Jump to content

Satellite Data Can Help Limit the Dangers of Windblown Dust


NASA

Recommended Posts

  • Publishers
8 Min Read

Satellite Data Can Help Limit the Dangers of Windblown Dust

Dust storms present a growing threat to the health and safety of U.S. populations. A new model, powered by NASA and NOAA satellite data, provides important early warnings.
Credits:
Stock Footage Provided by Pond5/EnglerAerial

Interstate 10, an artery that cuts through the rural drylands of southern New Mexico, is one of the country’s deadliest roadways. On one stretch of the highway, just north of a dry lakebed called Lordsburg Playa, fatal collisions occur with such regularity that officials often call it the “dust trap.” It’s a fitting name. Since 1967, at least 55 deaths in the area have been linked to dust storms. 

This stretch of Interstate 10 offers a concentrated example of the hazards that dust storms carry. But across the U.S. Great Plains, levels of windblown dust have increased steadily, by about 5% each year between 2000 and 2018, contributing to a decline in air quality and an increase in fatal collisions.

“Dust storms are appearing with greater frequency for reasons that include extended drought conditions and urban sprawl, which disrupt the fragile biotic crust of the desert,” said John Haynes, program manager for NASA’s Health and Air Quality Applied Sciences Team. As reduced rainfall in arid regions and warmer weather become regular fixtures of the U.S. climate, experts expect the trend to continue.   

Dust storms can cause traffic accidents, negatively impact air quality, and even carry pathogens that cause diseases.

/wp-content/plugins/nasa-blocks/assets/images/article-templates/anne-mcclain.jpg

john Haynes

Program manager for NASA Health and Air Quality Applied Sciences Team

On the ground, dust storms form menacing palls that can swallow entire cities whole. From space, dust storms can be observed moving across continents and oceans, revealing their tremendous scale. It’s from this vantage point, high above the clouds, that NASA and NOAA have Earth-observing satellites that help scientists and first responders track windblown dust. 

Daniel Tong, professor of atmospheric chemistry and aerosols at George Mason University, working closely with NASA’s Health and Air Quality Applied Sciences Team, leads a NASA-funded effort to improve the country’s dust forecasting capabilities. Tong’s forecasting system relies on an algorithm called FENGSHA, which means “windblown dust” in Mandarin. By plugging real-time satellite data into a complex model of Earth’s atmosphere – one that accounts for site-specific variables like soil type, wind speed, and how Earth’s surface interacts with winds – the system churns out hourly forecasts that can predict dust storms up to three days in advance. 

On March 16, 2021, images acquired by the Visible Infrared Imaging Radiometer Suite (VIIRS) on the NASA/NOAA Suomi NPP satellite show large dust plumes sweeping across New Mexico, Texas, and Mexico.
On March 16, 2021, images acquired by the Visible Infrared Imaging Radiometer Suite (VIIRS) on the NASA/NOAA Suomi NPP satellite show large dust plumes sweeping across New Mexico, Texas, and Mexico. Credit: NASA Earth Observatory
NASA/NOAA

FENGSHA was initially developed using a dust observation method trained by NASA’s Aqua and Terra satellites. It’s these “space truths,” as Tong calls them, that make reliable forecasting possible. Comparing the model’s predictions with satellite imagery from real dust storms allows the team to identify shortcomings and improve accuracy. The most recent version of the model includes data from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the NASA-NOAA Suomi-NPP, NOAA-20, and NOAA-21 satellites, which observe each location on the planet at least twice a day.

Currently, the dust monitoring system is available to all 122 of the National Weather Service’s regional forecasting offices. When a forecast calls for dust, local teams assess each case individually and decide whether to send out alerts. These could involve a warning to transit authorities or weather alerts sent directly to people’s phones.

“Dust storms cause traffic accidents, negatively impact air quality, and even carry pathogens that cause diseases,” Haynes said.  “Early warning systems empower individuals to take necessary actions, such as sheltering indoors or clearing roadways until the storm passes.”

The Benefits of Early Warning  

On May 1, 2023, high winds in Illinois sent a dark cloud of dust creeping along Interstate 55, the state’s main throughway. Visibility was reduced to zero in a matter of minutes – leaving drivers with little time to react. The resulting collision involved 72 vehicles and killed eight people. Dozens more were hospitalized.

In some hotspots for dust, officials are taking steps to minimize the damage. On Interstate 10 in New Mexico and Arizona, for example, drivers are now met with 100 miles of roadside warning signs that urge them to pull over when dust is detected. But Interstate 55, in Illinois, isn’t a hotspot. No one saw the storm coming. And as dust claims new territory, local ground-based solutions may not provide sufficient coverage. 

This is why satellite-based forecasting is essential, said Morgan Gorris, an Earth system scientist and geohealth expert at Los Alamos National Laboratory. “When we see a dust storm developing in radar returns or on dust sensors, people are already on the road, and it’s more difficult to make safety decisions.”

Tong hopes to see forecasts used more frequently in commercial trucking “to prevent delays, traffic jams, and accidents,” he said. Notably, semi-trucks or tractor-trailers are involved in almost all fatal collisions involving dust. By rerouting or delaying truck drivers, the worst accidents could be avoided.

Tong also promotes advanced forecasting as a way to reduce the frequency and intensity of dust storms. Storms like the one in Illinois – which rose from the overworked soil of the surrounding farmland – might be preventable. “If we know that there might be a dust storm tomorrow, farmers might stop tilling their land,” he said.

Most fatal collisions are the result of smaller, quick-forming dust storms. But larger storms carry additional hazards. Billowing plumes of dust lofted from loose soil or desert floors by high-speed winds can reach thousands of feet into the air and travel hundreds of miles, affecting the respiratory health of populations across great distances.

Valley fever —an infectious disease caused by a soil-dwelling fungus endemic to the arid and semi-arid climates of Texas, New Mexico, Arizona, and California — is also a threat. The fungus is harmless in the ground, but airborne spores can lead to infections that are sometimes fatal. The Centers for Disease Control and Prevention reported more than 200,000 infections of Valley fever since 1998. The current infection rate is about 10 times higher than that of the West Nile Virus, a vector-transmitted disease that often receives far more attention. 

An Image of Baja, CA, taken from the International Space Station depicts strong winds blowing dust into the Pacific Ocean.
An Image of Baja, CA, taken from the International Space Station depicts strong winds blowing dust into the Pacific Ocean. Valley fever cases have been discovered off the California coast among populations of bottle-nosed dolphins and other marine mammals, a sign that windblown dust could be carrying the fungus to non-endemic regions of the country. Credit: NASA

“The areas where we see dust storms and the areas endemic to Valley fever are both expanding,” said Gorris, who also warns that the expanding reach of dust storms might unearth new airborne diseases. “We don’t yet know what other biology is in the soil that might infect us.”

It’s not just what’s in the soil. Even when traces of chemical or biological toxins are absent, the soil itself can be a significant irritant. “People think that it’s a natural phenomenon carrying natural material, so it’s probably innocuous,” said Thomas E. Gill, professor of Earth and environmental sciences at the University of Texas at El Paso. But that’s not the case. Fine grains of dust can penetrate deep into lung tissue and are linked to an increase in respiratory illness and premature death.

According to a global study conducted by atmospheric scientists at NASA’s Goddard Space Flight Center, 2.89 million premature deaths were connected to PM2.5 in 2019 – and 22% of those deaths were attributed to dust. Most at risk were children and those with pre-existing conditions like asthma.

A New Way to See an Old Problem

In the 1930s, during the Dust Bowl years, severe drought and poor land management sent deadly “black blizzards” sweeping across the landscape. From Texas to Nebraska, wind stripped the soil of vital nutrients, generating massive dust storms that blocked out the Sun for days at a time and reached as far east as New York City – where the sky was dark enough for streetlights to switch on in the middle of the day.

Some scientists claim that the threat of a “dust bowl 2.0” is imminent. Urban sprawl, industrial-scale agriculture, wildfires, drought, and a warming climate can all strip the land of vegetation and remove moisture from the soil. But it can be difficult to draw a hard line from these individual sources to their cumulative effects. “We have to continue developing our understanding of the consequences on our communities and come up with better ways to protect citizens,” Tong said.

The next generation of FENGSHA will soon be integrated into an atmospheric model developed by NASA called the Goddard Chemistry Aerosol Radiation and Transport (GOCART). Features of Earth’s surface like rocks, vegetation, and uneven soil all influence how much dust the wind can kick up. As a result, both the amount of dust in the air and the direction that windblown dust travels are often governed by what’s on the ground. GOCART’s ability to model these surface features will improve the accuracy of the forecasting system, said Barry Baker, an atmospheric physicist and lead of chemical modeling for the National Oceanic and Atmospheric Administration who led the research to operation transition of FENGSHA for NOAA’s oceanic and atmospheric research team. The ultimate goal, though, he added, is a geostationary satellite. Polar-orbiting satellites pass over each spot of the globe twice a day; a geostationary satellite could hover over the U.S. and monitor dust around the clock, tracking storms as they develop and grow. 

An image captured by the VIIRS instrument on the NOAA-20 satellite shows dust from the Saharan desert blowing west over the Atlantic
Each year, 182 million tons of dust escapes into the atmosphere from the Sahara. This image captured by the VIIRS instrument on the NOAA-20 satellite captures the tremendous scale of African dust. Credit: NASA Earth Observatory.

Despite its hazards, windblown dust is a fundamental feature of the atmosphere and a critical ingredient for life on Earth. Dust from the Saharan Desert carries life-sustaining nutrients across the Atlantic Ocean to the Amazon rainforest, roughly 1,600 miles away. It also feeds the vast algal ecosystems that teem near the surface of Earth’s oceans, which in turn support a diverse menagerie of marine life. Even if we could rid the planet of dust, we would not want to.

“There’s no way to contain the situation; you can’t just eliminate the desert,” Tong said. “But what we can do is increase awareness and try to help those who are impacted most.”

Share

Details

Last Updated
Nov 15, 2023

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      ESI24 Nam Quadchart
      SungWoo Nam
      University of California, Irvine
      Lunar dust may seem unimposing, but it presents a significant challenge for space missions. Its abrasive and jagged particles can damage equipment, clog devices, and even pose health risks to astronauts. This project addresses such issues by developing advanced coatings composed of crumpled nano-balls made from atomically thin 2D materials such as MoS₂, graphene, and MXenes. By crumpling these nanosheets—much like crumpling a piece of paper—we create compression and aggregation resistant particles that can be dispersed in sprayable solutions. As a thin film coating, these crumpled nano-balls form corrugated structures that passively reduce dust adhesion and surface wear. The deformable crumpled nano-ball (DCN) coating works by minimizing the contact area between lunar dust and surfaces, thanks to its unique nano-engineered design. The 2D materials exhibit exceptional durability, withstanding extreme thermal and vacuum environments, as well as resisting radiation damage. Additionally, the flexoelectric and electrostatically dissipative properties of MoS₂, graphene, and MXenes allow the coating to neutralize and dissipate electrical charges, making them highly responsive to the charged lunar dust environment. The project will be executed in three phases, each designed to bring the technology closer to real-world space applications. First, we will synthesize the crumpled nano-balls and investigate their adhesion properties using advanced microscopy techniques. The second phase will focus on fundamental testing in simulated lunar environments, where the coating will be exposed to extreme temperatures, vacuum, radiation, and abrasion. Finally, the third phase will involve applying the coating to space-heritage materials and conducting comprehensive testing in a simulated lunar environment, targeting up to 90% dust clearance and verifying durability over repeated cycles of dust exposure. This research aligns with NASA’s goals for safer, more sustainable lunar missions by reducing maintenance requirements and extending equipment lifespan. Moreover, the potential applications extend beyond space exploration, with the technology offering promising advances in terrestrial industries such as aerospace and electronics by providing ultra-durable, wear-resistant surfaces. Ultimately, the project contributes to advancing materials science and paving the way for NASA’s long-term vision of sustainable space exploration.
      Back to ESI 2024
      Keep Exploring Discover More Topics From STRG
      Space Technology Mission Directorate
      STMD Solicitations and Opportunities
      Space Technology Research Grants
      About STRG
      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      ESI24 Chang Quadchart
      Chih-Hao Chang
      University of Texas at Austin
      Establishing a permanent base on the moon is a critical step in the exploration of deep space. One significant challenge observed during the Apollo missions was the adhesion of lunar dust, which can build up on vehicle, equipment, and space suit. Highly fine and abrasive, the dust particles can have adverse mechanical, electrical, and health effects. The proposed research aims to develop a new class of hierarchical, heterogenous nanostructured coating that can passively mitigate adhesion of lunar particles. Using scalable nanolithography and surface modification processes, the geometry and material composition of the nanostructured surface will be precisely engineered to mitigate dust adhesion. This goal will be accomplished by: (1) construct multi-physical models to predict the contributions of various particle adhesion mechanisms, (2) develop scalable nanofabrication processes to enable precise control of hierarchical structures, and (3) develop nanoscale single-probe characterization protocols to characterize adhesion forces in relevant space environments. The proposed approach is compatible with roll-to-roll processing and the dust-mitigation coating can be transfer printed on arbitrary metal, ceramic, and polymer surfaces such as space suits, windows, mechanical machinery, solar panels, and sensor systems that are vital for long-term space exploration.
      Back to ESI 2024
      Keep Exploring Discover More Topics From STRG
      Space Technology Mission Directorate
      STMD Solicitations and Opportunities
      Space Technology Research Grants
      About STRG
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      ESI24 Zhai Quadchart
      Lei Zhai
      University of Central Florida
      Lunar dust, with its chemical reactivity, electrostatic charge, and potential magnetism, poses a serious threat to astronauts and equipment on the Moon’s surface. To address this, the project proposes developing structured coatings with anisotropic surface features and electrostatic dissipative properties to passively mitigate lunar dust. By analyzing lunar dust-surface interactions at multiple scales, the team aims to optimize the coatings’ surface structures and physical properties, such as Young’s modulus, electrical conductivity, and polarity. The project will examine tribocharging, external electric fields, and the effects of particle shapes and sizes. Numerical sensitivity analyses will complement simulations to better understand lunar dust dynamics. Once fabricated, the coatings will be tested under simulated lunar conditions. The team will employ a state-of-the-art nanoscale force spectroscopy system, using atomic force microsope (AFM) microcantilevers functionalized with regolith to measure dust-surface interactions. Additional experiments will assess particle adhesion and removal, with scanning electron microscopy used to analyze remaining dust. This project aims to provide insights into surface structure effects on dust adhesion, guiding the creation of lightweight, durable coatings for effective dust mitigation. The findings will foster collaborations with NASA and the aerospace industry, while offering training opportunities for students entering the field.
      Back to ESI 2024
      Keep Exploring Discover More Topics From STRG
      Space Technology Mission Directorate
      STMD Solicitations and Opportunities
      Space Technology Research Grants
      About STRG
      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      ESI24 Zou Quadchart
      Min Zou
      University of Arkansas, Fayetteville
      Lunar dust, with its highly abrasive and electrostatic properties, poses serious threats to the longevity and functionality of spacecraft, habitats, and equipment operating on the Moon. This project aims to develop advanced bioinspired surface textures that effectively repel lunar dust, targeting critical surfaces such as habitat exteriors, doors, and windows. By designing and fabricating innovative micro-/nano-hierarchical core-shell textures, we aim to significantly reduce dust adhesion, ultimately enhancing the performance and durability of lunar infrastructure. Using cutting-edge fabrication methods like two-photon lithography and atomic layer deposition, our team will create resilient, dust-repelling textures inspired by natural surfaces. We will also conduct in-situ testing with a scanning electron microscope to analyze individual particle adhesion and triboelectric effects, gaining critical insights into lunar dust behavior on engineered surfaces. These findings will guide the development of durable surfaces for long-lasting, low-maintenance lunar equipment, with broader applications for other dust-prone environments.
      Back to ESI 2024
      Keep Exploring Discover More Topics From STRG
      Space Technology Mission Directorate
      STMD Solicitations and Opportunities
      Space Technology Research Grants
      About STRG
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A prototype of a robot designed to explore subsurface oceans of icy moons is reflected in the water’s surface during a pool test at Caltech in September. Conducted by NASA’s Jet Propulsion Laboratory, the testing showed the feasibility of a mission concept for a swarm of mini swimming robots.NASA/JPL-Caltech In a competition swimming pool, engineers tested prototypes for a futuristic mission concept: a swarm of underwater robots that could look for signs of life on ocean worlds.
      When NASA’s Europa Clipper reaches its destination in 2030, the spacecraft will prepare to aim an array of powerful science instruments toward Jupiter’s moon Europa during 49 flybys, looking for signs that the ocean beneath the moon’s icy crust could sustain life. While the spacecraft, which launched Oct. 14, carries the most advanced science hardware NASA has ever sent to the outer solar system, teams are already developing the next generation of robotic concepts that could potentially plunge into the watery depths of Europa and other ocean worlds, taking the science even further.
      This is where an ocean-exploration mission concept called SWIM comes in. Short for Sensing With Independent Micro-swimmers, the project envisions a swarm of dozens of self-propelled, cellphone-size swimming robots that, once delivered to a subsurface ocean by an ice-melting cryobot, would zoom off, looking for chemical and temperature signals that could indicate life.
      Dive into underwater robotics testing with NASA’s futuristic SWIM (Sensing With Independent Micro-swimmers) concept for a swarm of miniature robots to explore subsurface oceans on icy worlds, and see a JPL team testing a prototype at a pool at Caltech in Pasadena, California, in September 2024. NASA/JPL-Caltech “People might ask, why is NASA developing an underwater robot for space exploration? It’s because there are places we want to go in the solar system to look for life, and we think life needs water. So we need robots that can explore those environments — autonomously, hundreds of millions of miles from home,” said Ethan Schaler, principal investigator for SWIM at NASA’s Jet Propulsion Laboratory in Southern California.
      Under development at JPL, a series of prototypes for the SWIM concept recently braved the waters of a 25-yard (23-meter) competition swimming pool at Caltech in Pasadena for testing. The results were encouraging.
      SWIM Practice
      The SWIM team’s latest iteration is a 3D-printed plastic prototype that relies on low-cost, commercially made motors and electronics. Pushed along by two propellers, with four flaps for steering, the prototype demonstrated controlled maneuvering, the ability to stay on and correct its course, and a back-and-forth “lawnmower” exploration pattern. It managed all of this autonomously, without the team’s direct intervention. The robot even spelled out “J-P-L.”
      Just in case the robot needed rescuing, it was attached to a fishing line, and an engineer toting a fishing rod trotted alongside the pool during each test. Nearby, a colleague reviewed the robot’s actions and sensor data on a laptop. The team completed more than 20 rounds of testing various prototypes at the pool and in a pair of tanks at JPL.
      “It’s awesome to build a robot from scratch and see it successfully operate in a relevant environment,” Schaler said. “Underwater robots in general are very hard, and this is just the first in a series of designs we’d have to work through to prepare for a trip to an ocean world. But it’s proof that we can build these robots with the necessary capabilities and begin to understand what challenges they would face on a subsurface mission.”
      Swarm Science
      A model of the final envisioned SWIM robot, right, sits beside a capsule holding an ocean-composition sensor. The sensor was tested on an Alaskan glacier in July 2023 through a JPL-led project called ORCAA (Ocean Worlds Reconnaissance and Characterization of Astrobiological Analogs). The wedge-shaped prototype used in most of the pool tests was about 16.5 inches (42 centimeters) long, weighing 5 pounds (2.3 kilograms). As conceived for spaceflight, the robots would have dimensions about three times smaller — tiny compared to existing remotely operated and autonomous underwater scientific vehicles. The palm-size swimmers would feature miniaturized, purpose-built parts and employ a novel wireless underwater acoustic communication system for transmitting data and triangulating their positions.
      Digital versions of these little robots got their own test, not in a pool but in a computer simulation. In an environment with the same pressure and gravity they would likely encounter on Europa, a virtual swarm of 5-inch-long (12-centimeter-long) robots repeatedly went looking for potential signs of life. The computer simulations helped determine the limits of the robots’ abilities to collect science data in an unknown environment, and they led to the development of algorithms that would enable the swarm to explore more efficiently.
      The simulations also helped the team better understand how to maximize science return while accounting for tradeoffs between battery life (up to two hours), the volume of water the swimmers could explore (about 3 million cubic feet, or 86,000 cubic meters), and the number of robots in a single swarm (a dozen, sent in four to five waves).
      In addition, a team of collaborators at Georgia Tech in Atlanta fabricated and tested an ocean composition sensor that would enable each robot to simultaneously measure temperature, pressure, acidity or alkalinity, conductivity, and chemical makeup. Just a few millimeters square, the chip is the first to combine all those sensors in one tiny package.
      Of course, such an advanced concept would require several more years of work, among other things, to be ready for a possible future flight mission to an icy moon. In the meantime, Schaler imagines SWIM robots potentially being further developed to do science work right here at home: supporting oceanographic research or taking critical measurements underneath polar ice.
      More About SWIM
      Caltech manages JPL for NASA. JPL’s SWIM project was supported by Phase I and II funding from NASA’s Innovative Advanced Concepts (NIAC) program under the agency’s Space Technology Mission Directorate. The program nurtures visionary ideas for space exploration and aerospace by funding early-stage studies to evaluate technologies that could transform future NASA missions. Researchers across U.S. government, industry, and academia can submit proposals.
      How the SWIM concept was developed Learn about underwater robots for Antarctic climate science See NASA’s network of ready-to-roll mini-Moon rovers News Media Contact
      Melissa Pamer
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-314-4928
      melissa.pamer@jpl.nasa.gov
      2024-162
      Share
      Details
      Last Updated Nov 20, 2024 Related Terms
      Europa Jet Propulsion Laboratory NASA Innovative Advanced Concepts (NIAC) Program Ocean Worlds Robotics Space Technology Mission Directorate Technology Explore More
      5 min read Making Mars’ Moons: Supercomputers Offer ‘Disruptive’ New Explanation
      Article 1 hour ago 4 min read From Houston to the Moon: Johnson’s Thermal Vacuum Chamber Tests Lunar Solar Technology 
      Article 19 hours ago 3 min read Northwestern University Takes Top Honors in BIG Idea Lunar Inflatables Challenge 
      Article 23 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...