Jump to content

Webb Follows Neon Signs Toward New Thinking on Planet Formation


NASA

Recommended Posts

  • Publishers

Scientists are following neon signs in a search for clues to one planetary system’s future and the past of another – our own solar system. Following up on a peculiar reading by NASA’s previous infrared flagship observatory, the now-retired Spitzer Space Telescope, the agency’s James Webb Space Telescope detected distinct traces of the element neon in the dusty disk surrounding the young Sun-like star SZ Chamaelontis (SZ Cha).

Image: SZ Chamaeleontis Protoplanetary Disk (Artist Concept )

Looking in from the outer edge of a dusty, spinning disk surrounding a bright central star, which is illustrated as an indistinct bright region in the center of the disk. Rays of light emanate from the central area. A dark gap in the disk appears between the bright core and the dusty, hazy outer regions, which build up slightly as you move outward, so that the core appears sunken. The outer disk has some bands of varying thickness, in varying shades of orange.
In this artist concept, the young star SZ Chamaeleontis (SZ Cha) is surrounded by a disk of dust and gas with the potential to form a planetary system. Once our solar system looked something like this, before planets, moons, and asteroids formed. The raw ingredients, including those for life on Earth, were present in the Sun’s protoplanetary disk. SZ Cha emits radiation in multiple wavelengths which are evaporating the disk. Planets are in a race against time to form before the disk of material is evaporated completely. NASA’s James Webb Space Telescope observed typical conditions in the disk – it was being bombarded primarily by X-rays. However, when NASA’s Spitzer Space Telescope observed the disk in 2008, it saw a different scene, dominated by extreme ultraviolet (EUV) light, indicated by the presence of a specific type of neon in the disk. These differences are significant because planets would have more time to form from a disk dominated by EUV. Astronomers are investigating the cause of the difference between Webb and Spitzer’s readings, and think it may be due to the presence (or not) of a strong wind that, when active, absorbs EUV, leaving X-rays to hit the disk.
NASA, ESA, CSA, Ralf Crawford (STScI)

Differences in the neon readings between Spitzer and Webb point to a never-before-observed change in high-energy radiation that reaches the disk, which eventually causes it to evaporate, limiting the time planets have to form. 

“How did we get here? It really goes back to that big question, and SZ Cha is the same type of young star, a T-Tauri star, as our Sun was 4.5 billion years ago at the dawn of the solar system,” said astronomer Catherine Espaillat of Boston University, in Massachusetts, who led both the 2008 Spitzer observations and the newly published Webb results. “The raw materials for Earth, and eventually life, were present in the disk of material that surrounded the Sun after it formed, and so studying these other young systems is as close as we can get to going back in time to see how our own story began.”

Scientists use neon as an indicator of how much, and what type, of radiation is hitting and eroding the disk around a star. When Spitzer observed SZ Cha in 2008, it saw an outlier, with neon readings unlike any other young T-Tauri disk. The difference was the detection of neon III, which is typically scarce in protoplanetary disks that are being pummeled by high-energy X-rays. This meant that the high-energy radiation in the SZ Cha disk was coming from ultraviolet (UV) light instead of X-rays. Besides being the lone oddball result in a sample of 50-60 young stellar disks, the UV vs. X-ray difference is significant for the lifetime of the disk and its potential planets.

Image: Neon Gas In Protoplanetary Disk

Infographic titled SZ Chamaeleontis, Neon Gas in Protoplanetary Disk. Text at top right reads MIRI, Medium Resolution Spectroscopy. Two spectra lines are compared, labeled in a key as yellow being Webb 2023, and white being Spitzer 2008. Behind the spectra an illustration of a protoplanetary disk shows through, with a very bright center. Two squiggly lines are compared, with yellow, the Webb data, shown on top of the Spitzer data. Just before 13 microns on the X axis, a green column highlights a tall vertical spike in both spectra. They are labeled Neon, N E Roman numeral two. Between 15 and 16 microns, a purple column highlights a shorter vertical spike in the Spitzer spectrum, which is contrasted with a very small peak in the Webb spectrum. This purple column, and the peaks it highlights, are labeled Neon, N E Roman numeral three. See extended description for more.
Contrasting data from NASA’s James Webb and Spitzer space telescopes show change in the disk surrounding the star SZ Chamaeleontis (SZ Cha) in just 15 years. In 2008, Spitzer’s detection of significant neon III made SZ Cha an outlier among similar young protoplanetary disks. However, when Webb followed up on SZ Cha in 2023, the ratio of neon II to III was within typical levels. All of this is significant because protoplanetary disks are the stuff of future planetary systems – and those potential planets are in a race against time. Astronomers use neon as an indicator of the dominant radiation hitting the disk and causing it to evaporate. When extreme ultraviolet light is dominant, there is more neon III. That is the unusual circumstance that Spitzer observed in 2008. Typically, a disk is dominated by X-ray radiation, which evaporates the disk more quickly, leaving planets less time to form. Researchers think the dramatic differences in neon detections are the result of a wind that, when present, absorbs ultraviolet light and leaves X-rays to pummel the disk. They will continue using Webb to find other examples of variability in disk conditions, working toward a better understanding of how planetary systems develop around Sun-like stars.
NASA, ESA, CSA, Ralf Crawford (STScI)

“Planets are essentially in a race against time to form up in the disk before it evaporates,” explained Thanawuth Thanathibodee of Boston University, another astronomer on the research team. “In computer models of developing systems, extreme ultraviolet radiation allows for 1 million more years of planet formation than if the evaporation is predominately caused by X-rays.”

So, SZ Cha was already quite the puzzle when Espaillat’s team returned to study it with Webb, only to find a new surprise: The unusual neon III signature had all but disappeared, indicating the typical dominance of X-ray radiation.

The research team thinks that the differences in neon signatures in the SZ Cha system are the result of a variable wind that, when present, absorbs UV light and leaves X-rays to pummel the disk. Winds are common in a system with a newly formed, energetic star, the team says, but it is possible to catch the system during a quiet, wind-free period, which is what Spitzer happened to do.

“Both the Spitzer and Webb data are excellent, so we knew this had to be something new we were observing in the SZ Cha system – a significant change in conditions in just 15 years,” added co-author Ardjan Sturm of Leiden University, Leiden, Netherlands.

Espaillat’s team is already planning more observations of SZ Cha with Webb, as well as other telescopes, to get to the bottom of its mysteries. “It will be important to study SZ Cha, and other young systems, in multiple wavelengths of light, like X-ray and visible light, to discover the true nature of this variability we’ve found,” said co-author Caeley Pittman of Boston University. “It’s possible that brief, quiet periods dominated by extreme UV radiation are common in many young planetary systems, but we just have not been able to catch them.”

“Once again, the universe is showing us that none of its methods are as simple as we might like to make them. We need to rethink, re-observe, and gather more information. We’ll be following the neon signs,” said Espaillat.

This research has been accepted for publication in Astrophysical Journal Letters.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.

Media Contacts

Laura Betzlaura.e.betz@nasa.gov, Rob Gutrorob.gutro@nasa.gov
NASA’s  Goddard Space Flight Center, Greenbelt, Md.

Leah Ramsay lramsay@stsci.edu , Christine Pulliam cpulliam@stsci.edu

Space Telescope Science Institute, Baltimore, Md.

Downloads

Download full resolution images for this article from the Space Telescope Science Institute.

Research results have been accepted for publication in Astropyisical Journal Letters.

Related Information

How do Planets Form? https://exoplanets.nasa.gov/faq/43/how-do-planets-form/

Planetary Systems – https://universe.nasa.gov/stars/planetary-systems/

Webb Mission – https://science.nasa.gov/mission/webb/

Webb News – https://science.nasa.gov/mission/webb/latestnews/

Webb Images – https://science.nasa.gov/mission/webb/multimedia/images/

Related For Kids

Planet Formation in a Snap (video)

SpacePlace About Our Solar System and Planets

En Español

Ciencia de la NASA

NASA en español 

Space Place para niños

Share

Details

Last Updated
Nov 15, 2023
Editor
Steve Sabia
Contact

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Artist’s concept of a young, newly discovered planet, exposed to observation by a warped debris disk. Credit: Robert Hurt, Caltech-IPAC. The discovery
      A huge planet with a long name – IRAS 04125+2902 b – is really just a baby: only 3 million years old. And because such infant worlds are usually hidden inside obscuring disks of debris, it is the youngest planet so far discovered using the dominant method of planet detection.
      Key facts
      The massive planet, likely still glowing from the heat of its formation, lies in the Taurus Molecular Cloud, an active stellar nursery with hundreds of newborn stars some 430 light-years away. The cloud’s relative closeness makes it a prime target for astronomers. But while the cloud offers deep insight into the formation and evolution of young stars, their planets are usually a closed book to telescopes like TESS, the Transiting Exoplanet Survey Satellite. These telescopes rely on the “transit method,” watching for the slight dip in starlight when a planet crosses the face of its host star. But such planetary systems must be edge-on, from Earth’s vantage point, for the transit method to work. Very young star systems are surrounded by disks of debris, however, blocking our view of any potentially transiting planets.
      A research team has just reported an extraordinary stroke of luck. Somehow, the outer debris disk surrounding this newborn planet, IRAS 04125+2902 b, has been sharply warped, exposing the baby world to extensive transit observations by TESS.
      Details
      While the warped outer disk is a great coincidence, it’s also a great mystery. Possible explanations include a migration of the planet itself, moving closer to the star and, in the process, diverging from the orientation of the outer disk – so that, from Earth, the planet’s orbit is edge-on, crossing the face of the star, but the outer disk remains nearly face-on to us. One problem with this idea: Moving a planet so far out of alignment with its parent disk would likely require another (very large) object in this system. None has been detected so far.
      The system’s sun happens to have a distant stellar companion, also a possible culprit in the warping of the outer disk. The angle of the orbit of the companion star, however, matches that of the planet and its parent star. Stars and planets tend to take the gravitational path of least resistance, so such an arrangement should push the disk into a closer alignment with the rest of the system – not into a radical departure.
      Another way to get a “broken” outer disk, the study authors say, would not involve a companion star at all. Stellar nurseries like the Taurus Molecular Cloud can be densely packed, busy places. Computer simulations show that rains of infalling material from the surrounding star-forming region could be the cause of disk-warping. Neither simulations nor observations have so far settled the question of whether warped or broken disks are common or rare in such regions.
      Fun facts
      Combining TESS’s transit measurements with another way of observing planets yields more information about the planet itself. We might call this second approach the “wobble” method. The gravity of a planet tugs its star one way, then another, as the orbiting planet makes its way around the star. And that wobble can be detected by changes in the light from the star, picked up by specialized instruments on Earth. Such “radial velocity” measurements of this planet reveal that its mass, or heft, amounts to no more than about a third of our own Jupiter. But the transit data shows the planet’s diameter is about the same. That means the planet has a comparatively low density and, likely, an inflated atmosphere. So this world probably is not a gas giant like Jupiter. Instead, it could well be a planet whose atmosphere will shrink over time. When it finally settles down, it could become a gaseous “mini-Neptune” or even a rocky “super-Earth.” These are the two most common planet types in our galaxy – despite the fact that neither type can be found in our solar system.
      The discoverers
      A science team led by astronomer Madyson G. Barber of the University of North Carolina at Chapel Hill published the study, “A giant planet transiting a 3 Myr protostar with a misaligned disk,” in the journal Nature in November 2024.
      View the full article
    • By NASA
      5 Min Read Making Mars’ Moons: Supercomputers Offer ‘Disruptive’ New Explanation
      A NASA study using a series of supercomputer simulations reveals a potential new solution to a longstanding Martian mystery: How did Mars get its moons? The first step, the findings say, may have involved the destruction of an asteroid. 
      The research team, led by Jacob Kegerreis, a postdoctoral research scientist at NASA’s Ames Research Center in California’s Silicon Valley, found that an asteroid passing near Mars could have been disrupted – a nice way of saying “ripped apart” – by the Red Planet’s strong gravitational pull.
      The team’s simulations show the resulting rocky fragments being strewn into a variety of orbits around Mars. More than half the fragments would have escaped the Mars system, but others would’ve stayed in orbit. Tugged by the gravity of both Mars and the Sun, in the simulations some of the remaining asteroid pieces are set on paths to collide with one another, every encounter further grinding them down and spreading more debris. 
      Many collisions later, smaller chunks and debris from the former asteroid could have settled into a disk encircling the planet. Over time, some of this material is likely to have clumped together, possibly forming Mars’ two small moons, Phobos and Deimos.
      To assess whether this was a realistic chain of events, the research team explored hundreds of different close encounter simulations, varying the asteroid’s size, spin, speed, and distance at its closest approach to the planet. The team used their high-performance, open-source computing code, called SWIFT, and the advanced computing systems at Durham University in the United Kingdom to study in detail both the initial disruption and, using another code, the subsequent orbits of the debris.
      In a paper published Nov. 20 in the journal Icarus, the researchers report that, in many of the scenarios, enough asteroid fragments survive and collide in orbit to serve as raw material to form the moons. 
      “It’s exciting to explore a new option for the making of Phobos and Deimos – the only moons in our solar system that orbit a rocky planet besides Earth’s,” said Kegerreis. “Furthermore, this new model makes different predictions about the moons’ properties that can be tested against the standard ideas for this key event in Mars’ history.”
      Two hypotheses for the formation of the Martian moons have led the pack. One proposes that passing asteroids were captured whole by Mars’ gravity, which could explain the moons’ somewhat asteroid-like appearance. The other says that a giant impact on the planet blasted out enough material – a mix of Mars and impactor debris – to form a disk and, ultimately, the moons. Scientists believe a similar process formed Earth’s Moon.
      The latter explanation better accounts for the paths the moons travel today – in near-circular orbits that closely align with Mars’ equator. However, a giant impact ejects material into a disk that, mostly, stays close to the planet. And Mars’ moons, especially Deimos, sit quite far away from the planet and probably formed out there, too. 
      “Our idea allows for a more efficient distribution of moon-making material to the outer regions of the disk,” said Jack Lissauer, a research scientist at Ames and co-author on the paper. “That means a much smaller ‘parent’ asteroid could still deliver enough material to send the moons’ building blocks to the right place.”
      It’s exciting to explore a new option for the making of Phobos and Deimos – the only moons in our solar system that orbit a rocky planet besides Earth’s.
      Jacob Kegerreis
      Postdoctoral research scientist at NASA’s Ames Research Center
      Testing different ideas for the formation of Mars’ moons is the primary goal of the upcoming Martian Moons eXploration (MMX) sample return mission led by JAXA (Japan Aerospace Exploration Agency). The spacecraft will survey both moons to determine their origin and collect samples of Phobos to bring to Earth for study. A NASA instrument on board, called MEGANE – short for Mars-moon Exploration with GAmma rays and Neutrons – will identify the chemical elements Phobos is made of and help select sites for the sample collection. Some of the samples will be collected by a pneumatic sampler also provided by NASA as a technology demonstration contribution to the mission. Understanding what the moons are made of is one clue that could help distinguish between the moons having an asteroid origin or a planet-plus-impactor source.
      Before scientists can get their hands on a piece of Phobos to analyze, Kegerreis and his team will pick up where they left off demonstrating the formation of a disk that has enough material to make Phobos and Deimos. 
      “Next, we hope to build on this proof-of-concept project to simulate and study in greater detail the full timeline of formation,” said Vincent Eke, associate professor at the Institute for Computational Cosmology at Durham University and a co-author on the paper. “This will allow us to examine the structure of the disk itself and make more detailed predictions for what the MMX mission could find.”  
      For Kegerreis, this work is exciting because it also expands our understanding of how moons might be born – even if it turns out that Mars’ own formed by a different route. The simulations offer a fascinating exploration, he says, of the possible outcomes of encounters between objects like asteroids and planets. These events were common in the early solar system, and simulations could help researchers reconstruct the story of how our cosmic backyard evolved. 
      This research is a collaborative effort between Ames and Durham University, supported by the Institute for Computational Cosmology’s Planetary Giant Impact Research group. The simulations used were run using the open-source SWIFT code, carried out on the DiRAC (Distributed Research Utilizing Advanced Computing) Memory Intensive service (“COSMA”), hosted by Durham University on behalf of the DiRAC High-Performance Computing facility.
      For news media:
      Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
      Share
      Details
      Last Updated Nov 20, 2024 Related Terms
      Mars Ames Research Center Ames Research Center's Science Directorate General High-Tech Computing Mars Moons Martian Moon Exploration (MMX) Missions NASA Centers & Facilities Planets Technology The Solar System Explore More
      5 min read NASA’s Swift Reaches 20th Anniversary in Improved Pointing Mode
      After two decades in space, NASA’s Neil Gehrels Swift Observatory is performing better than ever…
      Article 1 hour ago 2 min read Gateway Tops Off
      Gateway’s Power and Propulsion Element is now equipped with its xenon and liquid fuel tanks.
      Article 2 hours ago 2 min read About the Office of the Chief Knowledge Officer (OCKO)
      Article 6 hours ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Zoom into Solar Orbiter's four new Sun images, assembled from high-resolution observations by the spacecraft's PHI and EUI instruments made on 22 March 2023. The PHI images are the highest-resolution full views of the Sun's visible surface to date, including maps of the Sun's messy magnetic field and movement on the surface. These can be compared to the new EUI image, which reveals the Sun's glowing outer atmosphere, or corona.
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)

      Abigail Reigner, a systems engineer at NASA’s Glenn Research Center in Cleveland, supports the agency’s research in electrified aircraft propulsion to enable more sustainable air travel. Behind her is a 25% scale model of NASA’s SUbsonic Single Aft eNgine (SUSAN) Electrofan aircraft concept used to test and demonstrate hybrid electric propulsion systems for emission reductions and performance boosts in future commercial aircraft.
      Credit: NASA/Sara Lowthian-Hanna Growing up outside of Philadelphia, Abigail Reigner spent most of her childhood miles away from where her family called home, and where there was little trace of her Native American tribe and culture.
      Belonging to the Comanche Nation that resides in Lawton, Oklahoma, Reigner’s parents made every effort to keep her connected to her Indigenous heritage and part of a community that would later play a key role in her professional journey.
      “My parents were really adamant on making sure my brother and I were still involved in the Native American traditions."
      Abigail Reigner

      “My parents were really adamant on making sure my brother and I were still involved in the Native American traditions,” Reigner said. “We would go down to Oklahoma often in the summertime, spending time with family and staying immersed in our culture.”
      Both her parents come from a teaching background, so Reigner was surrounded by hands-on learning experiences early in life. As a school teacher, her mother would participate in local outreach events each year, talking and interacting with students. Her father, a middle school technology education teacher, taught Reigner how to use computer-aided design (CAD) and helped introduce her to the world of engineering at a young age.  
      These unique experiences helped spark Reigner’s curiosity for learning about science, technology, engineering, and math (STEM) and connecting with others in her community who shared these interests. Reigner says she never takes her upbringing for granted. 
      “I feel pretty lucky to have grown up with so many educational opportunities, and I try to use them as a way to give back to my community,” Reigner said.
      After participating in various engineering and robotics classes in high school and realizing a career in STEM was the right fit for her, Reigner went on to attend the Rochester Institute of Technology in New York where she earned bachelor’s and master’s degrees in mechanical engineering.
      During her time there, she joined the American Indian Science and Engineering Society (AISES) where she got the unique opportunity to connect with other Indigenous students and mentors in STEM fields and gain leadership experience on projects that eventually set her up for internship opportunities at NASA.
      “The opportunities I got through AISES led me to get an internship at NASA’s Jet Propulsion Laboratory during the summer of 2021, and then an eight-month co-op the following year working in the center’s materials science division,” Reigner said.
      Through AISES, Reigner also met Joseph Connolly, an aerospace engineer at NASA’s Glenn Research Center in Cleveland who was looking to recruit Indigenous students for full-time positions in the agency. Upon graduating from college, Reigner joined NASA Glenn as an engineer in the summer of 2024.
      Abigail Reigner (top far left) and Joseph Connolly (middle far right) pose with NASA employees while staffing a booth at an American Indian Science and Engineering Society (AISES) conference to help recruit Indigenous students to the agency. Credit: Abigail Reigner Today, Reigner works as a systems engineer supporting NASA Glenn’s efforts to test and demonstrate electrified aircraft propulsion technologies for future commercial aircraft as part of the agency’s mission to make air travel more sustainable.
      One of the projects she works on is NASA’s Electrified Powertrain Flight Demonstration (EPFD), where she supports risk-reduction testing that enables the project to explore the feasibility of hybrid electric propulsion in reducing emissions and improving efficiency in future aircraft.

      “It’s always good to know that you’re doing something that is furthering the benefit of humanity,” Reigner said. “Seeing that unity across NASA centers and knowing that you are a part of something that is accelerating technology for the future is very cool.” 
      “I really feel like the reason I am here at NASA is because of the success of not just the Native American support group here at Glenn, but also Natives across the agency.”
      Abigail Reigner

      The growing community of Native Americans at NASA Glenn has fostered several initiatives over the years that have helped recruit, inspire, and retain Indigenous employees.
      Leveraging some of the agency’s diversity programs that provide educational STEM opportunities for underrepresented communities, the Native Americans at NASA group has encouraged more students with Indigenous backgrounds to get involved in technical projects while developing the skills needed to excel in STEM fields.
      “The Native American support group at NASA has been around since the mid-to-late 1980s and was actually one of the first Native American employee resources groups at the agency,” Connolly said. “Through this, we’ve been able to connect a number of Native employees with senior leaders across NASA and establish more agencywide recruitment efforts and initiatives for Native Americans.”
      These initiatives range from support through NASA’s Minority University Research and Education Project (MUREP) to help recruit more Indigenous students, to encouraging participation in hands-on learning experiences through projects such as NASA’s University Leadership Initiative (ULI) and the agency’s involvement in the First Nations Launch competition, which helps provide students with opportunities to conduct research while developing engineering and team-building skills.
      The efforts of the Native American community at NASA Glenn and across the agency have been successful in not only creating a direct pipeline for Indigenous students into the NASA workforce, but also allowing them to feel seen and represented in the agency, says Connolly.
      For Reigner, having this community and resource group at NASA to help guide and support her through her journey has been crucial to her success and important for the future of diversity within the agency.
      “I really feel like the reason I am here at NASA is because of the success of not just the Native American support group here at Glenn, but also Natives across the agency,” Reigner said. Without their support and initiatives to recruit and retain students, I wouldn’t be here today.” 
      Explore More
      7 min read Six Ways Supercomputing Advances Our Understanding of the Universe
      Article 4 days ago 1 min read NASA Glenn Chief Counsel Named to CSU Law Hall of Fame 
      Article 6 days ago 1 min read NASA Encourages Careers in STEM During Event
      Article 6 days ago View the full article
    • By NASA
      Clayton P. Turner, associate administrator for Space Technology Mission DirectorateCredit: NASA Clayton P. Turner will serve as the associate administrator of the Space Technology Mission Directorate (STMD) at the agency’s headquarters in Washington, NASA Administrator Bill Nelson announced Monday. His appointment is effective immediately.
      Turner has served as the acting associate administrator of STMD since July. In this role, Turner will continue to oversee executive leadership, strategic planning, and overall management of all technology maturation and demonstration programs executed from the directorate enabling critical space focused technologies that deliver today and help create tomorrow.
      “Under Turner’s skilled and steady hand, the Space Technology Mission Directorate will continue to do what it does best: help NASA push the boundaries of what’s possible and drive American leadership in space,” said NASA Administrator Bill Nelson. “I look forward to what STMD will achieve under Turner’s direction.”
      As NASA embarks on the next era of space exploration, STMD leverages partnerships to advance technologies and test new capabilities helping the agency develop a sustainable presence on the Moon and beyond. As associate administrator of STMD, Turner will plan, coordinate, and evaluate the mission directorate’s full range of programs and activities, including budget formulation and execution, as well as represent the programs to officials within and outside the agency.
      Previously, Turner served as NASA Langley Research Center Director since September 2019 and has been with the agency for more than 30 years. He has held several roles at NASA Langley, including engineering director, associate center director, and deputy center director. Throughout his NASA career, he has worked on many projects for the agency, including: the Earth Science Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation Project; the materials technology development Gas Permeable Polymer Materials Project; the Space Shuttle Program’s Return to Flight work; the flight test of the Ares 1-X rocket; the flight test of the Orion Launch Abort System; and the entry, descent, and landing segment of the Mars Science Laboratory.
      In recognition of his commitment to the agency and engineering, Turner has received many prestigious awards, such as the NASA Distinguished Service Medal, the NASA Outstanding Leadership Medal, the NASA Exceptional Engineering Achievement Medal. He is also an Associate Fellow of the American Institute of Aeronautics and Astronautics (AIAA) and a Board of Trustees member of his alma mater, Rochester Institute of Technology.
      NASA Glenn Research Center Deputy Director, Dawn Schaible, became acting Langley Center Director in July and will continue to serve in this role. At NASA Langley, Schaible leads a skilled group of more than 3,000 civil servant and contractor scientists, researchers, engineers, and support staff, who work to advance aviation, expand understanding of Earth’s atmosphere, and develop technology for space exploration.
      For more about Turner’s experience, visit his full biography online at:
      https://go.nasa.gov/48UmkmS
      -end-
      Meira Bernstein / Jasmine Hopkins
      Headquarters, Washington
      202-358-1600
      meira.b.bernstein@nasa.gov / jasmine.s.hopkins@nasa.gov
      Share
      Details
      Last Updated Nov 18, 2024 LocationNASA Headquarters Related Terms
      Space Technology Mission Directorate View the full article
  • Check out these Videos

×
×
  • Create New...