA’s Glenn Research Center) in Cleveland, the facility has operated on a regular basis for 80 years and remains the oldest and one of the largest icing tunnels in the world.
      Water droplets in clouds can freeze on aircraft surfaces in certain atmospheric conditions. Ice buildup on the forward edges of wings and tails causes significant decreases in lift and rapid increases in drag. Ice can also block engine intakes and add weight. NASA has a long tradition of working to understand the conditions that cause icing and developing systems that prevent and remove ice buildup.
      The NACA decided to build its new icing tunnel adjacent to the lab’s Altitude Wind Tunnel to take advantage of its powerful cooling equipment and unprecedented refrigeration system. The system, which can reduce air temperature to around –30 degrees Fahrenheit, produces realistic and repeatable icing conditions using a spray nozzle system that creates small, very cold droplets and a drive fan that generates airspeeds up to 374 miles per hour.
      View upstream of the Icing Research Tunnel’s 25-foot-diameter drive fan in 1944. The original 12-bladed wooden fan and its 4,100-horsepower motor could produce air speeds up to 300 miles per hour. The motor and fan were replaced in 1987 and 1993, respectively.Credit: NASA Two rudimentary icing tunnels had briefly operated at the NACA’s Langley Memorial Aeronautical Laboratory in Hampton, Virginia, but icing research primarily relied on flight testing. The sophisticated new tunnel in Cleveland offered a safer way to study icing physics, test de-icing systems, and develop icing instrumentation.
      During World War II, inlet icing was a key contributor to the heavy losses suffered by C-46s flying supply missions to allied troops in China. In February 1945, a large air scoop from the C-46 Commando was installed in the tunnel, where researchers determined the cause of the issue and redesigned the scoop to prevent freezing water droplets entering. The modifications were later incorporated into the C–46 and Convair C–40.
      A National Advisory Committee for Aeronautics engineer experiments with an Icing Research Tunnel water spray system design in September 1949. Researchers used data taken from research flights to determine the proper droplet sizes. The atomizing spray system was perfected in 1950.Credit: NASA Despite these early successes, NACA engineers struggled to improve the facility’s droplet spray system because of a lack of small nozzles able to produce sufficiently small droplets. After years of dogged trial and error, the breakthrough came in 1950 with an 80-nozzle system that produced the uniform microscopic droplets needed to properly simulate a natural icing cloud. 
      Usage of the IRT increased in the 1950s, and the controlled conditions produced by the facility helped researchers define specific atmospheric conditions that produce icing. The Civil Aeronautics Authority (the precursor to the Federal Aviation Administration) used this data to establish regulations for all-weather aircraft. The facility also contributed to new icing protections for antennae and jet engines and the development of cyclical heating de-icing systems.
      The success of the NACA’s icing program, along with the increased use of jet engines – which permitted cruising above the weather – reduced the need for additional icing research. In early 1957, just before the NACA transitioned to NASA, the center’s icing program was terminated. Nonetheless, the IRT remained active throughout the 1960s and 1970s supporting industry testing.
      The Icing Research Tunnel is highlighted in this 1973 aerial photograph. The larger Altitude Wind Tunnel (AWT) is located behind it, and the Refrigeration Building that supported both tunnels is immediately to the left of the AWT.Credit: NASA By the mid-1970s, new icing issues were arising due to the increased use of helicopters, regional airliners, and general aviation aircraft. The center held an icing workshop in July 1978 where over 100 icing experts from across the world converged and lobbied for a reinstatement of NASA’s icing research program.
      The agency agreed to provide funding to support a small team of researchers and increase operation of the icing facility. In 1982, a deadly icing-related airline crash spurred NASA to bring back a full-fledged icing research program.
      Nearly all the tunnel’s major components were subsequently upgraded. Use of the IRT skyrocketed, and there was at least a one-year wait for new tests during this period. In 1988, the facility operated more hours than any year since 1950.
      This model was installed in the Icing Research Tunnel in 2023 as part of the Advanced Air Mobility Rotor Icing Evaluation Study, which sought to refine testing of rotating models in the tunnel, validate 3D computational models, and study propeller icing issues.Credit: NASA The facility was used in a complementary way with the Twin Otter aircraft and computer simulation to improve de-icing systems, predictive tools, and instrumentation. IRT testing also accelerated the all-weather certification of the OH-60 Black Hawk helicopter. In the 1990s, the icing program turned its attention to combatting super-cooled large droplets, which can cause ice buildup in areas not protected by leading edge de-icing systems, and tailplane icing, which can cause commuter aircraft to pitch forward.
      The IRT was one of the busiest facilities at the center in the 2000s and continues to maintain a steady test schedule today, investigating icing on turbofan engines and propellers, refining testing of rotating models, validating 3D models, and much more. The IRT been used to develop nearly every modern ice protection system, provided key icing environment data to regulatory agencies, and validated leading ice prediction software. After 80 years, it remains a critical tool for sustaining NASA’s leadership in the icing field.
      More Resources:
      “We Freeze to Please”: A History of NASA’s Icing Research Tunnel and the Quest for Flight Safety Icing Research Tunnel Website International Historic Mechanical Engineering Landmark NASA Glenn’s Aeronautics Research NASA’s Aeronautics Research Mission Directorate Explore More
      4 min read Research Plane Dons New Colors for NASA Hybrid Electric Flight Tests 
      Article 1 day ago 8 min read 40 Years Ago: STS-41D – First Flight of Space Shuttle Discovery
      Article 2 days ago 6 min read 235 Years Ago: Herschel Discovers Saturn’s Moon Enceladus
      Article 7 days ago View the full article
    • By NASA
      The NASA Airborne Instrumentation for Real-world Video of Urban Environments (AIRVUE) sensor pod is attached to the base of a NASA helicopter at NASA’s Kennedy Space Center in Cape Canaveral, Florida in April 2024 before a flight to test the pod’s cameras and sensors. The AIRVUE pod will be used to collect data for autonomous aircraft like air taxis, drones, or other Advanced Air Mobility aircraft.NASA/Isaac Watson For self-flying aircraft to take to the skies, they need to learn about their environments to avoid hazards. NASA aeronautics researchers recently developed a camera pod with sensors to help with this challenge by advancing computer vision for autonomous aviation.  
      This pod is called the Airborne Instrumentation for Real-world Video of Urban Environments (AIRVUE). It was developed and built at NASA’s Armstrong Flight Research Center in Edwards, California. Researchers recently flew it on a piloted helicopter at NASA’s Kennedy Space Center in Cape Canaveral, Florida for initial testing.  
      The team hopes to use the pod to collect large, diverse, and accessible visual datasets of weather and other obstacles. They will then use that information to create a data cloud for manufacturers of self-flying air taxis or drones, or other similar aircraft, to access. Developers can use this data to evaluate how well their aircraft can “see” the complex world around them.  
      NASA researchers Elizabeth Nail (foreground) and A.J. Jaffe (background) prepare the NASA Airborne Instrumentation for Real-world Video of Urban Environments (AIRVUE) sensor pod for testing at NASA’s Kennedy Space Center in Cape Canaveral, Florida, in April 2024.NASA/Isaac Watson “Data is the fuel for machine learning,” said Nelson Brown, lead NASA researcher for the AIRVUE project. “We hope to inspire innovation by providing the computer vision community with realistic flight scenarios. Accessible datasets have been essential to advances in driver aids and self-driving cars, but so far, we haven’t seen open datasets like this in aviation.” 
      The computer algorithms that will enable the aircraft to sense the environment must be reliable and proven to work in many flight circumstances. NASA data promises that fidelity, making this an important resource for industry. When a company conducts data collection on their own, it’s unlikely they share it with other manufacturers. NASA’s role facilitates this accessible dataset for all companies in the Advanced Air Mobility industry, ensuring the United States stays at the forefront of innovation. 
      Once the design is refined, through evaluation and additional testing, the team hopes to make more pods that ride along on various types of aircraft to collect more visuals and grow the digital repository of data.
      Share
      Details
      Last Updated Aug 26, 2024 EditorDede DiniusContactTeresa Whitingteresa.whiting@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Advanced Air Mobility Aeronautics Ames Research Center Drones & You Glenn Research Center Langley Research Center Transformational Tools Technologies Explore More
      2 min read NASA Composite Manufacturing Initiative Gains Two New Members
      Article 4 days ago 3 min read Beyond the Textbook: DC-8 Aircraft Inspires Students in Retirement
      Article 4 days ago 2 min read Gateway: Energizing Exploration
      Discover the cutting-edge technology powering Gateway, humanity's first lunar space station.
      Article 4 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Armstrong Programs & Projects
      Armstrong Technologies
      Armstrong Flight Research Center History
      View the full article
    • By NASA
      The Dash 7 that will be modified into a hybrid electric research vehicle under NASA’s Electrified Powertrain Flight Demonstration (EPFD) project on display with its new livery for the first time. In front of the plane is an electric powertrain that magniX will integrate into the current aircraft to build a hybrid electric propulsion system.NASA/David C. Bowman In a special unveiling ceremony on Aug. 22, 2024, the public received a first look at magniX’s Dash 7 aircraft that will serve as a testbed for sustainable aviation research with NASA’s Electrified Powertrain Flight Demonstration (EPFD) project. 
      Hosted by magniX at King County International Airport, commonly known as Boeing Field, in Seattle, Washington, leaders from NASA and magniX unveiled the research vehicle in its new livery.  
      EPFD is a collaboration between NASA and industry to demonstrate the capabilities of electrified aircraft propulsion technologies in reducing emissions for future commercial aircraft in mid-2030s.  
      As part of this demonstration, magniX will modify the Dash 7 with a new hybrid electric system to conduct ground and flight tests. NASA will use data gathered from these tests to identify and minimize barriers in certifying these new technologies and help inform new standards and regulations for future electrified aircraft.  
      “We are a research organization that continues to advance aviation, solve the problems of flight, and lead the community into the future,” said Robert A. Pearce, associate administrator for NASA’s Aeronautics Research Mission Directorate. “Through our EPFD project, we’re taking big steps in partnership to make sure electric aviation is part of the future of commercial flight.” 
      With the aircraft livery complete, magniX will begin the process of converting the Dash 7 into a research testbed with a hybrid electric propulsion system. Flight tests with the new system are planned for 2026.
      Image Credit: NASA/David C. Bowman
      View the full article
  • Check out these Videos

×
×
  • Create New...