Jump to content

MetOp Second Generation weather satellite pair show off


Recommended Posts

Two MetOp-SG satellites on show

Having satellites in different types of orbit is essential to delivering data to forecast the weather accurately. With the first Meteosat Third Generation Imager satellite safely in geostationary orbit since December 2022, it’s also time to focus on its polar-orbiting cousin, the MetOp Second Generation mission. And now, for the first time, two MetOp Second Generation satellites have been brought together to stand side-by-side for testing.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      With all instruments integrated, the first MetOp Second Generation-A, MetOp-SG-A1, weather satellite is now fully assembled and on schedule for liftoff next year. Meanwhile, its sibling, MetOp-SG-B1, is undergoing rigorous testing to ensure that it will withstand the vacuum and extreme temperature swings of space.
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Two NASA employees, Howard Chang and Bradley Williams, were named as two of the “20 under 35 of 2024” by the Space and Satellite Professionals International. The award recognizes outstanding young professionals in the space industry.
      Photos courtesy of Bradley Williams and Howard Chang The annual list of “20 Under 35” features 20 employees and entrepreneurs to keep your eye on in coming years. They were selected from nominations submitted by the membership and evaluated by the same panel of judges who name winners of the Promise Awards.  
      Howard Chang is an Assistant Chief Counsel at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Bradley (Brad) Williams is the Acting Associate Director for Flight, Heliophysics Division, NASA Science Mission Directorate at NASA Headquarters, Washington. 
      “I’m honored to be named in this year’s cohort,” Chang said. “I saw how SSPI connects people across the space and satellite industry—across generations, countries, and even disciplines—to build up the space economy of the future. And I can’t express enough thanks to all my NASA colleagues for their support and kindness—especially Deputy Chief Counsel Amber Hufft for her time and mentorship this year.”
      “It is an absolute honor to be recognized by SSPI on the 20 under 35 list of 2024,” said Williams. “I feel privileged to have benefitted from the opportunities I’ve had so far in my career. I want to thank the numerous mentors through the years who have provided me guidance and lessons learned and especially my colleagues and the leaders at NASA who have recognized my contributions and supported my growth potential as a leader.”
      About Howard Chang
      Howard Chang serves as the lead attorney for NASA’s Wallops Flight Facility’s commercial, nonprofit, and interagency partnerships in Wallops Island, Virginia. He also focuses on legal issues involving Unmanned Aircraft Systems (UAS), small UAS, real property transactions, government contracts litigation and administration supporting NASA Goddard, and partnerships involving the Goddard Institute for Space Studies located at Columbia University, New York, NASA commended Chang with an individual merit award in recognition of his superior support to the Goddard Space Flight Center during his first six months.
      In addition to his legal work, Chang contributes substantially to thought leadership in space law and policy. He has authored articles for The Federalist and the International Institute of Space Law on topics from the Apollo 8 mission to the travaux preparatoires of the Principles Declaration of 1963—the precursor to the Outer Space Treaty. He is a frequent speaker on matters of space law. He will be presenting at the 2024 International Astronautical Congress in Milan, Italy on the Wolf Amendment and the future of the International Space Station. In Milan, he will present in his capacity as an Advisor for the Georgetown University Space Initiative. He continues to serve as a guest lecturer on space policy for law schools and undergraduate space courses as well.
      Chang previously worked at an international firm in its aerospace finance and space law practices, engaging in litigation, transactional, regulatory, and policy work for aerospace and space companies. In addition, he worked on white-collar criminal defense, internal corporate investigations, congressional investigations, trial litigation, appellate litigation, and national security matters.
      About Bradley Williams
      Bradley Williams is the acting Associate Director for Flight Programs in the Heliophysics Division of the Science Mission Directorate at NASA Headquarters, Washington where he oversees more than a dozen missions in operations and approximately another dozen missions in different stages of development.
      Previously, Williams was a Program Executive in the Heliophysics Division where his assignments included IMAP, TRACERS, HelioSwarm, the Solar Cruiser solar sail technology project, and Senior Program Executive of the NASA Space Weather Program.
      Before joining NASA, he was the Director of Civil Space Programs at Terran Orbital Corporation, where he led the spacecraft development for both commercial and NASA technology demonstration missions and assisted with the growth of the science mission portfolio.
      Previously at the University of Arizona, he worked with faculty and research teams to identify proposal opportunities and develop spaceflight proposals. Williams was a vital member of the OSIRIS-REx Camera Suite (OCAMS) team. He also served as the Deputy Payload Manager on GUSTO, the first of its kind, balloon-borne observatory.
      He has been recognized for his achievements being named a Via Satellite Rising Star in 2024 and has been awarded the Robert H. Goddard Engineering Team Award, NASA Group Achievement Award, and asteroid (129969) Bradwilliams named in his honor.
      The “20 Under 35“ are honored each year at SSPI’s Future Leaders Dinner. At the Dinner, SSPI presents the three top-ranked members of the 20 Under 35 with a Promise Award, recognizing them as leaders of their year’s cohort, and honors the Mentor of the Year for fostering young talent, both within his or her organization and throughout the industry. The 2024 “20 Under 35” will be honored at the Future Leaders Celebration on October 21, 2024 during Silicon Valley Space Week.
      Rob Gutro
      NASA’s Goddard Space Flight Center
      Share
      Details
      Last Updated Oct 03, 2024 EditorJamie AdkinsContactRob Garnerrob.garner@nasa.gov Related Terms
      General Goddard Space Flight Center People of Goddard People of NASA
      View the full article
    • By European Space Agency
      To achieve truly global connectivity, telecommunications satellites are essential. Through the Sunrise Partnership Project with Eutelsat OneWeb – part of Eutelsat Group – and support from the UK Space Agency, ESA is extending advanced 5G connectivity to areas beyond the reach of traditional ground networks.
      View the full article
    • By NASA
      On Sept. 30, 1994, space shuttle Endeavour took to the skies on its 7th trip into space. During the 11-day mission, the STS-68 crew of Commander Michael A. Baker, Pilot Terrence “Terry” W. Wilcutt, and Mission Specialists Steven L. Smith, Daniel W. Bursch, Peter J.K. “Jeff” Wisoff, and Payload Commander Thomas “Tom” D. Jones operated the second Space Radar Laboratory (SRL-2) as part of NASA’s Mission to Planet Earth. Flying five months after SRL-1, results from the two missions provided unprecedented insight into Earth’s global environment across contrasting seasons. The astronauts observed pre-selected sites around the world as well as a volcano that erupted during their mission using SRL-2’s U.S., German, and Italian radar instruments and handheld cameras.

      Left: The STS-68 crew patch. Right: Official photo of the STS-68 crew of Thomas D. Jones, front row left, Peter J.K. “Jeff” Wisoff, Steven L. Smith, and Daniel W. Bursch; Michael A. Baker, back row left, and Terrence W. Wilcutt.
      In August 1993, NASA named Jones as the SRL-2 payload commander, eight months before he flew as a mission specialist on STS-59, the SRL-1 mission. When NASA could not meet JPL’s request to fly their personnel as payload specialists on the SRL missions, the compromise solution reached had one NASA astronaut – in this case, Jones – fly on both missions. Selected as an astronaut in 1990, STS-59 marked Jones’ first flight and STS-68 his second. In October 1993, NASA named the rest of the STS-68 crew. For Baker, selected in 1985, SRL-2 marked his third trip into space, having flown on STS-43 and STS-52. Along with Jones, Wilcutt, Bursch, and Wisoff all came from the class of 1990, nicknamed The Hairballs. STS-68 marked Wilcutt’s first spaceflight, while Bursch had flown once before on STS-51 and Wisoff on STS-57. Smith has the distinction as the first from his class of 1992 – The Hogs – assigned to a spaceflight, but the Aug. 18 launch abort robbed him of the distinction of the first to actually fly, the honor going instead to Jerry M. Linenger when STS-64 ended up flying before STS-68.

      Left: The Spaceborne Imaging Radar-C (SIR-C) in Endeavour’s payload bay in the Orbiter Processing Facility at NASA’s Kennedy Space Center in Florida. Middle: Endeavour on Launch Pad 39A. Right: STS-68 crew in the Astrovan on its way to Launch Pad 39A for the Terminal Countdown Demonstration Test.
      The SRL payloads consisted of three major components – the Spaceborne Imaging Radar-C (SIR-C), built by NASA’s Jet Propulsion Laboratory in Pasadena, California, the X-band Synthetic Aperture Radar (X-SAR) sponsored by the German Space Agency DLR and the Italian Space Agency ASI, and the Measurement of Air Pollution from Satellites (MAPS), built by NASA’s Langley Research Center in Hampton, Virginia. Scientists from 13 countries participated in the SRL data gathering program, providing ground truth at preselected observation sites. The SIR system first flew as SIR-A on STS-2 in November 1981, although the shortened mission limited data gathering. It flew again as SIR-B on STS-41G in October 1984, and gathering much useful data.
      Building on that success, NASA planned to fly an SRL mission on STS-72A, launching in March 1987 into a near-polar orbit from Vandenberg Air Force, now Space Force, Base in California, but the Challenger accident canceled those plans. With polar orbits no longer attainable, a 57-degree inclination remained the highest achievable from NASA’s Kennedy Space Center (KSC) in Florida, still allowing the radar to study more than 75% of Earth’s landmasses. As originally envisioned, SRL-2 would fly about six months after the first mission, allowing data gathering during contrasting seasons. Shuttle schedules moved the date of the second mission up to August 1994, only four months after the first. But events intervened to partially mitigate that disruption.

      Left: Launch abort at Launch Pad 39A at NASA’s Kennedy Space Center in Florida. Right: A few days after the launch abort, space shuttle Discovery arrives at Launch Pad 39B, left, with space shuttle Endeavour still on Launch Pad 39A, awaiting its rollback to the Vehicle Assembly Building.
      Endeavour arrived back at KSC following its previous flight, the STS-59 SRL-1 mission, in May 1994. Workers in KSC’s Orbiter Processing Facility refurbished the SRL-1 payloads for their reflight and serviced the orbiter, rolling it over to the Vehicle Assembly Building (VAB) on July 21 for mating with its External Tank and Solid Rocket Boosters (SRBs). Endeavour rolled out to Launch Pad 39A on July 27. The six-person STS-68 crew traveled to KSC to participate in the Terminal Countdown Demonstration Test on Aug. 1, essentially a dress rehearsal for the launch countdown. They returned to KSC on Aug. 15, the same day the final countdown began.
      Following a smooth countdown leading to a planned 5:54 a.m. EDT launch on Aug. 18, Endeavour’s three main engines came to life 6.6 seconds before liftoff. With just 1.8 seconds until the two SRBs ignited to lift the shuttle stack off the pad, the Redundant Set Launch Sequencer (RSLS) stopped the countdown and shutdown the three main engines, two of which continued running past the T-zero mark. It marked the fifth and final launch abort of the shuttle program, and the closest one to liftoff. Bursch now had the distinction as the only person to have experienced two RSLS launch aborts, his first one occurring on STS-51 just a year earlier. Engineers traced the shutdown to higher than anticipated temperatures in a high-pressure oxygen turbopump in engine number three. The abort necessitated a rollback of Endeavour to the VAB on Aug. 24 to replace all three main engines with three engines from Atlantis on its upcoming STS-66 mission. Engineers shipped the suspect engine to NASA’s Stennis Space Center in Mississippi for extensive testing, where it worked fine and flew on STS-70 in July 1995. Meanwhile, Endeavour returned to Launch Pad 39A on Sept. 13.

      Liftoff of Endeavour on the STS-68 mission.
      On Sept. 30, 1994, Endeavour lifted off on time at 6:16 a.m. EDT, and eight and half minutes later delivered its crew and payloads to space. Thirty minutes later, a firing of the shuttle’s Orbiter Maneuvering System (OMS) engines placed them in a 132-mile orbit inclined 57 degrees to the equator. The astronauts opened the payload bay doors, deploying the shuttle’s radiators, and removed their bulky launch and entry suits, stowing them for the remainder of the flight.

      Left: The Space Radar Laboratory-2 payload in Endeavour’s cargo bay, showing SIR-C (with the JPL logo on it), X-SAR (the long bar atop SIR-C), and MAPS (with the LaRC logo on it). Middle: The STS-68 Blue Team of Daniel W. Bursch, top, Steven L. Smith, and Thomas D. Jones in their sleep bunks. Right: Tile damage on Endeavour’s starboard Orbital Maneuvering System pod caused by a strike from a tile from Endeavour’s front window rim that came loose during the ascent.

      Left: Steven L. Smith, left, and Peter J.K. “Jeff” Wisoff set up the bicycle ergometer in the shuttle’s middeck. Middle: The STS-68 Red Team of Terrence W. Wilcutt, top, Wisoff, and Michael A. Baker in their sleep bunks. Right: Wilcutt consults the flight plan for the next maneuver.
      The astronauts began to convert their vehicle into a science platform, and that included breaking up into two teams to enable 24-hour-a-day operations. Baker, Wilcutt, and Wisoff made up the Red Team while Smith, Bursch, and Jones made up the Blue Team. Within five hours of liftoff, the Blue Team began their sleep period while the Red Team started their first on orbit shift by activating the SIR-C and X-SAR instruments in the payload bay and some of the middeck experiments. During inspection of the OMS pods, the astronauts noted an area of damaged tile, later attributed to an impact from a tile from the rim of Endeavour’s front window that came loose during the ascent to orbit. Engineers on the ground assessed the damage and deemed it of no concern for the shuttle’s entry.

      Left: Michael A. Baker prepares to take photographs through the commander’s window. Middle: Thomas D. Jones, left, Daniel W. Bursch, and Baker hold various cameras in Endeavour’s flight deck. Right: Terrence W. Wilcutt with four cameras.

      Left: Thomas D. Jones, left, and Daniel W. Bursch consult a map in an atlas developed specifically for the SRL-2 mission. Middle: Jones takes photographs through the overhead window. Right: Steven L. Smith takes photographs through the overhead window.
      By sheer coincidence, the Klyuchevskaya volcano on Russia’s Kamchatka Peninsula began erupting on the day STS-68 launched. By the mission’s second day, the astronauts trained not only their cameras on the plume of ash reaching 50,000 feet high and streaming out over the Pacific Ocean but also the radar instruments. This provided unprecedented information of this amazing geologic event to scientists who could also compare these images with those collected during SRL-1 five months earlier.

      Left: Eruption of Klyuchevskaya volcano on Russia’s Kamchatka Peninsula. Middle: Radar image of Klyuchevskaya volcano. Right: Comparison of radar images of Mt. Pinatubo in The Philippines taken during SRL-1 in April 1994 and SRL-2 in October 1994.
      The STS-68 crew continued their Earth observations for the remainder of the 11-day flight, having received a one-day extension from Mission Control. On the mission’s eighth day, they lowered Endeavour’s orbit to 124 miles to begin a series of interferometry studies that called for extremely precise orbital maneuvering to within 30 feet of the orbits flown during SRL-1, the most precise in shuttle history to that time. These near-perfectly repeating orbits allowed the construction of three-dimensional contour images of selected sites. The astronauts repaired a failed payload high rate recorder and continued working on middeck and biomedical experiments.

      Left: Steven L. Smith, left, conducts a biomedical experiment as Michael A. Baker monitors. Right: Peter J.K. “Jeff” Wisoff, left, and Smith repair a payload high rate recorder.

      A selection of STS-68 crew Earth observation photographs. Left: The San Francisco Bay area. Middle left: The Niagara Falls and Buffalo area. Middle right: Riyadh, Saudi Arabia. Right: Another view of the Klyuchevskaya volcano on Russia’s Kamchatka Peninsula.

      The high inclination orbit afforded the astronauts great views of the aurora australis, or southern lights.
      On this mission in particular, the STS-68 astronauts spent considerable time looking out the window, their images complementing the data taken by the radar instruments. Their high inclination orbit enabled views of parts of the planet not seen during typical shuttle missions, including spectacular views of the southern lights, or aurora australis.

      Two versions of the inflight STS-68 crew photo.
      On flight day 11, with most of the onboard film exposed and consumables running low, the astronauts prepared for their return to Earth the following day. Baker and Wilcutt tested Endeavour’s reaction control system thrusters and aerodynamic surfaces in preparation for deorbit and descent through the atmosphere, while the rest of the crew busied themselves with shutting down experiments and stowing away unneeded equipment.

      Left: Endeavour moments before touchdown at California’s Edwards Air Force Base. Middle: Michael A. Baker brings Endeavour home to close out STS-68 and a successful SRL-2 mission. Right: Baker gets a congratulatory tap on the shoulder from Terrence W. Wilcutt following wheels stop.

      Left: As workers process Endeavour on the runway, Columbia atop a Shuttle Carrier Aircraft (SCA) flies overhead on its way to the Palmdale facility for refurbishment. Right: Mounted atop an SCA, Endeavour departs Edwards for the cross-country trip to NASA’s Kennedy Space Center in Florida.
      On Oct. 11, the astronauts closed Endeavour’s payload bay doors, donned their launch and entry suits, and strapped themselves into their seats for entry and landing. Thick cloud cover at the KSC primary landing site forced first a two-orbit delay in their landing, then an eventual diversion to Edwards Air Force Base (AFB) in California. The crew fired Endeavour’s OMS engines to drop out of orbit. Baker piloted Endeavour to a smooth landing at Edwards, ending the 11-day 5-hour 46-minute flight. The crew had orbited the Earth 182 times. Workers at Edwards safed the vehicle and placed it atop a Shuttle Carrier Aircraft for the ferry flight back to KSC. The duo left Edwards on Oct. 19, and after stops at Biggs Army Airfield in El Paso, Texas, Dyess AFB in Abilene, Texas, and Eglin AFB in the Florida panhandle, arrived at KSC the next day. Workers there began preparing Endeavour for its next flight, STS-67, in March 1995. Meanwhile, a Gulfstream jet flew the astronauts back to Ellington Field in Houston for reunions with their families.
      Diane Evans, SIR-C project scientist, summarized the scientific return from STS-68, “We’ve had a phenomenally successful mission.” The radar instrument collected 60 terabits of data, filling 67 miles of magnetic tape during the mission. In 1990s technology, that equated to a pile of floppy disks 15 miles high! In 2006, using an updated comparison, astronaut Jones equated that to a stack of CDs 65 feet high. The radar instruments completed 910 data takes of 572 targets during about 80 hours of imaging. To complement the radar data, the astronauts took nearly 14,000 photographs using 14 different cameras. To image the various targets required more than 400 maneuvers of the shuttle, requiring 22,000 keystrokes in the orbiter’s computer. The use of interferometry, requiring precision orbital tracking of the shuttle, to create three-dimensional topographic maps, marks another significant accomplishment of the mission. Scientists published more than 5,000 papers using data from the SRL missions.
      Enjoy the crew narrate a video about the STS-68 mission. Read Wilcutt’s recollections of the mission in his oral history with the JSC History Office.
      Explore More
      15 min read 55 Years Ago: Celebrations for Apollo 11 Continue as Apollo 12 Prepares to Revisit the Moon
      Article 2 weeks ago 8 min read 65 Years Ago: First Powered Flight of the X-15 Hypersonic Rocket Plane 
      Article 2 weeks ago 8 min read 55 Years Ago: Space Task Group Proposes Post-Apollo Plan to President Nixon
      Article 2 weeks ago View the full article
    • By NASA
      Credit: NASA NASA has selected Firefly Aerospace, Inc. of Cedar Park, Texas, to provide launch services for the National Oceanic and Atmospheric Administration (NOAA) QuickSounder mission.
      The selection is part of NASA’s Venture-Class Acquisition of Dedicated and Rideshare (VADR) launch services contract. This contract allows the agency to make fixed-price indefinite-delivery/indefinite-quantity awards during VADR’s five-year ordering period, with a maximum total value of $300 million across all contracts.
      The QuickSounder mission will support NOAA’s next generation satellite architecture for its future low Earth orbit program, which will provide mission-critical data for the agency’s National Weather Service, the nation’s weather industry, and other users worldwide.
      QuickSounder is the first small satellite in NOAA’s Near Earth Orbit Network (NEON). A collaborative effort between NASA and NOAA, NEON will provide a new approach to developing a new global environmental satellite system by quickly building small to medium-sized satellites with Earth-observing instruments for weather forecasting, disaster management, and climate monitoring. QuickSounder has a launch readiness date of February 2026.
      NASA will manage the development and launch of the satellites for NOAA. As the mission lead, NOAA provides funding, technical requirements, and will manage post-launch operations. NASA and NOAA will work with commercial partners to design and build the network’s spacecraft and instruments.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Liz Vlock / Karen Fox
      Headquarters, Washington
      202-358-1100
      elizabeth.a.vlock@nasa.gov / karen.fox@nasa.gov
      Patti Bielling
      Kennedy Space Center, Florida
      321-501-7575
      patricia.a.bielling@nasa.gov
      Share
      Details
      Last Updated Sep 23, 2024 LocationNASA Headquarters Related Terms
      Science Mission Directorate Joint Agency Satellite Division Kennedy Space Center NASA Directorates NOAA (National Oceanic and Atmospheric Administration) View the full article
  • Check out these Videos

×
×
  • Create New...